Mon, 18 Feb 2013 12:21:05 +0100
Added the option to subtrackt dark profiles from raw data. This could be useful for non-scc use of the netcdf files (ex. LIRIC).
generic.py | file | annotate | diff | comparison | revisions |
--- a/generic.py Tue Feb 12 16:57:39 2013 +0100 +++ b/generic.py Mon Feb 18 12:21:05 2013 +0100 @@ -172,7 +172,20 @@ self.info['Temperature'] = 10.0 self.info['Pressure'] = 930.0 - + def subtract_dark(self): + + if not self.dark_measurement: + raise IOError('No dark measurements have been imported yet.') + + for (channel_name, dark_channel) in self.dark_measurement.channels.iteritems(): + dark_profile = dark_channel.average_profile() + channel = self.channels[channel_name] + + for measurement_time, data in channel.data.iteritems(): + channel.data[measurement_time] = data - dark_profile + + channel.update() + def save_as_netcdf(self, filename): """Saves the measurement in the netcdf format as required by the SCC. Input: filename @@ -450,7 +463,8 @@ t = tim[condition] return sl,t - def av_profile(self, tim, duration = datetime.timedelta(seconds = 0), signal_type = 'rc'): + def profile_for_duration(self, tim, duration = datetime.timedelta(seconds = 0), signal_type = 'rc'): + """ Calculates the profile around a specific time (tim). """ starttime = tim - duration/2 endtime = tim + duration/2 d,t = self.get_slice(starttime, endtime, signal_type = signal_type) @@ -459,7 +473,12 @@ tmax = max(t) tav = tmin + (tmax-tmin)/2 return prof,(tav, tmin,tmax) - + + def average_profile(self): + """ Return the average profile (NOT range corrected) for all the duration of the measurement. """ + prof = np.mean(self.matrix, axis = 0) + return prof + def plot(self, signal_type = 'rc', filename = None, zoom = [0,12000,0,-1], show_plot = True, cmap = plt.cm.jet): #if filename is not None: # matplotlib.use('Agg')