1 # General imports |
|
2 import datetime |
|
3 from operator import itemgetter |
|
4 |
|
5 # Science imports |
|
6 import numpy as np |
|
7 import matplotlib as mpl |
|
8 from matplotlib.ticker import ScalarFormatter |
|
9 from matplotlib import pyplot as plt |
|
10 import netCDF4 as netcdf |
|
11 |
|
12 netcdf_format = 'NETCDF3_CLASSIC' # choose one of 'NETCDF3_CLASSIC', 'NETCDF3_64BIT', 'NETCDF4_CLASSIC' and 'NETCDF4' |
|
13 |
|
14 |
|
15 class BaseLidarMeasurement(): |
|
16 """ This is the general measurement object. |
|
17 It is meant to become a general measurement object |
|
18 independent of the input files. |
|
19 |
|
20 Each subclass should implement the following: |
|
21 * the import_file method. |
|
22 * set the "extra_netcdf_parameters" variable to a dictionary that includes the appropriate parameters. |
|
23 |
|
24 You can override the get_PT method to define a custom procedure to get ground temperature and pressure. |
|
25 The one implemented by default is by using the MILOS meteorological station data. |
|
26 |
|
27 """ |
|
28 |
|
29 def __init__(self, filelist = None): |
|
30 self.info = {} |
|
31 self.dimensions = {} |
|
32 self.variables = {} |
|
33 self.channels = {} |
|
34 self.attributes = {} |
|
35 self.files = [] |
|
36 self.dark_measurement = None |
|
37 |
|
38 if filelist: |
|
39 self.import_files(filelist) |
|
40 |
|
41 def import_files(self, filelist): |
|
42 for f in filelist: |
|
43 self.import_file(f) |
|
44 self.update() |
|
45 |
|
46 def import_file(self,filename): |
|
47 raise NotImplementedError('Importing files should be defined in the instrument-specific subclass.') |
|
48 |
|
49 def update(self): |
|
50 ''' |
|
51 Update the the info, variables and dimensions of the lidar measurement based |
|
52 on the information found in the channels. |
|
53 |
|
54 Reading of the scan_angles parameter is not implemented. |
|
55 ''' |
|
56 |
|
57 # Initialize |
|
58 start_time =[] |
|
59 stop_time = [] |
|
60 points = [] |
|
61 all_time_scales = [] |
|
62 channel_name_list = [] |
|
63 |
|
64 # Get the information from all the channels |
|
65 for channel_name, channel in self.channels.items(): |
|
66 channel.update() |
|
67 start_time.append(channel.start_time) |
|
68 stop_time.append(channel.stop_time) |
|
69 points.append(channel.points) |
|
70 all_time_scales.append(channel.time) |
|
71 channel_name_list.append(channel_name) |
|
72 |
|
73 # Find the unique time scales used in the channels |
|
74 time_scales = set(all_time_scales) |
|
75 |
|
76 # Update the info dictionary |
|
77 self.info['start_time'] = min(start_time) |
|
78 self.info['stop_time'] = max(stop_time) |
|
79 self.info['duration'] = self.info['stop_time'] - self.info['start_time'] |
|
80 |
|
81 # Update the dimensions dictionary |
|
82 self.dimensions['points'] = max(points) |
|
83 self.dimensions['channels'] = len(self.channels) |
|
84 # self.dimensions['scan angles'] = 1 |
|
85 self.dimensions['nb_of_time_scales'] = len(time_scales) |
|
86 |
|
87 # Update the variables dictionary |
|
88 # Write time scales in seconds |
|
89 raw_Data_Start_Time = [] |
|
90 raw_Data_Stop_Time = [] |
|
91 |
|
92 for current_time_scale in list(time_scales): |
|
93 raw_start_time = np.array(current_time_scale) - min(start_time) # Time since start_time |
|
94 raw_start_in_seconds = np.array([t.seconds for t in raw_start_time]) # Convert in seconds |
|
95 raw_Data_Start_Time.append(raw_start_in_seconds) # And add to the list |
|
96 # Check if this time scale has measurements every 30 or 60 seconds. |
|
97 |
|
98 duration = self._get_duration(raw_start_in_seconds) |
|
99 |
|
100 raw_stop_in_seconds = raw_start_in_seconds + duration |
|
101 raw_Data_Stop_Time.append(raw_stop_in_seconds) |
|
102 |
|
103 self.variables['Raw_Data_Start_Time'] = raw_Data_Start_Time |
|
104 self.variables['Raw_Data_Stop_Time'] = raw_Data_Stop_Time |
|
105 |
|
106 # Make a dictionary to match time scales and channels |
|
107 channel_timescales = [] |
|
108 for (channel_name, current_time_scale) in zip(channel_name_list, all_time_scales): |
|
109 # The following lines are PEARL specific. The reason they are here is not clear. |
|
110 # if channel_name =='1064BLR': |
|
111 # channel_name = '1064' |
|
112 for (ts,n) in zip(time_scales, range(len(time_scales))): |
|
113 if current_time_scale == ts: |
|
114 channel_timescales.append([channel_name,n]) |
|
115 self.variables['id_timescale'] = dict(channel_timescales) |
|
116 |
|
117 def _get_duration(self, raw_start_in_seconds): |
|
118 ''' Return the duration for a given time scale. In some files (e.g. Licel) this |
|
119 can be specified from the files themselves. In others this must be guessed. |
|
120 |
|
121 ''' |
|
122 # The old method, kept here for reference |
|
123 #dt = np.mean(np.diff(raw_start_in_seconds)) |
|
124 #for d in duration_list: |
|
125 # if abs(dt - d) <15: #If the difference of measuremetns is 10s near the(30 or 60) seconds |
|
126 # duration = d |
|
127 |
|
128 duration = np.diff(raw_start_in_seconds)[0] |
|
129 |
|
130 return duration |
|
131 |
|
132 def subset_by_channels(self, channel_subset): |
|
133 ''' Get a measurement object containing only the channels with names |
|
134 contained in the channel_sublet list ''' |
|
135 |
|
136 m = self.__class__() # Create an object of the same type as this one. |
|
137 m.channels = dict([(channel, self.channels[channel]) for channel |
|
138 in channel_subset]) |
|
139 m.update() |
|
140 return m |
|
141 |
|
142 def subset_by_time(self, start_time, stop_time): |
|
143 |
|
144 if start_time > stop_time: |
|
145 raise ValueError('Stop time should be after start time') |
|
146 |
|
147 if (start_time < self.info['start_time']) or (stop_time > self.info['stop_time']): |
|
148 raise ValueError('The time interval specified is not part of the measurement') |
|
149 |
|
150 m = self.__class__() # Create an object of the same type as this one. |
|
151 for (channel_name, channel) in self.channels.items(): |
|
152 m.channels[channel_name] = channel.subset_by_time(start_time, stop_time) |
|
153 m.update() |
|
154 return m |
|
155 |
|
156 def subset_by_bins(self, b_min = 0, b_max = None): |
|
157 """Remove some height bins from the file. This could be needed to |
|
158 remove aquisition artifacts at the start or the end of the files. |
|
159 """ |
|
160 |
|
161 m = self.__class__() # Create an object of the same type as this one. |
|
162 |
|
163 for (channel_name, channel) in self.channels.items(): |
|
164 m.channels[channel_name] = channel.subset_by_bins(b_min, b_max) |
|
165 |
|
166 m.update() |
|
167 |
|
168 return m |
|
169 |
|
170 def r_plot(self): |
|
171 #Make a basic plot of the data. |
|
172 #Should include some dictionary with params to make plot stable. |
|
173 pass |
|
174 |
|
175 def r_pdf(self): |
|
176 # Create a pdf report using a basic plot and meta-data. |
|
177 pass |
|
178 |
|
179 def save(self): |
|
180 #Save the current state of the object to continue the analysis later. |
|
181 pass |
|
182 |
|
183 def get_PT(self): |
|
184 ''' Sets the pressure and temperature at station level . |
|
185 The results are stored in the info dictionary. |
|
186 ''' |
|
187 |
|
188 self.info['Temperature'] = 10.0 |
|
189 self.info['Pressure'] = 930.0 |
|
190 |
|
191 def subtract_dark(self): |
|
192 |
|
193 if not self.dark_measurement: |
|
194 raise IOError('No dark measurements have been imported yet.') |
|
195 |
|
196 for (channel_name, dark_channel) in self.dark_measurement.channels.iteritems(): |
|
197 dark_profile = dark_channel.average_profile() |
|
198 channel = self.channels[channel_name] |
|
199 |
|
200 for measurement_time, data in channel.data.iteritems(): |
|
201 channel.data[measurement_time] = data - dark_profile |
|
202 |
|
203 channel.update() |
|
204 |
|
205 def save_as_netcdf(self, filename = None): |
|
206 """Saves the measurement in the netcdf format as required by the SCC. |
|
207 Input: filename. If no filename is provided <measurement_id>.nc will |
|
208 be used. |
|
209 """ |
|
210 params = self.extra_netcdf_parameters |
|
211 needed_parameters = ['Measurement_ID', 'Temperature', 'Pressure'] |
|
212 |
|
213 for parameter in needed_parameters: |
|
214 stored_value = self.info.get(parameter, None) |
|
215 if stored_value is None: |
|
216 raise ValueError('A value needs to be specified for %s' % parameter) |
|
217 |
|
218 if not filename: |
|
219 filename = "%s.nc" % self.info['Measurement_ID'] |
|
220 |
|
221 dimensions = {'points': 1, |
|
222 'channels': 1, |
|
223 'time': None, |
|
224 'nb_of_time_scales': 1, |
|
225 'scan_angles': 1,} # Mandatory dimensions. Time bck not implemented |
|
226 |
|
227 global_att = {'Measurement_ID': None, |
|
228 'RawData_Start_Date': None, |
|
229 'RawData_Start_Time_UT': None, |
|
230 'RawData_Stop_Time_UT': None, |
|
231 'RawBck_Start_Date': None, |
|
232 'RawBck_Start_Time_UT': None, |
|
233 'RawBck_Stop_Time_UT': None, |
|
234 'Sounding_File_Name': None, |
|
235 'LR_File_Name': None, |
|
236 'Overlap_File_Name': None, |
|
237 'Location': None, |
|
238 'System': None, |
|
239 'Latitude_degrees_north': None, |
|
240 'Longitude_degrees_east': None, |
|
241 'Altitude_meter_asl': None} |
|
242 |
|
243 channel_variables = \ |
|
244 {'channel_ID': (('channels', ), 'i'), |
|
245 'Background_Low': (('channels', ), 'd'), |
|
246 'Background_High': (('channels', ), 'd'), |
|
247 'LR_Input': (('channels', ), 'i'), |
|
248 'DAQ_Range': (('channels', ), 'd'), |
|
249 'Depolarization_Factor': (('channels', ), 'd'), } |
|
250 |
|
251 |
|
252 channels = self.channels.keys() |
|
253 |
|
254 input_values = dict(self.dimensions, **self.variables) |
|
255 |
|
256 # Add some mandatory global attributes |
|
257 input_values['Measurement_ID'] = self.info['Measurement_ID'] |
|
258 input_values['RawData_Start_Date'] = self.info['start_time'].strftime('%Y%m%d') |
|
259 input_values['RawData_Start_Time_UT'] = self.info['start_time'].strftime('%H%M%S') |
|
260 input_values['RawData_Stop_Time_UT'] = self.info['stop_time'].strftime('%H%M%S') |
|
261 |
|
262 # Add some optional global attributes |
|
263 input_values['System'] = params.general_parameters['System'] |
|
264 input_values['Latitude_degrees_north'] = params.general_parameters['Latitude_degrees_north'] |
|
265 input_values['Longitude_degrees_east'] = params.general_parameters['Longitude_degrees_east'] |
|
266 input_values['Altitude_meter_asl'] = params.general_parameters['Altitude_meter_asl'] |
|
267 |
|
268 # Open a netCDF4 file |
|
269 f = netcdf.Dataset(filename,'w', format = netcdf_format) # the format is specified in the begining of the file |
|
270 |
|
271 # Create the dimensions in the file |
|
272 for (d,v) in dimensions.iteritems(): |
|
273 v = input_values.pop(d, v) |
|
274 f.createDimension(d,v) |
|
275 |
|
276 # Create global attributes |
|
277 for (attrib,value) in global_att.iteritems(): |
|
278 val = input_values.pop(attrib,value) |
|
279 if val: |
|
280 setattr(f, attrib, val) |
|
281 |
|
282 """ Variables """ |
|
283 # Write the values of fixes channel parameters |
|
284 for (var,t) in channel_variables.iteritems(): |
|
285 temp_v = f.createVariable(var,t[1],t[0]) |
|
286 for (channel, n) in zip(channels, range(len(channels))): |
|
287 temp_v[n] = params.channel_parameters[channel][var] |
|
288 |
|
289 # Write the id_timescale values |
|
290 temp_id_timescale = f.createVariable('id_timescale','i',('channels',)) |
|
291 for (channel, n) in zip(channels, range(len(channels))): |
|
292 temp_id_timescale[n] = self.variables['id_timescale'][channel] |
|
293 |
|
294 # Laser pointing angle |
|
295 temp_v = f.createVariable('Laser_Pointing_Angle','d',('scan_angles',)) |
|
296 temp_v[:] = params.general_parameters['Laser_Pointing_Angle'] |
|
297 |
|
298 # Molecular calculation |
|
299 temp_v = f.createVariable('Molecular_Calc','i') |
|
300 temp_v[:] = params.general_parameters['Molecular_Calc'] |
|
301 |
|
302 # Laser pointing angles of profiles |
|
303 temp_v = f.createVariable('Laser_Pointing_Angle_of_Profiles','i',('time','nb_of_time_scales')) |
|
304 for (time_scale,n) in zip(self.variables['Raw_Data_Start_Time'], |
|
305 range(len(self.variables['Raw_Data_Start_Time']))): |
|
306 temp_v[:len(time_scale), n] = 0 # The lidar has only one laser pointing angle |
|
307 |
|
308 # Raw data start/stop time |
|
309 temp_raw_start = f.createVariable('Raw_Data_Start_Time','i',('time','nb_of_time_scales')) |
|
310 temp_raw_stop = f.createVariable('Raw_Data_Stop_Time','i',('time','nb_of_time_scales')) |
|
311 for (start_time, stop_time,n) in zip(self.variables['Raw_Data_Start_Time'], |
|
312 self.variables['Raw_Data_Stop_Time'], |
|
313 range(len(self.variables['Raw_Data_Start_Time']))): |
|
314 temp_raw_start[:len(start_time),n] = start_time |
|
315 temp_raw_stop[:len(stop_time),n] = stop_time |
|
316 |
|
317 #Laser shots |
|
318 temp_v = f.createVariable('Laser_Shots','i',('time','channels')) |
|
319 for (channel,n) in zip(channels, range(len(channels))): |
|
320 time_length = len(self.variables['Raw_Data_Start_Time'][self.variables['id_timescale'][channel]]) |
|
321 # Array slicing stoped working as usual ex. temp_v[:10] = 100 does not work. ??? np.ones was added. |
|
322 temp_v[:time_length, n] = np.ones(time_length) * params.channel_parameters[channel]['Laser_Shots'] |
|
323 |
|
324 #Raw lidar data |
|
325 temp_v = f.createVariable('Raw_Lidar_Data','d',('time', 'channels','points')) |
|
326 for (channel,n) in zip(channels, range(len(channels))): |
|
327 c = self.channels[channel] |
|
328 temp_v[:len(c.time),n, :c.points] = c.matrix |
|
329 |
|
330 self.add_dark_measurements_to_netcdf(f, channels) |
|
331 |
|
332 #Pressure at lidar station |
|
333 temp_v = f.createVariable('Pressure_at_Lidar_Station','d') |
|
334 temp_v[:] = self.info['Pressure'] |
|
335 |
|
336 #Temperature at lidar station |
|
337 temp_v = f.createVariable('Temperature_at_Lidar_Station','d') |
|
338 temp_v[:] = self.info['Temperature'] |
|
339 |
|
340 self.save_netcdf_extra(f) |
|
341 f.close() |
|
342 |
|
343 def add_dark_measurements_to_netcdf(self, f, channels): |
|
344 |
|
345 # Get dark measurements. If it is not given in self.dark_measurement |
|
346 # try to get it using the get_dark_measurements method. If none is found |
|
347 # return without adding something. |
|
348 if self.dark_measurement is None: |
|
349 self.dark_measurement = self.get_dark_measurements() |
|
350 |
|
351 if self.dark_measurement is None: |
|
352 return |
|
353 |
|
354 dark_measurement = self.dark_measurement |
|
355 |
|
356 # Calculate the length of the time_bck dimensions |
|
357 number_of_profiles = [len(c.time) for c in dark_measurement.channels.values()] |
|
358 max_number_of_profiles = np.max(number_of_profiles) |
|
359 |
|
360 # Create the dimension |
|
361 f.createDimension('time_bck', max_number_of_profiles) |
|
362 |
|
363 # Save the dark measurement data |
|
364 temp_v = f.createVariable('Background_Profile','d',('time_bck', 'channels', 'points')) |
|
365 for (channel,n) in zip(channels, range(len(channels))): |
|
366 c = dark_measurement.channels[channel] |
|
367 temp_v[:len(c.time),n, :c.points] = c.matrix |
|
368 |
|
369 # Dark profile start/stop time |
|
370 temp_raw_start = f.createVariable('Raw_Bck_Start_Time','i',('time_bck','nb_of_time_scales')) |
|
371 temp_raw_stop = f.createVariable('Raw_Bck_Stop_Time','i',('time_bck','nb_of_time_scales')) |
|
372 for (start_time, stop_time,n) in zip(dark_measurement.variables['Raw_Data_Start_Time'], |
|
373 dark_measurement.variables['Raw_Data_Stop_Time'], |
|
374 range(len(dark_measurement.variables['Raw_Data_Start_Time']))): |
|
375 temp_raw_start[:len(start_time),n] = start_time |
|
376 temp_raw_stop[:len(stop_time),n] = stop_time |
|
377 |
|
378 # Dark measurement start/stop time |
|
379 f.RawBck_Start_Date = dark_measurement.info['start_time'].strftime('%Y%m%d') |
|
380 f.RawBck_Start_Time_UT = dark_measurement.info['start_time'].strftime('%H%M%S') |
|
381 f.RawBck_Stop_Time_UT = dark_measurement.info['stop_time'].strftime('%H%M%S') |
|
382 |
|
383 |
|
384 |
|
385 def save_netcdf_extra(self, f): |
|
386 pass |
|
387 |
|
388 def _gettime(self, date_str, time_str): |
|
389 t = datetime.datetime.strptime(date_str+time_str,'%d/%m/%Y%H.%M.%S') |
|
390 return t |
|
391 |
|
392 def plot(self): |
|
393 for channel in self.channels: |
|
394 self.channels[channel].plot(show_plot = False) |
|
395 plt.show() |
|
396 |
|
397 def get_dark_measurements(self): |
|
398 return None |
|
399 |
|
400 @property |
|
401 def mean_time(self): |
|
402 start_time = self.info['start_time'] |
|
403 stop_time = self.info['stop_time'] |
|
404 dt = stop_time - start_time |
|
405 t_mean = start_time + dt / 2 |
|
406 return t_mean |
|
407 |
|
408 |
|
409 class LidarChannel: |
|
410 |
|
411 def __init__(self, channel_parameters): |
|
412 c = 299792458 # Speed of light |
|
413 self.wavelength = channel_parameters['name'] |
|
414 self.name = str(self.wavelength) |
|
415 self.binwidth = float(channel_parameters['binwidth']) # in microseconds |
|
416 self.data = {} |
|
417 self.resolution = self.binwidth * c / 2 |
|
418 self.z = np.arange(len(channel_parameters['data'])) * self.resolution + self.resolution / 2.0 # Change: add half bin in the z |
|
419 self.points = len(channel_parameters['data']) |
|
420 self.rc = [] |
|
421 self.duration = 60 |
|
422 |
|
423 def calculate_rc(self, idx_min = 4000, idx_max = 5000): |
|
424 background = np.mean(self.matrix[:,idx_min:idx_max], axis = 1) # Calculate the background from 30000m and above |
|
425 self.rc = (self.matrix.transpose()- background).transpose() * (self.z **2) |
|
426 |
|
427 |
|
428 def update(self): |
|
429 self.start_time = min(self.data.keys()) |
|
430 self.stop_time = max(self.data.keys()) + datetime.timedelta(seconds = self.duration) |
|
431 self.time = tuple(sorted(self.data.keys())) |
|
432 sorted_data = sorted(self.data.iteritems(), key=itemgetter(0)) |
|
433 self.matrix = np.array(map(itemgetter(1),sorted_data)) |
|
434 |
|
435 def _nearest_dt(self,dtime): |
|
436 margin = datetime.timedelta(seconds = 300) |
|
437 if ((dtime + margin) < self.start_time)| ((dtime - margin) > self.stop_time): |
|
438 print "Requested date not covered in this file" |
|
439 raise |
|
440 dt = abs(self.time - np.array(dtime)) |
|
441 dtmin = min(dt) |
|
442 |
|
443 if dtmin > datetime.timedelta(seconds = 60): |
|
444 print "Nearest profile more than 60 seconds away. dt = %s." % dtmin |
|
445 ind_t = np.where(dt == dtmin) |
|
446 ind_a= ind_t[0] |
|
447 if len(ind_a) > 1: |
|
448 ind_a = ind_a[0] |
|
449 chosen_time = self.time[ind_a] |
|
450 return chosen_time, ind_a |
|
451 |
|
452 def subset_by_time(self, start_time, stop_time): |
|
453 |
|
454 time_array = np.array(self.time) |
|
455 condition = (time_array >= start_time) & (time_array <= stop_time) |
|
456 |
|
457 subset_time = time_array[condition] |
|
458 subset_data = dict([(c_time, self.data[c_time]) for c_time in subset_time]) |
|
459 |
|
460 #Create a list with the values needed by channel's __init__() |
|
461 parameter_values = {'name': self.wavelength, |
|
462 'binwidth': self.binwidth, |
|
463 'data': subset_data[subset_time[0]],} |
|
464 |
|
465 # We should use __class__ instead of class name, so that this works properly |
|
466 # with subclasses |
|
467 # Ex: c = self.__class__(parameters_values) |
|
468 # This does not currently work with Licel files though |
|
469 c = LidarChannel(parameter_values) |
|
470 c.data = subset_data |
|
471 c.update() |
|
472 return c |
|
473 |
|
474 def subset_by_bins(self, b_min = 0, b_max = None): |
|
475 """Remove some height bins from the file. This could be needed to |
|
476 remove aquisition artifacts at the start or the end of the files. |
|
477 """ |
|
478 |
|
479 subset_data = {} |
|
480 |
|
481 for ctime, cdata in self.data.items(): |
|
482 subset_data[ctime] = cdata[b_min:b_max] |
|
483 |
|
484 #Create a list with the values needed by channel's __init__() |
|
485 parameters_values = {'name': self.wavelength, |
|
486 'binwidth': self.binwidth, |
|
487 'data': subset_data[subset_data.keys()[0]],} # We just need any array with the correct length |
|
488 |
|
489 c = LidarChannel(parameters_values) |
|
490 c.data = subset_data |
|
491 c.update() |
|
492 return c |
|
493 |
|
494 def profile(self,dtime, signal_type = 'rc'): |
|
495 t, idx = self._nearest_dt(dtime) |
|
496 if signal_type == 'rc': |
|
497 data = self.rc |
|
498 else: |
|
499 data = self.matrix |
|
500 |
|
501 prof = data[idx,:][0] |
|
502 return prof, t |
|
503 |
|
504 def get_slice(self, starttime, endtime, signal_type = 'rc'): |
|
505 if signal_type == 'rc': |
|
506 data = self.rc |
|
507 else: |
|
508 data = self.matrix |
|
509 tim = np.array(self.time) |
|
510 starttime = self._nearest_dt(starttime)[0] |
|
511 endtime = self._nearest_dt(endtime)[0] |
|
512 condition = (tim >= starttime) & (tim <= endtime) |
|
513 sl = data[condition, :] |
|
514 t = tim[condition] |
|
515 return sl,t |
|
516 |
|
517 def profile_for_duration(self, tim, duration = datetime.timedelta(seconds = 0), signal_type = 'rc'): |
|
518 """ Calculates the profile around a specific time (tim). """ |
|
519 starttime = tim - duration/2 |
|
520 endtime = tim + duration/2 |
|
521 d,t = self.get_slice(starttime, endtime, signal_type = signal_type) |
|
522 prof = np.mean(d, axis = 0) |
|
523 tmin = min(t) |
|
524 tmax = max(t) |
|
525 tav = tmin + (tmax-tmin)/2 |
|
526 return prof,(tav, tmin,tmax) |
|
527 |
|
528 def average_profile(self): |
|
529 """ Return the average profile (NOT range corrected) for all the duration of the measurement. """ |
|
530 prof = np.mean(self.matrix, axis = 0) |
|
531 return prof |
|
532 |
|
533 def plot(self, signal_type = 'rc', filename = None, zoom = [0,12000,0,-1], show_plot = True, cmap = plt.cm.jet, z0 = None, title = None, vmin = 0, vmax = 1.3 * 10 ** 7): |
|
534 #if filename is not None: |
|
535 # matplotlib.use('Agg') |
|
536 |
|
537 fig = plt.figure() |
|
538 ax1 = fig.add_subplot(111) |
|
539 self.draw_plot(ax1, cmap = cmap, signal_type = signal_type, zoom = zoom, z0 = z0, vmin = vmin, vmax = vmax) |
|
540 |
|
541 if title: |
|
542 ax1.set_title(title) |
|
543 else: |
|
544 ax1.set_title("%s signal - %s" % (signal_type.upper(), self.name)) |
|
545 |
|
546 if filename is not None: |
|
547 pass |
|
548 #plt.savefig(filename) |
|
549 else: |
|
550 if show_plot: |
|
551 plt.show() |
|
552 #plt.close() ??? |
|
553 |
|
554 def draw_plot(self,ax1, cmap = plt.cm.jet, signal_type = 'rc', |
|
555 zoom = [0,12000,0,-1], z0 = None, |
|
556 add_colorbar = True, cmap_label = 'a.u.', cb_format = None, |
|
557 vmin = 0, vmax = 1.3 * 10 ** 7): |
|
558 |
|
559 if signal_type == 'rc': |
|
560 if len(self.rc) == 0: |
|
561 self.calculate_rc() |
|
562 data = self.rc |
|
563 else: |
|
564 data = self.matrix |
|
565 |
|
566 hmax_idx = self.index_at_height(zoom[1]) |
|
567 |
|
568 # If z0 is given, then the plot is a.s.l. |
|
569 if z0: |
|
570 ax1.set_ylabel('Altitude a.s.l. [km]') |
|
571 else: |
|
572 ax1.set_ylabel('Altitude a.g.l. [km]') |
|
573 z0 = 0 |
|
574 |
|
575 ax1.set_xlabel('Time UTC [hh:mm]') |
|
576 #y axis in km, xaxis /2 to make 30s measurements in minutes. Only for 1064 |
|
577 #dateFormatter = mpl.dates.DateFormatter('%H.%M') |
|
578 #hourlocator = mpl.dates.HourLocator() |
|
579 |
|
580 #dayFormatter = mpl.dates.DateFormatter('\n\n%d/%m') |
|
581 #daylocator = mpl.dates.DayLocator() |
|
582 hourFormatter = mpl.dates.DateFormatter('%H:%M') |
|
583 hourlocator = mpl.dates.AutoDateLocator(minticks = 3, maxticks = 8, interval_multiples=True) |
|
584 |
|
585 |
|
586 #ax1.axes.xaxis.set_major_formatter(dayFormatter) |
|
587 #ax1.axes.xaxis.set_major_locator(daylocator) |
|
588 ax1.axes.xaxis.set_major_formatter(hourFormatter) |
|
589 ax1.axes.xaxis.set_major_locator(hourlocator) |
|
590 |
|
591 |
|
592 ts1 = mpl.dates.date2num(self.start_time) |
|
593 ts2 = mpl.dates.date2num(self.stop_time) |
|
594 |
|
595 |
|
596 im1 = ax1.imshow(data.transpose()[zoom[0]:hmax_idx,zoom[2]:zoom[3]], |
|
597 aspect = 'auto', |
|
598 origin = 'lower', |
|
599 cmap = cmap, |
|
600 vmin = vmin, |
|
601 #vmin = data[:,10:400].max() * 0.1, |
|
602 vmax = vmax, |
|
603 #vmax = data[:,10:400].max() * 0.9, |
|
604 extent = [ts1,ts2,self.z[zoom[0]]/1000.0 + z0/1000., self.z[hmax_idx]/1000.0 + z0/1000.], |
|
605 ) |
|
606 |
|
607 if add_colorbar: |
|
608 if cb_format: |
|
609 cb1 = plt.colorbar(im1, format = cb_format) |
|
610 else: |
|
611 cb1 = plt.colorbar(im1) |
|
612 cb1.ax.set_ylabel(cmap_label) |
|
613 |
|
614 # Make the ticks of the colorbar smaller, two points smaller than the default font size |
|
615 cb_font_size = mpl.rcParams['font.size'] - 2 |
|
616 for ticklabels in cb1.ax.get_yticklabels(): |
|
617 ticklabels.set_fontsize(cb_font_size) |
|
618 cb1.ax.yaxis.get_offset_text().set_fontsize(cb_font_size) |
|
619 |
|
620 |
|
621 def draw_plot_new(self, ax1, cmap = plt.cm.jet, signal_type = 'rc', |
|
622 zoom = [0, 12000, 0, None], z0 = None, |
|
623 add_colorbar = True, cmap_label = 'a.u.', |
|
624 cb_format = None, power_limits = (-2, 2), |
|
625 date_labels = False, |
|
626 vmin = 0, vmax = 1.3 * 10 ** 7): |
|
627 |
|
628 if signal_type == 'rc': |
|
629 if len(self.rc) == 0: |
|
630 self.calculate_rc() |
|
631 data = self.rc |
|
632 else: |
|
633 data = self.matrix |
|
634 |
|
635 hmax_idx = self.index_at_height(zoom[1]) |
|
636 hmin_idx = self.index_at_height(zoom[0]) |
|
637 |
|
638 # If z0 is given, then the plot is a.s.l. |
|
639 if z0: |
|
640 ax1.set_ylabel('Altitude a.s.l. [km]') |
|
641 else: |
|
642 ax1.set_ylabel('Altitude a.g.l. [km]') |
|
643 z0 = 0 |
|
644 |
|
645 ax1.set_xlabel('Time UTC [hh:mm]') |
|
646 #y axis in km, xaxis /2 to make 30s measurements in minutes. Only for 1064 |
|
647 #dateFormatter = mpl.dates.DateFormatter('%H.%M') |
|
648 #hourlocator = mpl.dates.HourLocator() |
|
649 |
|
650 |
|
651 if date_labels: |
|
652 dayFormatter = mpl.dates.DateFormatter('%H:%M\n%d/%m/%Y') |
|
653 daylocator = mpl.dates.AutoDateLocator(minticks = 3, maxticks = 8, interval_multiples=True) |
|
654 ax1.axes.xaxis.set_major_formatter(dayFormatter) |
|
655 ax1.axes.xaxis.set_major_locator(daylocator) |
|
656 else: |
|
657 hourFormatter = mpl.dates.DateFormatter('%H:%M') |
|
658 hourlocator = mpl.dates.AutoDateLocator(minticks = 3, maxticks = 8, interval_multiples=True) |
|
659 ax1.axes.xaxis.set_major_formatter(hourFormatter) |
|
660 ax1.axes.xaxis.set_major_locator(hourlocator) |
|
661 |
|
662 |
|
663 # Get the values of the time axis |
|
664 dt = datetime.timedelta(seconds = self.duration) |
|
665 |
|
666 time_cut = self.time[zoom[2]:zoom[3]] |
|
667 time_last = time_cut[-1] + dt # The last element needed for pcolormesh |
|
668 |
|
669 time_all = time_cut + (time_last,) |
|
670 |
|
671 t_axis = mpl.dates.date2num(time_all) |
|
672 |
|
673 # Get the values of the z axis |
|
674 z_cut = self.z[hmin_idx:hmax_idx] - self.resolution / 2. |
|
675 z_last = z_cut[-1] + self.resolution |
|
676 |
|
677 z_axis = np.append(z_cut, z_last) / 1000. + z0 / 1000. # Convert to km |
|
678 |
|
679 # Plot |
|
680 im1 = ax1.pcolormesh(t_axis, z_axis, data.T[hmin_idx:hmax_idx, zoom[2]:zoom[3]], |
|
681 cmap = cmap, |
|
682 vmin = vmin, |
|
683 vmax = vmax, |
|
684 ) |
|
685 |
|
686 if add_colorbar: |
|
687 if cb_format: |
|
688 cb1 = plt.colorbar(im1, format = cb_format) |
|
689 else: |
|
690 cb_formatter = ScalarFormatter() |
|
691 cb_formatter.set_powerlimits(power_limits) |
|
692 cb1 = plt.colorbar(im1, format = cb_formatter) |
|
693 cb1.ax.set_ylabel(cmap_label) |
|
694 |
|
695 # Make the ticks of the colorbar smaller, two points smaller than the default font size |
|
696 cb_font_size = mpl.rcParams['font.size'] - 2 |
|
697 for ticklabels in cb1.ax.get_yticklabels(): |
|
698 ticklabels.set_fontsize(cb_font_size) |
|
699 cb1.ax.yaxis.get_offset_text().set_fontsize(cb_font_size) |
|
700 |
|
701 def index_at_height(self, height): |
|
702 idx = np.array(np.abs(self.z - height).argmin()) |
|
703 if idx.size > 1: |
|
704 idx =idx[0] |
|
705 return idx |
|
706 |
|
707 def netcdf_from_files(LidarClass, filename, files, channels, measurement_ID): |
|
708 #Read the lidar files and select channels |
|
709 temp_m = LidarClass(files) |
|
710 m = temp_m.subset_by_channels(channels) |
|
711 m.get_PT() |
|
712 m.info['Measurement_ID'] = measurement_ID |
|
713 m.save_as_netcdf(filename) |
|
714 |
|