generic.py

changeset 30
28d7b0974fe6
parent 27
74f7617f5356
child 32
022f6f2bc09c
--- a/generic.py	Mon Nov 24 11:35:17 2014 +0200
+++ b/generic.py	Mon Nov 24 11:35:40 2014 +0200
@@ -5,6 +5,7 @@
 # Science imports
 import numpy as np
 import matplotlib as mpl
+from matplotlib.ticker import ScalarFormatter
 from matplotlib import pyplot as plt
 import netCDF4 as netcdf
 
@@ -151,6 +152,20 @@
         m.update()
         return m
     
+    def subset_by_bins(self, b_min = 0, b_max = None):
+        """Remove some height bins from the file. This could be needed to 
+        remove aquisition artifacts at the start or the end of the files.
+        """
+        
+        m = self.__class__() # Create an object of the same type as this one.
+        
+        for (channel_name, channel)  in self.channels.items():
+            m.channels[channel_name] = channel.subset_by_bins(b_min, b_max)
+        
+        m.update()
+        
+        return m
+    
     def r_plot(self):
         #Make a basic plot of the data.
         #Should include some dictionary with params to make plot stable.
@@ -390,13 +405,13 @@
         return t_mean
 
 
-class Lidar_channel:
+class LidarChannel:
 
-    def __init__(self,channel_parameters):
-        c = 299792458 #Speed of light
+    def __init__(self, channel_parameters):
+        c = 299792458  # Speed of light
         self.wavelength = channel_parameters['name']
         self.name = str(self.wavelength)
-        self.binwidth = float(channel_parameters['binwidth']) # in microseconds
+        self.binwidth = float(channel_parameters['binwidth'])  # in microseconds
         self.data = {}
         self.resolution = self.binwidth * c / 2
         self.z = np.arange(len(channel_parameters['data'])) * self.resolution + self.resolution/2.0 # Change: add half bin in the z 
@@ -405,7 +420,7 @@
         self.duration  = 60
         
     def calculate_rc(self):
-        background = np.mean(self.matrix[:,4000:], axis = 1) #Calculate the background from 30000m and above
+        background = np.mean(self.matrix[:,4000:], axis = 1)  # Calculate the background from 30000m and above
         self.rc = (self.matrix.transpose()- background).transpose() * (self.z **2)
         
     
@@ -442,16 +457,39 @@
         subset_data = dict([(c_time, self.data[c_time]) for c_time in subset_time])
         
         #Create a list with the values needed by channel's __init__()
-        parameters_values = {'name': self.wavelength, 
+        parameter_values = {'name': self.wavelength, 
                              'binwidth': self.binwidth, 
                              'data': subset_data[subset_time[0]],}
+        
+        # We should use __class__ instead of class name, so that this works properly
+        # with subclasses
+        # Ex: c = self.__class__(parameters_values)  
+        # This does not currently work with Licel files though
+        c = LidarChannel(parameter_values)
+        c.data = subset_data
+        c.update()
+        return c
+    
+    def subset_by_bins(self, b_min = 0, b_max = None):
+        """Remove some height bins from the file. This could be needed to 
+        remove aquisition artifacts at the start or the end of the files.
+        """
+        
+        subset_data = {}
+        
+        for ctime, cdata in self.data.items():
+            subset_data[ctime] = cdata[b_min:b_max]
+            
+        #Create a list with the values needed by channel's __init__()
+        parameters_values = {'name': self.wavelength, 
+                             'binwidth': self.binwidth, 
+                             'data': subset_data[subset_data.keys()[0]],}  # We just need any array with the correct length
 
-        c = Lidar_channel(parameters_values)
+        c = LidarChannel(parameters_values)
         c.data = subset_data
         c.update()
         return c
         
-    
     def profile(self,dtime, signal_type = 'rc'):
         t, idx = self._nearest_dt(dtime)
         if signal_type == 'rc':
@@ -512,7 +550,10 @@
                 plt.show()
         #plt.close() ???
     
-    def draw_plot(self,ax1, cmap = plt.cm.jet, signal_type = 'rc', zoom = [0,12000,0,-1], z0 = None, cmap_label = 'a.u.',  cb_format = None, vmin = 0, vmax = 1.3 * 10 ** 7):
+    def draw_plot(self,ax1, cmap = plt.cm.jet, signal_type = 'rc', 
+                            zoom = [0,12000,0,-1], z0 = None, 
+                            add_colorbar = True, cmap_label = 'a.u.',  cb_format = None, 
+                            vmin = 0, vmax = 1.3 * 10 ** 7):
         
         if signal_type == 'rc':
             if len(self.rc) == 0:
@@ -561,19 +602,101 @@
             #vmax = data[:,10:400].max() * 0.9,
             extent = [ts1,ts2,self.z[zoom[0]]/1000.0 + z0/1000., self.z[hmax_idx]/1000.0 + z0/1000.],
             )
+            
+        if add_colorbar:
+            if cb_format:
+                cb1 = plt.colorbar(im1, format = cb_format)
+            else:
+                cb1 = plt.colorbar(im1)
+            cb1.ax.set_ylabel(cmap_label)
+            
+            # Make the ticks of the colorbar smaller, two points smaller than the default font size
+            cb_font_size = mpl.rcParams['font.size'] - 2
+            for ticklabels in cb1.ax.get_yticklabels():
+                ticklabels.set_fontsize(cb_font_size)
+            cb1.ax.yaxis.get_offset_text().set_fontsize(cb_font_size)
+
+    
+    def draw_plot_new(self, ax1, cmap = plt.cm.jet, signal_type = 'rc', 
+                            zoom = [0, 12000, 0, None], z0 = None, 
+                            add_colorbar = True, cmap_label = 'a.u.', 
+                            cb_format = None, power_limits = (-2, 2),
+                            date_labels = False, 
+                            vmin = 0, vmax = 1.3 * 10 ** 7):
         
-        if cb_format:
-            cb1 = plt.colorbar(im1, format = cb_format)
+        if signal_type == 'rc':
+            if len(self.rc) == 0:
+                self.calculate_rc()
+            data = self.rc
         else:
-            cb1 = plt.colorbar(im1)
-        cb1.ax.set_ylabel(cmap_label)
+            data = self.matrix
+        
+        hmax_idx = self.index_at_height(zoom[1])
+        hmin_idx = self.index_at_height(zoom[0])
+        
+        # If z0 is given, then the plot is a.s.l.
+        if z0:
+            ax1.set_ylabel('Altitude a.s.l. [km]')
+        else:
+            ax1.set_ylabel('Altitude a.g.l. [km]')
+            z0 = 0
+            
+        ax1.set_xlabel('Time UTC [hh:mm]')
+        #y axis in km, xaxis /2 to make 30s measurements in minutes. Only for 1064
+        #dateFormatter = mpl.dates.DateFormatter('%H.%M')
+        #hourlocator = mpl.dates.HourLocator()
+        
         
-        # Make the ticks of the colorbar smaller, two points smaller than the default font size
-        cb_font_size = mpl.rcParams['font.size'] - 2
-        for ticklabels in cb1.ax.get_yticklabels():
-            ticklabels.set_fontsize(cb_font_size)
-        cb1.ax.yaxis.get_offset_text().set_fontsize(cb_font_size)
+        if date_labels:
+            dayFormatter = mpl.dates.DateFormatter('%H:%M\n%d/%m/%Y')
+            daylocator = mpl.dates.AutoDateLocator(minticks = 3, maxticks = 8, interval_multiples=True)
+            ax1.axes.xaxis.set_major_formatter(dayFormatter)
+            ax1.axes.xaxis.set_major_locator(daylocator)
+        else:
+            hourFormatter = mpl.dates.DateFormatter('%H:%M')
+            hourlocator = mpl.dates.AutoDateLocator(minticks = 3, maxticks = 8, interval_multiples=True)
+            ax1.axes.xaxis.set_major_formatter(hourFormatter)
+            ax1.axes.xaxis.set_major_locator(hourlocator)
 
+        
+        # Get the values of the time axis
+        dt = datetime.timedelta(seconds = self.duration)
+        
+        time_cut = self.time[zoom[2]:zoom[3]]
+        time_last = time_cut[-1] + dt  # The last element needed for pcolormesh
+        
+        time_all = time_cut + (time_last,)
+        
+        t_axis = mpl.dates.date2num(time_all)
+        
+        # Get the values of the z axis
+        z_cut = self.z[hmin_idx:hmax_idx] - self.resolution / 2.
+        z_last = z_cut[-1] + self.resolution
+        
+        z_axis = np.append(z_cut, z_last) / 1000. + z0 / 1000. # Convert to km
+        
+        # Plot
+        im1 = ax1.pcolormesh(t_axis, z_axis, data.T[hmin_idx:hmax_idx, zoom[2]:zoom[3]],
+                                cmap = cmap,
+                                vmin = vmin,
+                                vmax = vmax,
+                                )
+        
+        if add_colorbar:
+            if cb_format:
+                cb1 = plt.colorbar(im1, format = cb_format)
+            else:
+                cb_formatter = ScalarFormatter()
+                cb_formatter.set_powerlimits(power_limits)                
+                cb1 = plt.colorbar(im1, format = cb_formatter)
+            cb1.ax.set_ylabel(cmap_label)
+
+            # Make the ticks of the colorbar smaller, two points smaller than the default font size
+            cb_font_size = mpl.rcParams['font.size'] - 2
+            for ticklabels in cb1.ax.get_yticklabels():
+                ticklabels.set_fontsize(cb_font_size)
+            cb1.ax.yaxis.get_offset_text().set_fontsize(cb_font_size)
+    
     def index_at_height(self, height):
         idx = np.array(np.abs(self.z - height).argmin())
         if idx.size > 1:

mercurial