1 # -*- coding: utf-8 -*- |
|
2 """ |
|
3 Copyright 2016, 2019 Volker Freudenthaler |
|
4 |
|
5 Licensed under the EUPL, Version 1.1 only (the "Licence"). |
|
6 |
|
7 You may not use this work except in compliance with the Licence. |
|
8 A copy of the licence is distributed with the code. Alternatively, you may obtain |
|
9 a copy of the Licence at: |
|
10 |
|
11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl |
|
12 |
|
13 Unless required by applicable law or agreed to in writing, software distributed |
|
14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS |
|
15 OF ANY KIND, either express or implied. See the Licence for the specific language governing |
|
16 permissions and limitations under the Licence. |
|
17 |
|
18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf |
|
19 With equations code from Appendix C |
|
20 Python 3.7, seaborn 0.9.0 |
|
21 |
|
22 Code description: |
|
23 |
|
24 From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR) |
|
25 because of the cross talk between the channles and systematic errors of a lidar system. |
|
26 http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors, |
|
27 with which the measured signals can be corrected. |
|
28 This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K). |
|
29 The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to |
|
30 uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the |
|
31 gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true" |
|
32 GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRCorr), |
|
33 which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue. |
|
34 A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal |
|
35 in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for |
|
36 "assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error |
|
37 calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol |
|
38 content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005). |
|
39 |
|
40 Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file. |
|
41 |
|
42 Ver. 0.9.7: includes the random error (signal noise) of the calibration and standard measurements |
|
43 Changes: |
|
44 Line 1687 Eta = (TaR * TiR) / (TaT * TiT) |
|
45 Line 1691 K = Etax / Eta # K of the real system; but correction in Line 1721 with K0 / Etax |
|
46 should work with nTCalT = nTCalR = 0 |
|
47 Ver. 0.9.7b: |
|
48 ToDo: include error due to TCalT und TCalR => determination of NCalT and NCalR etc. in error calculation line 1741ff |
|
49 combined error loops iNI and INCal for signals |
|
50 Ver. 0.9.7c: individual error loops for each of the six signals |
|
51 Ver. 0.9.7c2: different calculation of the signal noise errors |
|
52 Ver. 0.9.7c3: n.a.different calculation of the signal noise errors |
|
53 Ver. 0.9.7c4: test to speed up the loops for error calculation by moving them just before the actual calculation: still some code errors |
|
54 Ver. 0.9.8: |
|
55 - correct calculation of Eta for cleaned anaylsers considering the combined transmission Eta = (TaT* TiT)(1 + cos2RotaT * DaT * DiT) and (TaR * TiR)(1 + cos2RotaR * DaR * DiR) according to the papers supplement Eqs. (S.10.10.1) ff |
|
56 - calculation of the PLDR from LDR and BSR, BSR, and LDRm |
|
57 - ND-filters can be added for the calibration measurements in the transmitted (TCalT) and the reflected path (TCalR) in order to include their uncertainties in the error calculation. |
|
58 Ver. 0.9.8b: change from "TTa = TiT * TaT" to "TTa = TiT * TaT * ATPT" etc. (compare ver 0.9.8 with 0.9.8b) removes |
|
59 - the strong Tp dependence of the errors |
|
60 - the factor 2 in the GH parameters |
|
61 - see c:\technik\Optik\Polarizers\DepCal\ApplOpt\GH-parameters-190114.odt |
|
62 Ver. 0.9.8c: includes error of Etax |
|
63 Ver. 0.9.8d: Eta0, K0 etc in error loop replaced by Eta0y, K0y etc. Changes in signal noise calculations |
|
64 Ver. 0.9.8e: ambiguous laser spec. DOLP (no discrimination between left and right circular polarisation) replaced by Stokes parameters Qin, Uin |
|
65 Ver. 0.9.8e2: Added plot of LDRsim, Etax, Etapx, Etamx; LDRCorr and aLDRcorr consistently named |
|
66 Ver. 0.9.8e3: Change of OutputFile name; Change of Ir and It noise if (CalcFrom0deg) = False; (Different calculation of error contributions tested but not implemented) |
|
67 Ver. 0.9.8e4: text changed for y=+-1 (see line 274 ff and line 1044 ff |
|
68 Ver. 0.9.8e5: changed: LDRunCorr = LDRsim / Etax |
|
69 Ver. 0.9.8e6: K(0.05) instead K(0.02) |
|
70 Ver. 0.9.8f: Tip from Ioannis Binietoglou for LINUX compatibility: Using os.path.join should work in all operating systems. |
|
71 # After line 1007: |
|
72 output_path = os.path.join('output_files', OutputFile) |
|
73 with open(output_path, 'w') as f: |
|
74 # Line 1147 |
|
75 file = open(output_path, 'r') |
|
76 ------------ |
|
77 |
|
78 ======================================================== |
|
79 simulation: LDRsim = Ir / It with variable parameters (possible truths) |
|
80 G,H,Eta,Etax,K |
|
81 It = TaT * TiT * ATP1 * TiO * TiE * (GT + atrue * HT) |
|
82 LDRsim = Ir / It |
|
83 consistency test: is forward simulation and correction consistent? |
|
84 LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) => atrue? |
|
85 assumed true: G0,H0,Eta0,Etax0,K0 => actual retrievals of LDRCorr |
|
86 => correct possible truths with assumed true G0,H0,Eta0 |
|
87 measure: It, Ir, EtaX |
|
88 LDRunCorr = LDRsim / Etax |
|
89 correct it with G0,H0,K0: |
|
90 LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim0 / (Etax / K0) * (GT0 - HT0)) |
|
91 """ |
|
92 # Comment: The code might works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements. |
|
93 from __future__ import print_function |
|
94 # !/usr/bin/env python3 |
|
95 |
|
96 import os |
|
97 import sys |
|
98 |
|
99 from scipy.stats import kurtosis |
|
100 from scipy.stats import skew |
|
101 # use: kurtosis(data, fisher=True,bias=False) => 0; skew(data,bias=False) => 0 |
|
102 # Comment: the seaborn library makes nicer plots, but the code works also without it. |
|
103 import numpy as np |
|
104 import matplotlib.pyplot as plt |
|
105 |
|
106 try: |
|
107 import seaborn as sns |
|
108 |
|
109 sns_loaded = True |
|
110 except ImportError: |
|
111 sns_loaded = False |
|
112 |
|
113 # from time import clock # python 2 |
|
114 from timeit import default_timer as clock |
|
115 |
|
116 # from matplotlib.backends.backend_pdf import PdfPages |
|
117 # pdffile = '{}.pdf'.format('path') |
|
118 # pp = PdfPages(pdffile) |
|
119 ## pp.savefig can be called multiple times to save to multiple pages |
|
120 # pp.savefig() |
|
121 # pp.close() |
|
122 |
|
123 from contextlib import contextmanager |
|
124 |
|
125 @contextmanager |
|
126 def redirect_stdout(new_target): |
|
127 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout |
|
128 try: |
|
129 yield new_target # run some code with the replaced stdout |
|
130 finally: |
|
131 sys.stdout.flush() |
|
132 sys.stdout = old_target # restore to the previous value |
|
133 |
|
134 ''' |
|
135 real_raw_input = vars(__builtins__).get('raw_input',input) |
|
136 ''' |
|
137 try: |
|
138 import __builtin__ |
|
139 |
|
140 input = getattr(__builtin__, 'raw_input') |
|
141 except (ImportError, AttributeError): |
|
142 pass |
|
143 |
|
144 from distutils.util import strtobool |
|
145 |
|
146 |
|
147 def user_yes_no_query(question): |
|
148 sys.stdout.write('%s [y/n]\n' % question) |
|
149 while True: |
|
150 try: |
|
151 return strtobool(input().lower()) |
|
152 except ValueError: |
|
153 sys.stdout.write('Please respond with \'y\' or \'n\'.\n') |
|
154 |
|
155 |
|
156 # if user_yes_no_query('want to exit?') == 1: sys.exit() |
|
157 |
|
158 abspath = os.path.abspath(__file__) |
|
159 dname = os.path.dirname(abspath) |
|
160 fname = os.path.basename(abspath) |
|
161 os.chdir(dname) |
|
162 |
|
163 # PrintToOutputFile = True |
|
164 |
|
165 sqr05 = 0.5 ** 0.5 |
|
166 |
|
167 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below |
|
168 # Do you want to calculate the errors? If not, just the GHK-parameters are determined. |
|
169 Error_Calc = True |
|
170 LID = "internal" |
|
171 EID = "internal" |
|
172 # --- IL Laser IL and +-Uncertainty |
|
173 Qin, dQin, nQin = 1., 0.0, 0 # second Stokes vector parameter; default 1 => linear polarization |
|
174 Vin, dVin, nVin = 0., 0.0, 0 # fourth Stokes vector parameter |
|
175 RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0 |
|
176 # IL = 1e5 #photons in the laser beam, including detection efficiency of the telescope, atmodspheric and r^2 attenuation |
|
177 # --- ME Emitter and +-Uncertainty |
|
178 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation |
|
179 TiE = 1. # Unpolarized transmittance |
|
180 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees |
|
181 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees |
|
182 # --- MO Receiver Optics including telescope |
|
183 DiO, dDiO, nDiO = -0.055, 0.003, 1 |
|
184 TiO = 0.9 |
|
185 RetO, dRetO, nRetO = 0., 180.0, 2 |
|
186 RotO, dRotO, nRotO = 0., 0.1, 1 # gamma |
|
187 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty |
|
188 TP, dTP, nTP = 0.98, 0.02, 1 |
|
189 TS, dTS, nTS = 0.001, 0.001, 1 |
|
190 TiT = 0.5 * (TP + TS) |
|
191 DiT = (TP - TS) / (TP + TS) |
|
192 # PolFilter |
|
193 RetT, dRetT, nRetT = 0., 180., 0 |
|
194 ERaT, dERaT, nERaT = 0.001, 0.001, 1 |
|
195 RotaT, dRotaT, nRotaT = 0., 3., 1 |
|
196 DaT = (1 - ERaT) / (1 + ERaT) |
|
197 TaT = 0.5 * (1 + ERaT) |
|
198 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty |
|
199 RS_RP_depend_on_TS_TP = False |
|
200 if (RS_RP_depend_on_TS_TP): |
|
201 RP, dRP, nRP = 1 - TP, 0.0, 0 |
|
202 RS, dRS, nRS = 1 - TS, 0.0, 0 |
|
203 else: |
|
204 RP, dRP, nRP = 0.05, 0.01, 1 |
|
205 RS, dRS, nRS = 0.98, 0.01, 1 |
|
206 TiR = 0.5 * (RP + RS) |
|
207 DiR = (RP - RS) / (RP + RS) |
|
208 # PolFilter |
|
209 RetR, dRetR, nRetR = 0., 180., 0 |
|
210 ERaR, dERaR, nERaR = 0.001, 0.001, 1 |
|
211 RotaR, dRotaR, nRotaR = 90., 3., 1 |
|
212 DaR = (1 - ERaR) / (1 + ERaR) |
|
213 TaR = 0.5 * (1 + ERaR) |
|
214 |
|
215 # +++ Orientation of the PBS with respect to the reference plane (see Polarisation-orientation.png and Polarisation-orientation-2.png in /system_settings) |
|
216 # Y = +1: PBS incidence plane is parallel to the reference plane and polarisation in reference plane is finally transmitted. |
|
217 # Y = -1: PBS incidence plane is perpendicular to the reference plane and polarisation in reference plane is finally reflected. |
|
218 Y = 1. |
|
219 |
|
220 # Calibrator = type defined by matrix values |
|
221 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4 |
|
222 |
|
223 # --- Additional attenuation (transmission of the ND-filter) during the calibration |
|
224 TCalT, dTCalT, nTCalT = 1, 0., 0 # transmitting path; error calc not working yet |
|
225 TCalR, dTCalR, nTCalR = 1, 0., 0 # reflecting path; error calc not working yet |
|
226 |
|
227 # *** signal noise error calculation |
|
228 # --- number of photon counts in the signal summed up in the calibration range during the calibration measurements |
|
229 NCalT = 1e6 # default 1e6, assumed the same in +45° and -45° signals |
|
230 NCalR = 1e6 # default 1e6, assumed the same in +45° and -45° signals |
|
231 NILfac = 1.0 # duration of standard (0°) measurement relative to calibration measurements |
|
232 nNCal = 0 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
233 nNI = 0 # error nNI: one-sigma in steps to left and right for 0° signals |
|
234 NI = 50000 #number of photon counts in the parallel 0°-signal |
|
235 eFacT = 1.0 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1 |
|
236 eFacR = 10.0 |
|
237 IoutTp0, IoutTp, dIoutTp0 = 0.5, 0.5, 0.0 |
|
238 IoutTm0, IoutTm, dIoutTm0 = 0.5, 0.5, 0.0 |
|
239 IoutRp0, IoutRp, dIoutRp0 = 0.5, 0.5, 0.0 |
|
240 IoutRm0, IoutRm, dIoutRm0 = 0.5, 0.5, 0.0 |
|
241 It0, It, dIt0 = 1 , 1, 0 |
|
242 Ir0, Ir, dTr0 = 1 , 1, 0 |
|
243 CalcFrom0deg = True |
|
244 |
|
245 TypeC = 3 # linear polarizer calibrator |
|
246 # example with extinction ratio 0.001 |
|
247 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0 |
|
248 TiC = 0.5 # ideal 0.5 |
|
249 RetC, dRetC, nRetC = 0.0, 0.0, 0 |
|
250 RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon |
|
251 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator |
|
252 |
|
253 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements |
|
254 RotationErrorEpsilonForNormalMeasurements = True |
|
255 # BSR backscatter ratio |
|
256 # BSR, dBSR, nBSR = 10, 0.05, 1 |
|
257 BSR = np.zeros(5) |
|
258 BSR = [1.1, 2, 5, 10., 50.] |
|
259 # theoretical molecular LDR LDRm |
|
260 LDRm, dLDRm, nLDRm = 0.004, 0.001, 1 |
|
261 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) |
|
262 LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1 |
|
263 LDRCal = LDRCal0 |
|
264 # measured LDRm will be corrected with calculated parameters |
|
265 LDRmeas = 0.015 |
|
266 # LDRtrue for simulation of measurement => LDRsim |
|
267 LDRtrue = 0.004 |
|
268 LDRtrue2 = 0.004 |
|
269 LDRunCorr = 1. |
|
270 # Initialize other values to 0 |
|
271 ER, nER, dER = 0.001, 0, 0.001 |
|
272 K = 0. |
|
273 Km = 0. |
|
274 Kp = 0. |
|
275 LDRCorr = 0. |
|
276 Eta = 0. |
|
277 Ir = 0. |
|
278 It = 0. |
|
279 h = 1. |
|
280 |
|
281 Loc = ['', 'behind the laser', 'behind the emitter', 'before the receiver', 'before the PBS'] |
|
282 Type = ['', 'Mechanical rotator', 'HWP rotator', 'Linear polarizer', 'QWP rotator', 'Circular polarizer', |
|
283 'real HWP +-22.5°'] |
|
284 |
|
285 bPlotEtax = False |
|
286 |
|
287 # end of initial definition of variables |
|
288 # ******************************************************************************************************************************* |
|
289 # --- Read actual lidar system parameters from optic_input.py (must be in the programs sub-directory 'system_settings') |
|
290 # ******************************************************************************************************************************* |
|
291 |
|
292 # InputFile = 'optic_input_0.9.8e4-PollyXT_Lacros.py' |
|
293 InputFile = 'optic_input_example_lidar_ver0.9.8e.py' |
|
294 InputFile = 'calibrator-test-1-ver0.9.8e.py' |
|
295 InputFile = 'optic_input_0.9.8e4-BRC-532.py' |
|
296 InputFile = '' |
|
297 InputFile = '' |
|
298 InputFile = '' |
|
299 InputFile = 'RALI-may2020-X.py' |
|
300 InputFile = 'mulhacen_run_532xp-bias.py' |
|
301 |
|
302 |
|
303 # ******************************************************************************************************************************* |
|
304 |
|
305 ''' |
|
306 print("From ", dname) |
|
307 print("Running ", fname) |
|
308 print("Reading input file ", InputFile, " for") |
|
309 ''' |
|
310 input_path = os.path.join('.', 'system_settings', InputFile) |
|
311 # this works with Python 2 and 3! |
|
312 exec(open(input_path).read(), globals()) |
|
313 # end of read actual system parameters |
|
314 |
|
315 |
|
316 # --- Manual Parameter Change --- |
|
317 # (use for quick parameter changes without changing the input file ) |
|
318 # DiO = 0. |
|
319 # LDRtrue = 0.45 |
|
320 # LDRtrue2 = 0.004 |
|
321 # Y = -1 |
|
322 # LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS |
|
323 # #TypeC = 6 Don't change the TypeC here |
|
324 # RotationErrorEpsilonForNormalMeasurements = True |
|
325 # LDRCal = 0.25 |
|
326 # # --- Errors |
|
327 Qin0, dQin, nQin = Qin, dQin, nQin |
|
328 Vin0, dVin, nVin = Vin, dVin, nVin |
|
329 RotL0, dRotL, nRotL = RotL, dRotL, nRotL |
|
330 |
|
331 DiE0, dDiE, nDiE = DiE, dDiE, nDiE |
|
332 RetE0, dRetE, nRetE = RetE, dRetE, nRetE |
|
333 RotE0, dRotE, nRotE = RotE, dRotE, nRotE |
|
334 |
|
335 DiO0, dDiO, nDiO = DiO, dDiO, nDiO |
|
336 RetO0, dRetO, nRetO = RetO, dRetO, nRetO |
|
337 RotO0, dRotO, nRotO = RotO, dRotO, nRotO |
|
338 |
|
339 DiC0, dDiC, nDiC = DiC, dDiC, nDiC |
|
340 RetC0, dRetC, nRetC = RetC, dRetC, nRetC |
|
341 RotC0, dRotC, nRotC = RotC, dRotC, nRotC |
|
342 |
|
343 TP0, dTP, nTP = TP, dTP, nTP |
|
344 TS0, dTS, nTS = TS, dTS, nTS |
|
345 RetT0, dRetT, nRetT = RetT, dRetT, nRetT |
|
346 |
|
347 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT |
|
348 RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT |
|
349 |
|
350 RP0, dRP, nRP = RP, dRP, nRP |
|
351 RS0, dRS, nRS = RS, dRS, nRS |
|
352 RetR0, dRetR, nRetR = RetR, dRetR, nRetR |
|
353 |
|
354 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR |
|
355 RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR |
|
356 |
|
357 LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal |
|
358 |
|
359 # BSR0, dBSR, nBSR = BSR, dBSR, nBSR |
|
360 LDRm0, dLDRm, nLDRm = LDRm, dLDRm, nLDRm |
|
361 # ---------- End of manual parameter change |
|
362 |
|
363 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0 |
|
364 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0 |
|
365 LDRCal = LDRCal0 |
|
366 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0., 0., 0., 0., 0., 0. |
|
367 TCalT0, TCalR0 = TCalT, TCalR |
|
368 |
|
369 TiT = 0.5 * (TP + TS) |
|
370 DiT = (TP - TS) / (TP + TS) |
|
371 ZiT = (1. - DiT ** 2) ** 0.5 |
|
372 TiR = 0.5 * (RP + RS) |
|
373 DiR = (RP - RS) / (RP + RS) |
|
374 ZiR = (1. - DiR ** 2) ** 0.5 |
|
375 |
|
376 C2aT = np.cos(np.deg2rad(2. * RotaT)) |
|
377 C2aR = np.cos(np.deg2rad(2. * RotaR)) |
|
378 ATPT = float(1. + C2aT * DaT * DiT) |
|
379 ARPT = float(1. + C2aR * DaR * DiR) |
|
380 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
381 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
382 Eta0 = TRa / TTa |
|
383 |
|
384 # --- alternative texts for output |
|
385 dY = ['perpendicular', '', 'parallel'] |
|
386 dY2 = ['reflected', '', 'transmitted'] |
|
387 if ((abs(RotL) < 45 and Y == 1) or (abs(RotL) >= 45 and Y == -1)): |
|
388 dY3 = "the parallel laser polarisation is detected in the transmitted channel." |
|
389 else: |
|
390 dY3 = "the parallel laser polarisation is detected in the reflected channel." |
|
391 |
|
392 # --- check input errors |
|
393 if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1: |
|
394 print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") |
|
395 sys.exit() |
|
396 |
|
397 # --- this subroutine is for the calculation of the PLDR from LDR, BSR, and LDRm ------------------- |
|
398 def CalcPLDR(LDR, BSR, LDRm): |
|
399 PLDR = (BSR * (1. + LDRm) * LDR - LDRm * (1. + LDR)) / (BSR * (1. + LDRm) - (1. + LDR)) |
|
400 return (PLDR) |
|
401 # --- this subroutine is for the calculation with certain fixed parameters ------------------------ |
|
402 def Calc(TCalT, TCalR, NCalT, NCalR, Qin, Vin, RotL, RotE, RetE, DiE, RotO, RetO, DiO, |
|
403 RotC, RetC, DiC, TP, TS, RP, RS, |
|
404 ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal): |
|
405 # ---- Do the calculations of bra-ket vectors |
|
406 h = -1. if TypeC == 2 else 1 |
|
407 # from input file: assumed LDRCal for calibration measurements |
|
408 aCal = (1. - LDRCal) / (1. + LDRCal) |
|
409 atrue = (1. - LDRtrue) / (1. + LDRtrue) |
|
410 |
|
411 # angles of emitter and laser and calibrator and receiver optics |
|
412 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
413 S2a = np.sin(2 * np.deg2rad(RotL)) |
|
414 C2a = np.cos(2 * np.deg2rad(RotL)) |
|
415 S2b = np.sin(2 * np.deg2rad(RotE)) |
|
416 C2b = np.cos(2 * np.deg2rad(RotE)) |
|
417 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) |
|
418 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) |
|
419 S2g = np.sin(np.deg2rad(2 * RotO)) |
|
420 C2g = np.cos(np.deg2rad(2 * RotO)) |
|
421 |
|
422 # Laser with Degree of linear polarization DOLP |
|
423 IinL = 1. |
|
424 QinL = Qin |
|
425 UinL = 0. |
|
426 VinL = Vin |
|
427 # VinL = (1. - DOLP ** 2) ** 0.5 |
|
428 |
|
429 # Stokes Input Vector rotation Eq. E.4 |
|
430 A = C2a * QinL - S2a * UinL |
|
431 B = S2a * QinL + C2a * UinL |
|
432 # Stokes Input Vector rotation Eq. E.9 |
|
433 C = C2ab * QinL - S2ab * UinL |
|
434 D = S2ab * QinL + C2ab * UinL |
|
435 |
|
436 # emitter optics |
|
437 CosE = np.cos(np.deg2rad(RetE)) |
|
438 SinE = np.sin(np.deg2rad(RetE)) |
|
439 ZiE = (1. - DiE ** 2) ** 0.5 |
|
440 WiE = (1. - ZiE * CosE) |
|
441 |
|
442 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
443 # b = beta |
|
444 IinE = (IinL + DiE * C) |
|
445 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) |
|
446 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) |
|
447 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) |
|
448 |
|
449 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
450 IinF = IinE |
|
451 QinF = aCal * QinE |
|
452 UinF = -aCal * UinE |
|
453 VinF = (1. - 2. * aCal) * VinE |
|
454 |
|
455 # receiver optics |
|
456 CosO = np.cos(np.deg2rad(RetO)) |
|
457 SinO = np.sin(np.deg2rad(RetO)) |
|
458 ZiO = (1. - DiO ** 2) ** 0.5 |
|
459 WiO = (1. - ZiO * CosO) |
|
460 |
|
461 # calibrator |
|
462 CosC = np.cos(np.deg2rad(RetC)) |
|
463 SinC = np.sin(np.deg2rad(RetC)) |
|
464 ZiC = (1. - DiC ** 2) ** 0.5 |
|
465 WiC = (1. - ZiC * CosC) |
|
466 |
|
467 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
468 A = C2g * QinE - S2g * UinE |
|
469 B = S2g * QinE + C2g * UinE |
|
470 |
|
471 IinP = (IinE + DiO * aCal * A) |
|
472 QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) |
|
473 UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) |
|
474 VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1. - 2. * aCal) * VinE) |
|
475 |
|
476 # ------------------------- |
|
477 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
478 # F11sim = TiO*(IinE + DiO*atrue*A)/IinE |
|
479 # ------------------------- |
|
480 |
|
481 # analyser |
|
482 if (RS_RP_depend_on_TS_TP): |
|
483 RS = 1. - TS |
|
484 RP = 1. - TP |
|
485 |
|
486 TiT = 0.5 * (TP + TS) |
|
487 DiT = (TP - TS) / (TP + TS) |
|
488 ZiT = (1. - DiT ** 2) ** 0.5 |
|
489 TiR = 0.5 * (RP + RS) |
|
490 DiR = (RP - RS) / (RP + RS) |
|
491 ZiR = (1. - DiR ** 2) ** 0.5 |
|
492 CosT = np.cos(np.deg2rad(RetT)) |
|
493 SinT = np.sin(np.deg2rad(RetT)) |
|
494 CosR = np.cos(np.deg2rad(RetR)) |
|
495 SinR = np.sin(np.deg2rad(RetR)) |
|
496 |
|
497 DaT = (1. - ERaT) / (1. + ERaT) |
|
498 DaR = (1. - ERaR) / (1. + ERaR) |
|
499 TaT = 0.5 * (1. + ERaT) |
|
500 TaR = 0.5 * (1. + ERaR) |
|
501 |
|
502 S2aT = np.sin(np.deg2rad(h * 2 * RotaT)) |
|
503 C2aT = np.cos(np.deg2rad(2 * RotaT)) |
|
504 S2aR = np.sin(np.deg2rad(h * 2 * RotaR)) |
|
505 C2aR = np.cos(np.deg2rad(2 * RotaR)) |
|
506 |
|
507 # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter |
|
508 ATPT = (1. + C2aT * DaT * DiT) # unpolarized transmission correction |
|
509 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
510 ATP1 = 1. |
|
511 ATP2 = Y * (DiT + C2aT * DaT) / ATPT |
|
512 ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT |
|
513 ATP4 = S2aT * DaT * ZiT * SinT / ATPT |
|
514 ATP = np.array([ATP1, ATP2, ATP3, ATP4]) |
|
515 DTa = ATP2 * Y |
|
516 |
|
517 ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction |
|
518 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
519 ARP1 = 1 |
|
520 ARP2 = Y * (DiR + C2aR * DaR) / ARPT |
|
521 ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT |
|
522 ARP4 = S2aR * DaR * ZiR * SinR / ARPT |
|
523 ARP = np.array([ARP1, ARP2, ARP3, ARP4]) |
|
524 DRa = ARP2 * Y |
|
525 |
|
526 |
|
527 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
528 if LocC == 4: # Calibrator before the PBS |
|
529 # print("Calibrator location not implemented yet") |
|
530 |
|
531 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
532 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
533 S2e = np.sin(np.deg2rad(h * 2 * RotC)) |
|
534 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
535 # rotated AinP by epsilon Eq. C.3 |
|
536 ATP2e = C2e * ATP2 + S2e * ATP3 |
|
537 ATP3e = C2e * ATP3 - S2e * ATP2 |
|
538 ARP2e = C2e * ARP2 + S2e * ARP3 |
|
539 ARP3e = C2e * ARP3 - S2e * ARP2 |
|
540 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) |
|
541 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) |
|
542 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
543 A = C2g * QinE - S2g * UinE |
|
544 B = S2g * QinE + C2g * UinE |
|
545 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
546 Co = ZiO * SinO * VinE |
|
547 Ca = (WiO * B - 2 * ZiO * SinO * VinE) |
|
548 # C = Co + aCal*Ca |
|
549 # IinP = (IinE + DiO*aCal*A) |
|
550 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
551 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
552 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
553 IinPo = IinE |
|
554 QinPo = (C2g * DiO * IinE - S2g * Co) |
|
555 UinPo = (S2g * DiO * IinE + C2g * Co) |
|
556 VinPo = ZiO * CosO * VinE |
|
557 |
|
558 IinPa = DiO * A |
|
559 QinPa = QinE - S2g * Ca |
|
560 UinPa = -UinE + C2g * Ca |
|
561 VinPa = ZiO * (SinO * B - 2 * CosO * VinE) |
|
562 |
|
563 IinP = IinPo + aCal * IinPa |
|
564 QinP = QinPo + aCal * QinPa |
|
565 UinP = UinPo + aCal * UinPa |
|
566 VinP = VinPo + aCal * VinPa |
|
567 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
568 # QinPe = C2e*QinP + S2e*UinP |
|
569 # UinPe = C2e*UinP - S2e*QinP |
|
570 QinPoe = C2e * QinPo + S2e * UinPo |
|
571 UinPoe = C2e * UinPo - S2e * QinPo |
|
572 QinPae = C2e * QinPa + S2e * UinPa |
|
573 UinPae = C2e * UinPa - S2e * QinPa |
|
574 QinPe = C2e * QinP + S2e * UinP |
|
575 UinPe = C2e * UinP - S2e * QinP |
|
576 |
|
577 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
578 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
579 # parameters for calibration with aCal |
|
580 AT = ATP1 * IinP + h * ATP4 * VinP |
|
581 BT = ATP3e * QinP - h * ATP2e * UinP |
|
582 AR = ARP1 * IinP + h * ARP4 * VinP |
|
583 BR = ARP3e * QinP - h * ARP2e * UinP |
|
584 # Correction parameters for normal measurements; they are independent of LDR |
|
585 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
586 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
587 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
588 GT = np.dot(ATP, IS1) |
|
589 GR = np.dot(ARP, IS1) |
|
590 HT = np.dot(ATP, IS2) |
|
591 HR = np.dot(ARP, IS2) |
|
592 else: |
|
593 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
594 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
595 GT = np.dot(ATPe, IS1) |
|
596 GR = np.dot(ARPe, IS1) |
|
597 HT = np.dot(ATPe, IS2) |
|
598 HR = np.dot(ARPe, IS2) |
|
599 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
600 # parameters for calibration with aCal |
|
601 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) |
|
602 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
603 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) |
|
604 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
605 # Correction parameters for normal measurements; they are independent of LDR |
|
606 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
607 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
608 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
609 GT = np.dot(ATP, IS1) |
|
610 GR = np.dot(ARP, IS1) |
|
611 HT = np.dot(ATP, IS2) |
|
612 HR = np.dot(ARP, IS2) |
|
613 else: |
|
614 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
615 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
616 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
617 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
618 GT = np.dot(ATPe, IS1e) |
|
619 GR = np.dot(ARPe, IS1e) |
|
620 HT = np.dot(ATPe, IS2e) |
|
621 HR = np.dot(ARPe, IS2e) |
|
622 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
623 # parameters for calibration with aCal |
|
624 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1. - 0.5 * WiC) * ( |
|
625 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) |
|
626 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( |
|
627 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
628 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1. - 0.5 * WiC) * ( |
|
629 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) |
|
630 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( |
|
631 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
632 # Correction parameters for normal measurements; they are independent of LDR |
|
633 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
634 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
635 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
636 GT = np.dot(ATP, IS1) |
|
637 GR = np.dot(ARP, IS1) |
|
638 HT = np.dot(ATP, IS2) |
|
639 HR = np.dot(ARP, IS2) |
|
640 else: |
|
641 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
642 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
643 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
644 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
645 GT = np.dot(ATPe, IS1e) |
|
646 GR = np.dot(ARPe, IS1e) |
|
647 HT = np.dot(ATPe, IS2e) |
|
648 HR = np.dot(ARPe, IS2e) |
|
649 else: |
|
650 print("Calibrator not implemented yet") |
|
651 sys.exit() |
|
652 |
|
653 elif LocC == 3: # C before receiver optics Eq.57 |
|
654 |
|
655 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
656 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
657 S2e = np.sin(np.deg2rad(2. * RotC)) |
|
658 C2e = np.cos(np.deg2rad(2. * RotC)) |
|
659 |
|
660 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt) |
|
661 AF1 = np.array([1., C2g * DiO, S2g * DiO, 0.]) |
|
662 AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
663 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
664 AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) |
|
665 |
|
666 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
667 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
668 ATF2 = ATF[1] |
|
669 ATF3 = ATF[2] |
|
670 ARF2 = ARF[1] |
|
671 ARF3 = ARF[2] |
|
672 |
|
673 # rotated AinF by epsilon |
|
674 ATF1 = ATF[0] |
|
675 ATF4 = ATF[3] |
|
676 ATF2e = C2e * ATF[1] + S2e * ATF[2] |
|
677 ATF3e = C2e * ATF[2] - S2e * ATF[1] |
|
678 ARF1 = ARF[0] |
|
679 ARF4 = ARF[3] |
|
680 ARF2e = C2e * ARF[1] + S2e * ARF[2] |
|
681 ARF3e = C2e * ARF[2] - S2e * ARF[1] |
|
682 |
|
683 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) |
|
684 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) |
|
685 |
|
686 QinEe = C2e * QinE + S2e * UinE |
|
687 UinEe = C2e * UinE - S2e * QinE |
|
688 |
|
689 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
690 IinF = IinE |
|
691 QinF = aCal * QinE |
|
692 UinF = -aCal * UinE |
|
693 VinF = (1. - 2. * aCal) * VinE |
|
694 |
|
695 IinFo = IinE |
|
696 QinFo = 0. |
|
697 UinFo = 0. |
|
698 VinFo = VinE |
|
699 |
|
700 IinFa = 0. |
|
701 QinFa = QinE |
|
702 UinFa = -UinE |
|
703 VinFa = -2. * VinE |
|
704 |
|
705 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
706 QinFe = C2e * QinF + S2e * UinF |
|
707 UinFe = C2e * UinF - S2e * QinF |
|
708 QinFoe = C2e * QinFo + S2e * UinFo |
|
709 UinFoe = C2e * UinFo - S2e * QinFo |
|
710 QinFae = C2e * QinFa + S2e * UinFa |
|
711 UinFae = C2e * UinFa - S2e * QinFa |
|
712 |
|
713 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
714 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
715 # parameters for calibration with aCal |
|
716 AT = ATF1 * IinF + ATF4 * h * VinF |
|
717 BT = ATF3e * QinF - ATF2e * h * UinF |
|
718 AR = ARF1 * IinF + ARF4 * h * VinF |
|
719 BR = ARF3e * QinF - ARF2e * h * UinF |
|
720 # Correction parameters for normal measurements; they are independent of LDR |
|
721 if (not RotationErrorEpsilonForNormalMeasurements): |
|
722 GT = ATF1 * IinE + ATF4 * VinE |
|
723 GR = ARF1 * IinE + ARF4 * VinE |
|
724 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE |
|
725 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE |
|
726 else: |
|
727 GT = ATF1 * IinE + ATF4 * h * VinE |
|
728 GR = ARF1 * IinE + ARF4 * h * VinE |
|
729 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE |
|
730 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE |
|
731 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
732 # p = +45°, m = -45° |
|
733 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) |
|
734 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) |
|
735 AT = np.dot(ATFe, IF1e) |
|
736 AR = np.dot(ARFe, IF1e) |
|
737 BT = np.dot(ATFe, IF2e) |
|
738 BR = np.dot(ARFe, IF2e) |
|
739 |
|
740 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
741 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
742 IS1 = np.array([IinE, 0., 0., VinE]) |
|
743 IS2 = np.array([0., QinE, -UinE, -2. * VinE]) |
|
744 GT = np.dot(ATF, IS1) |
|
745 GR = np.dot(ARF, IS1) |
|
746 HT = np.dot(ATF, IS2) |
|
747 HR = np.dot(ARF, IS2) |
|
748 else: |
|
749 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
750 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
751 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
752 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
753 GT = np.dot(ATFe, IS1e) |
|
754 GR = np.dot(ARFe, IS1e) |
|
755 HT = np.dot(ATFe, IS2e) |
|
756 HR = np.dot(ARFe, IS2e) |
|
757 |
|
758 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
759 # parameters for calibration with aCal |
|
760 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1. - 0.5 * WiC) * QinFe, |
|
761 (1. - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, |
|
762 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) |
|
763 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, |
|
764 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) |
|
765 AT = np.dot(ATFe, IF1e) |
|
766 AR = np.dot(ARFe, IF1e) |
|
767 BT = np.dot(ATFe, IF2e) |
|
768 BR = np.dot(ARFe, IF2e) |
|
769 |
|
770 # Correction parameters for normal measurements; they are independent of LDR |
|
771 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
772 # IS1 = np.array([IinE,0,0,VinE]) |
|
773 # IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
774 IS1 = np.array([IinFo, 0., 0., VinFo]) |
|
775 IS2 = np.array([0., QinFa, UinFa, VinFa]) |
|
776 GT = np.dot(ATF, IS1) |
|
777 GR = np.dot(ARF, IS1) |
|
778 HT = np.dot(ATF, IS2) |
|
779 HR = np.dot(ARF, IS2) |
|
780 else: |
|
781 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
782 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
783 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
784 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
785 # IS1e = np.array([IinFo,0,0,VinFo]) |
|
786 # IS2e = np.array([0,QinFae,UinFae,VinFa]) |
|
787 GT = np.dot(ATFe, IS1e) |
|
788 GR = np.dot(ARFe, IS1e) |
|
789 HT = np.dot(ATFe, IS2e) |
|
790 HR = np.dot(ARFe, IS2e) |
|
791 |
|
792 else: |
|
793 print('Calibrator not implemented yet') |
|
794 sys.exit() |
|
795 |
|
796 elif LocC == 2: # C behind emitter optics Eq.57 ------------------------------------------------------- |
|
797 # print("Calibrator location not implemented yet") |
|
798 S2e = np.sin(np.deg2rad(2. * RotC)) |
|
799 C2e = np.cos(np.deg2rad(2. * RotC)) |
|
800 |
|
801 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
802 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0.]) |
|
803 AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
804 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
805 AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) |
|
806 |
|
807 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
808 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
809 ATF1 = ATF[0] |
|
810 ATF2 = ATF[1] |
|
811 ATF3 = ATF[2] |
|
812 ATF4 = ATF[3] |
|
813 ARF1 = ARF[0] |
|
814 ARF2 = ARF[1] |
|
815 ARF3 = ARF[2] |
|
816 ARF4 = ARF[3] |
|
817 |
|
818 # AS with C behind the emitter |
|
819 # terms without aCal |
|
820 ATE1o, ARE1o = ATF1, ARF1 |
|
821 ATE2o, ARE2o = 0., 0. |
|
822 ATE3o, ARE3o = 0., 0. |
|
823 ATE4o, ARE4o = ATF4, ARF4 |
|
824 # terms with aCal |
|
825 ATE1a, ARE1a = 0., 0. |
|
826 ATE2a, ARE2a = ATF2, ARF2 |
|
827 ATE3a, ARE3a = -ATF3, -ARF3 |
|
828 ATE4a, ARE4a = -2. * ATF4, -2. * ARF4 |
|
829 # rotated AinEa by epsilon |
|
830 ATE2ae = C2e * ATF2 + S2e * ATF3 |
|
831 ATE3ae = -S2e * ATF2 - C2e * ATF3 |
|
832 ARE2ae = C2e * ARF2 + S2e * ARF3 |
|
833 ARE3ae = -S2e * ARF2 - C2e * ARF3 |
|
834 |
|
835 ATE1 = ATE1o |
|
836 ATE2e = aCal * ATE2ae |
|
837 ATE3e = aCal * ATE3ae |
|
838 ATE4 = (1 - 2 * aCal) * ATF4 |
|
839 ARE1 = ARE1o |
|
840 ARE2e = aCal * ARE2ae |
|
841 ARE3e = aCal * ARE3ae |
|
842 ARE4 = (1 - 2 * aCal) * ARF4 |
|
843 |
|
844 # rotated IinE |
|
845 QinEe = C2e * QinE + S2e * UinE |
|
846 UinEe = C2e * UinE - S2e * QinE |
|
847 |
|
848 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
849 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
850 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE |
|
851 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) |
|
852 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE |
|
853 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) |
|
854 |
|
855 # Correction parameters for normal measurements; they are independent of LDR |
|
856 if (not RotationErrorEpsilonForNormalMeasurements): |
|
857 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
858 GT = ATE1o * IinE + ATE4o * h * VinE |
|
859 GR = ARE1o * IinE + ARE4o * h * VinE |
|
860 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE |
|
861 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE |
|
862 else: |
|
863 GT = ATE1o * IinE + ATE4o * h * VinE |
|
864 GR = ARE1o * IinE + ARE4o * h * VinE |
|
865 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE |
|
866 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE |
|
867 |
|
868 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
869 # p = +45°, m = -45° |
|
870 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe |
|
871 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) |
|
872 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe |
|
873 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) |
|
874 |
|
875 # Correction parameters for normal measurements; they are independent of LDR |
|
876 if (not RotationErrorEpsilonForNormalMeasurements): |
|
877 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
878 GT = ATE1o * IinE + ATE4o * VinE |
|
879 GR = ARE1o * IinE + ARE4o * VinE |
|
880 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
881 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
882 else: |
|
883 D = IinE + DiC * QinEe |
|
884 A = DiC * IinE + QinEe |
|
885 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
886 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
887 GT = ATE1o * D + ATE4o * C |
|
888 GR = ARE1o * D + ARE4o * C |
|
889 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
890 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
891 |
|
892 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
893 # p = +22.5°, m = -22.5° |
|
894 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, |
|
895 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, |
|
896 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) |
|
897 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, |
|
898 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) |
|
899 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) |
|
900 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) |
|
901 AT = np.dot(ATEe, IE1e) |
|
902 AR = np.dot(AREe, IE1e) |
|
903 BT = np.dot(ATEe, IE2e) |
|
904 BR = np.dot(AREe, IE2e) |
|
905 |
|
906 # Correction parameters for normal measurements; they are independent of LDR |
|
907 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
908 GT = ATE1o * IinE + ATE4o * VinE |
|
909 GR = ARE1o * IinE + ARE4o * VinE |
|
910 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
911 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
912 else: |
|
913 D = IinE + DiC * QinEe |
|
914 A = DiC * IinE + QinEe |
|
915 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
916 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
917 GT = ATE1o * D + ATE4o * C |
|
918 GR = ARE1o * D + ARE4o * C |
|
919 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
920 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
921 |
|
922 else: |
|
923 print('Calibrator not implemented yet') |
|
924 sys.exit() |
|
925 |
|
926 else: |
|
927 print("Calibrator location not implemented yet") |
|
928 sys.exit() |
|
929 |
|
930 # Determination of the correction K of the calibration factor. |
|
931 IoutTp = TTa * TiC * TiO * TiE * (AT + BT) |
|
932 IoutTm = TTa * TiC * TiO * TiE * (AT - BT) |
|
933 IoutRp = TRa * TiC * TiO * TiE * (AR + BR) |
|
934 IoutRm = TRa * TiC * TiO * TiE * (AR - BR) |
|
935 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 |
|
936 Etapx = IoutRp / IoutTp |
|
937 Etamx = IoutRm / IoutTm |
|
938 Etax = (Etapx * Etamx) ** 0.5 |
|
939 |
|
940 Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84 => K = Eta* / Eta; equation corrected according to the papers supplement Eqs. (S.10.10.1) ff |
|
941 K = Etax / Eta |
|
942 |
|
943 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
944 # Eta_test_p = (IoutRp/IoutTp) |
|
945 # Eta_test_m = (IoutRm/IoutTm) |
|
946 # Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
947 |
|
948 # ----- random error calculation ---------- |
|
949 # noise must be calculated with the photon counts of measured signals; |
|
950 # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent |
|
951 # normalised noise errors |
|
952 if (CalcFrom0deg): |
|
953 dIoutTp = (NCalT * IoutTp) ** -0.5 |
|
954 dIoutTm = (NCalT * IoutTm) ** -0.5 |
|
955 dIoutRp = (NCalR * IoutRp) ** -0.5 |
|
956 dIoutRm = (NCalR * IoutRm) ** -0.5 |
|
957 else: |
|
958 dIoutTp = (NCalT ** -0.5) |
|
959 dIoutTm = (NCalT ** -0.5) |
|
960 dIoutRp = (NCalR ** -0.5) |
|
961 dIoutRm = (NCalR ** -0.5) |
|
962 # Forward simulated 0°-signals with LDRCal with atrue; from input file |
|
963 |
|
964 It = TTa * TiO * TiE * (GT + atrue * HT) |
|
965 Ir = TRa * TiO * TiE * (GR + atrue * HR) |
|
966 # relative standard deviation of standard signals with LDRmeas; assumed to be statisitcally independent |
|
967 if (CalcFrom0deg): # this works! |
|
968 dIt = ((It * NI * eFacT) ** -0.5) |
|
969 dIr = ((Ir * NI * eFacR) ** -0.5) |
|
970 ''' |
|
971 dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) |
|
972 dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) |
|
973 ''' |
|
974 else: # does this work? Why not as above? |
|
975 dIt = ((NCalT * 2 * NILfac / TCalT ) ** -0.5) |
|
976 dIr = ((NCalR * 2 * NILfac / TCalR) ** -0.5) |
|
977 |
|
978 # ----- Forward simulated LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
979 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file |
|
980 # Corrected LDRsimCorr from forward simulated LDRsim (atrue) |
|
981 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT)) |
|
982 ''' |
|
983 if ((Y == -1.) and (abs(RotL0) < 45)) or ((Y == +1.) and (abs(RotL0) > 45)): |
|
984 LDRsimx = 1. / LDRsim / Etax |
|
985 else: |
|
986 LDRsimx = LDRsim / Etax |
|
987 ''' |
|
988 LDRsimx = LDRsim |
|
989 |
|
990 # The following is correct without doubt |
|
991 # LDRCorr = (LDRsim/(Etax/K)*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim/(Etax/K)*(GT-HT)) |
|
992 |
|
993 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent |
|
994 LDRCorr = (LDRsim / (Etax / K) * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / (Etax / K) * (GT - HT)) |
|
995 # here we could also use Eta instead of Etax / K => how to test whether Etax is correct? => comparison with MüllerMatrix simulation! |
|
996 # Without any correction: only measured It, Ir, EtaX are used |
|
997 LDRunCorr = LDRsim / Etax |
|
998 # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) |
|
999 |
|
1000 #LDRCorr = LDRsimx # for test only |
|
1001 |
|
1002 F11sim = 1 / (TiO * TiE) * ((HR * Eta * It - HT * Ir) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta |
|
1003 |
|
1004 return (IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, |
|
1005 GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim, LDRunCorr) |
|
1006 |
|
1007 |
|
1008 |
|
1009 # ******************************************************************************************************************************* |
|
1010 |
|
1011 # --- CALC with assumed true parameters from the input file |
|
1012 LDRtrue = LDRtrue2 |
|
1013 IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ |
|
1014 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1015 Calc(TCalT, TCalR, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, |
|
1016 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1017 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1018 Etax0 = K0 * Eta0 |
|
1019 Etapx0 = IoutRp0 / IoutTp0 |
|
1020 Etamx0 = IoutRm0 / IoutTm0 |
|
1021 # --- Print parameters to console and output file |
|
1022 OutputFile = 'output_' + InputFile[0:-3] + '_' + fname[0:-3] +'.dat' |
|
1023 output_path = os.path.join('output_files', OutputFile) |
|
1024 # with open('output_files\\' + OutputFile, 'w') as f: |
|
1025 with open(output_path, 'w') as f: |
|
1026 with redirect_stdout(f): |
|
1027 print("From ", dname) |
|
1028 print("Running ", fname) |
|
1029 print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID) |
|
1030 print("for Lidar system: ", EID, ", ", LID) |
|
1031 # --- Print iput information********************************* |
|
1032 print(" --- Input parameters: value ±error / ±steps ----------------------") |
|
1033 print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("Laser: ", "Qin =", Qin0, dQin, nQin)) |
|
1034 print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Vin =", Vin0, dVin, nVin)) |
|
1035 print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Rotation alpha = ", RotL0, dRotL, nRotL)) |
|
1036 print("{0:7}{1:15} {2:8.4f} {3:17}".format("", "=> DOP", ((Qin ** 2 + Vin ** 2) ** 0.5), " (degree of polarisation)")) |
|
1037 |
|
1038 print("Optic: Diatt., Tunpol, Retard., Rotation (deg)") |
|
1039 print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
1040 "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE)) |
|
1041 print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
1042 "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO)) |
|
1043 print("{0:12} {1:9.6f}±{2:9.6f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
1044 "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC)) |
|
1045 print("{0:12}".format(" Pol.-filter ------ ")) |
|
1046 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
1047 "ERT, RotT :", ERaT0, dERaT, nERaT, RotaT0, dRotaT, nRotaT)) |
|
1048 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
1049 "ERR, RotR :", ERaR0, dERaR, nERaR, RotaR0, dRotaR, nRotaR)) |
|
1050 print("{0:12}".format(" PBS ------ ")) |
|
1051 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
1052 "TP,TS :", TP0, dTP, nTP, TS0, dTS, nTS)) |
|
1053 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
1054 "RP,RS :", RP0, dRP, nRP, RS0, dRS, nRS)) |
|
1055 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format( |
|
1056 "DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y)) |
|
1057 print("{0:12}".format(" Combined PBS + Pol.-filter ------ ")) |
|
1058 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format( |
|
1059 "DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0)) |
|
1060 print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format( |
|
1061 "LDRCal during calibration in calibration range", LDRCal0, dLDRCal, nLDRCal)) |
|
1062 print("{0:12}".format(" --- Additional ND filter attenuation (transmission) during the calibration ---")) |
|
1063 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
1064 "TCalT,TCalR :", TCalT0, dTCalT, nTCalT, TCalR0, dTCalR, nTCalR)) |
|
1065 print() |
|
1066 print(Type[TypeC],"calibrator is located", Loc[LocC]) |
|
1067 print("Rotation error epsilon is considered also for normal measurements = ", RotationErrorEpsilonForNormalMeasurements) |
|
1068 print("The PBS incidence plane is ", dY[int(Y + 1)], "to the reference plane" ) |
|
1069 print("The laser polarisation in the reference plane is finally", dY2[int(Y + 1)], "=>", dY3) |
|
1070 print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP) |
|
1071 # end of print actual system parameters |
|
1072 # ****************************************************************************** |
|
1073 |
|
1074 |
|
1075 print() |
|
1076 |
|
1077 K0List = np.zeros(7) |
|
1078 LDRsimxList = np.zeros(7) |
|
1079 LDRCalList = 0.0, 0.004, 0.05, 0.1, 0.2, 0.3, 0.45 |
|
1080 # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work. |
|
1081 # Still with assumed true parameters in input file |
|
1082 |
|
1083 ''' |
|
1084 facIt = NCalT / TCalT0 * NILfac |
|
1085 facIr = NCalR / TCalR0 * NILfac |
|
1086 ''' |
|
1087 facIt = NI * eFacT |
|
1088 facIr = NI * eFacR |
|
1089 if (bPlotEtax): |
|
1090 # check error signals |
|
1091 # dIs are relative stdevs |
|
1092 print("LDRCal, IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp,dIoutTm,dIoutRp,dIoutRm,dIt, dIr") |
|
1093 |
|
1094 for i, LDRCal in enumerate(LDRCalList): |
|
1095 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1096 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1097 Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, |
|
1098 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1099 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) |
|
1100 K0List[i] = K0 |
|
1101 LDRsimxList[i] = LDRsimx |
|
1102 |
|
1103 if (bPlotEtax): |
|
1104 # check error signals |
|
1105 print( "{:0.2f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(LDRCal, IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1106 #print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1107 # end check error signals |
|
1108 print('===========================================================================================================') |
|
1109 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9},{7:9},{8:9},{9:9},{10:9}".format( |
|
1110 " GR", " GT", " HR", " HT", " K(0.000)", " K(0.004)", " K(0.05)", " K(0.1)", " K(0.2)", " K(0.3)", " K(0.45)")) |
|
1111 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f},{7:9.5f},{8:9.5f},{9:9.5f},{10:9.5f}".format( |
|
1112 GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2], K0List[3], K0List[4], K0List[5], K0List[6])) |
|
1113 print('===========================================================================================================') |
|
1114 print() |
|
1115 print("Errors from neglecting GHK corrections and/or calibration:") |
|
1116 print("{0:>10},{1:>10},{2:>10},{3:>10},{4:>10},{5:>10}".format( |
|
1117 "LDRtrue", "LDRunCorr", "1/LDRunCorr", "LDRsimx", "1/LDRsimx", "LDRCorr")) |
|
1118 |
|
1119 aF11sim0 = np.zeros(5) |
|
1120 LDRrange = np.zeros(5) |
|
1121 LDRsim0 = np.zeros(5) |
|
1122 LDRrange = [0.004, 0.02, 0.1, 0.3, 0.45] # list |
|
1123 LDRrange[0] = LDRtrue2 # value in the input file; default 0.004 |
|
1124 |
|
1125 # The loop over LDRtrueList is only for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work. |
|
1126 # LDRsimx = LDRsim = Ir / It or 1/LDRsim |
|
1127 # Still with assumed true parameters in input file |
|
1128 for i, LDRtrue in enumerate(LDRrange): |
|
1129 #for LDRtrue in LDRrange: |
|
1130 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1131 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1132 Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, |
|
1133 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1134 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1135 print("{0:10.5f},{1:10.5f},{2:10.5f},{3:10.5f},{4:10.5f},{5:10.5f}".format(LDRtrue, LDRunCorr, 1/LDRunCorr, LDRsimx, 1/LDRsimx, LDRCorr)) |
|
1136 aF11sim0[i] = F11sim0 |
|
1137 LDRsim0[i] = Ir / It |
|
1138 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals |
|
1139 print("LDRsimx = LDR of the nominal system directly from measured signals without calibration and GHK-corrections") |
|
1140 print("LDRunCorr = LDR of the nominal system directly from measured signals with calibration but without GHK-corrections; electronic amplifications = 1 assumed") |
|
1141 print("LDRCorr = LDR calibrated and GHK-corrected") |
|
1142 print() |
|
1143 print("Errors from signal noise:") |
|
1144 print("Signal counts: NI, NCalT, NCalR, NILfac, nNCal, nNI, stdev(NI)/NI = {0:10.0f},{1:10.0f},{2:10.0f},{3:3.0f},{4:2.0f},{5:2.0f},{6:8.5f}".format( |
|
1145 NI, NCalT, NCalR, NILfac, nNCal, nNI, 1.0 / NI ** 0.5)) |
|
1146 print() |
|
1147 print() |
|
1148 '''# das muß wieder weg |
|
1149 print("IoutTp, IoutTm, IoutRp, IoutRm, It , Ir , dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr") |
|
1150 LDRCal = 0.01 |
|
1151 for i, LDRtrue in enumerate(LDRrange): |
|
1152 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1153 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1154 Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1155 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1156 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1157 print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format( |
|
1158 IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, |
|
1159 dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1160 aF11sim0[i] = F11sim0 |
|
1161 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals |
|
1162 # bis hierher weg |
|
1163 ''' |
|
1164 |
|
1165 # file = open('output_files\\' + OutputFile, 'r') |
|
1166 file = open(output_path, 'r') |
|
1167 print(file.read()) |
|
1168 file.close() |
|
1169 |
|
1170 # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values |
|
1171 LDRtrue = LDRtrue2 |
|
1172 IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ |
|
1173 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1174 Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, |
|
1175 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1176 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1177 Etax0 = K0 * Eta0 |
|
1178 Etapx0 = IoutRp0 / IoutTp0 |
|
1179 Etamx0 = IoutRm0 / IoutTm0 |
|
1180 ''' |
|
1181 if(PrintToOutputFile): |
|
1182 f = open('output_ver7.dat', 'w') |
|
1183 old_target = sys.stdout |
|
1184 sys.stdout = f |
|
1185 |
|
1186 print("something") |
|
1187 |
|
1188 if(PrintToOutputFile): |
|
1189 sys.stdout.flush() |
|
1190 f.close |
|
1191 sys.stdout = old_target |
|
1192 ''' |
|
1193 if (Error_Calc): |
|
1194 # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values |
|
1195 LDRtrue = LDRtrue2 |
|
1196 IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ |
|
1197 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1198 Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, |
|
1199 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1200 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1201 Etax0 = K0 * Eta0 |
|
1202 Etapx0 = IoutRp0 / IoutTp0 |
|
1203 Etamx0 = IoutRm0 / IoutTm0 |
|
1204 |
|
1205 # --- Start Error calculation with variable parameters ------------------------------------------------------------------ |
|
1206 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
1207 # error nNI: one-sigma in steps to left and right for 0° signals |
|
1208 |
|
1209 iN = -1 |
|
1210 N = ((nTCalT * 2 + 1) * (nTCalR * 2 + 1) * |
|
1211 (nNCal * 2 + 1) ** 4 * (nNI * 2 + 1) ** 2 * |
|
1212 (nQin * 2 + 1) * (nVin * 2 + 1) * (nRotL * 2 + 1) * |
|
1213 (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) * |
|
1214 (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) * |
|
1215 (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) * |
|
1216 (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) * |
|
1217 (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1)) |
|
1218 print("number of system variations N = ", N, " ", end="") |
|
1219 |
|
1220 if N > 1e6: |
|
1221 if user_yes_no_query('Warning: processing ' + str( |
|
1222 N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
1223 if N > 5e6: |
|
1224 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format( |
|
1225 N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit() |
|
1226 |
|
1227 # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
1228 |
|
1229 # --- Arrays for plotting ------ |
|
1230 LDRmin = np.zeros(5) |
|
1231 LDRmax = np.zeros(5) |
|
1232 LDRstd = np.zeros(5) |
|
1233 LDRmean = np.zeros(5) |
|
1234 LDRmedian = np.zeros(5) |
|
1235 LDRskew = np.zeros(5) |
|
1236 LDRkurt = np.zeros(5) |
|
1237 LDRsimmin = np.zeros(5) |
|
1238 LDRsimmax = np.zeros(5) |
|
1239 LDRsimmean = np.zeros(5) |
|
1240 |
|
1241 F11min = np.zeros(5) |
|
1242 F11max = np.zeros(5) |
|
1243 Etaxmin = np.zeros(5) |
|
1244 Etaxmax = np.zeros(5) |
|
1245 |
|
1246 aQin = np.zeros(N) |
|
1247 aVin = np.zeros(N) |
|
1248 aERaT = np.zeros(N) |
|
1249 aERaR = np.zeros(N) |
|
1250 aRotaT = np.zeros(N) |
|
1251 aRotaR = np.zeros(N) |
|
1252 aRetT = np.zeros(N) |
|
1253 aRetR = np.zeros(N) |
|
1254 aTP = np.zeros(N) |
|
1255 aTS = np.zeros(N) |
|
1256 aRP = np.zeros(N) |
|
1257 aRS = np.zeros(N) |
|
1258 aDiE = np.zeros(N) |
|
1259 aDiO = np.zeros(N) |
|
1260 aDiC = np.zeros(N) |
|
1261 aRotC = np.zeros(N) |
|
1262 aRetC = np.zeros(N) |
|
1263 aRotL = np.zeros(N) |
|
1264 aRetE = np.zeros(N) |
|
1265 aRotE = np.zeros(N) |
|
1266 aRetO = np.zeros(N) |
|
1267 aRotO = np.zeros(N) |
|
1268 aLDRCal = np.zeros(N) |
|
1269 aNCalTp = np.zeros(N) |
|
1270 aNCalTm = np.zeros(N) |
|
1271 aNCalRp = np.zeros(N) |
|
1272 aNCalRm = np.zeros(N) |
|
1273 aNIt = np.zeros(N) |
|
1274 aNIr = np.zeros(N) |
|
1275 aTCalT = np.zeros(N) |
|
1276 aTCalR = np.zeros(N) |
|
1277 |
|
1278 # each np.zeros((LDRrange, N)) array has the same N-dependency |
|
1279 aLDRcorr = np.zeros((5, N)) |
|
1280 aLDRsim = np.zeros((5, N)) |
|
1281 aF11corr = np.zeros((5, N)) |
|
1282 aPLDR = np.zeros((5, N)) |
|
1283 aEtax = np.zeros((5, N)) |
|
1284 aEtapx = np.zeros((5, N)) |
|
1285 aEtamx = np.zeros((5, N)) |
|
1286 |
|
1287 # np.zeros((GHKs, N)) |
|
1288 aGHK = np.zeros((5, N)) |
|
1289 |
|
1290 atime = clock() |
|
1291 dtime = clock() |
|
1292 |
|
1293 # --- Calc Error signals |
|
1294 # ---- Do the calculations of bra-ket vectors |
|
1295 h = -1. if TypeC == 2 else 1 |
|
1296 |
|
1297 for iLDRCal in range(-nLDRCal, nLDRCal + 1): |
|
1298 # from input file: LDRCal for calibration measurements |
|
1299 LDRCal = LDRCal0 |
|
1300 if nLDRCal > 0: |
|
1301 LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal |
|
1302 # provides the intensities of the calibration measurements at various LDRCal for signal noise errors |
|
1303 # IoutTp, IoutTm, IoutRp, IoutRm, dIoutTp, dIoutTm, dIoutRp, dIoutRm |
|
1304 |
|
1305 aCal = (1. - LDRCal) / (1. + LDRCal) |
|
1306 for iQin, iVin, iRotL, iRotE, iRetE, iDiE \ |
|
1307 in [(iQin, iVin, iRotL, iRotE, iRetE, iDiE) |
|
1308 for iQin in range(-nQin, nQin + 1) |
|
1309 for iVin in range(-nVin, nVin + 1) |
|
1310 for iRotL in range(-nRotL, nRotL + 1) |
|
1311 for iRotE in range(-nRotE, nRotE + 1) |
|
1312 for iRetE in range(-nRetE, nRetE + 1) |
|
1313 for iDiE in range(-nDiE, nDiE + 1)]: |
|
1314 |
|
1315 if nQin > 0: Qin = Qin0 + iQin * dQin / nQin |
|
1316 if nVin > 0: Vin = Vin0 + iVin * dVin / nVin |
|
1317 if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL |
|
1318 if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE |
|
1319 if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE |
|
1320 if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE |
|
1321 |
|
1322 if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1.0: |
|
1323 print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") |
|
1324 sys.exit() |
|
1325 # angles of emitter and laser and calibrator and receiver optics |
|
1326 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
1327 S2a = np.sin(2 * np.deg2rad(RotL)) |
|
1328 C2a = np.cos(2 * np.deg2rad(RotL)) |
|
1329 S2b = np.sin(2 * np.deg2rad(RotE)) |
|
1330 C2b = np.cos(2 * np.deg2rad(RotE)) |
|
1331 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) |
|
1332 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) |
|
1333 |
|
1334 # Laser with Degree of linear polarization DOLP |
|
1335 IinL = 1. |
|
1336 QinL = Qin |
|
1337 UinL = 0. |
|
1338 VinL = Vin |
|
1339 # VinL = (1. - DOLP ** 2) ** 0.5 |
|
1340 |
|
1341 # Stokes Input Vector rotation Eq. E.4 |
|
1342 A = C2a * QinL - S2a * UinL |
|
1343 B = S2a * QinL + C2a * UinL |
|
1344 # Stokes Input Vector rotation Eq. E.9 |
|
1345 C = C2ab * QinL - S2ab * UinL |
|
1346 D = S2ab * QinL + C2ab * UinL |
|
1347 |
|
1348 # emitter optics |
|
1349 CosE = np.cos(np.deg2rad(RetE)) |
|
1350 SinE = np.sin(np.deg2rad(RetE)) |
|
1351 ZiE = (1. - DiE ** 2) ** 0.5 |
|
1352 WiE = (1. - ZiE * CosE) |
|
1353 |
|
1354 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
1355 # b = beta |
|
1356 IinE = (IinL + DiE * C) |
|
1357 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) |
|
1358 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) |
|
1359 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) |
|
1360 |
|
1361 # ------------------------- |
|
1362 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
1363 # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE |
|
1364 # ------------------------- |
|
1365 |
|
1366 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \ |
|
1367 in [ |
|
1368 (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR) |
|
1369 for iRotO in range(-nRotO, nRotO + 1) |
|
1370 for iRetO in range(-nRetO, nRetO + 1) |
|
1371 for iDiO in range(-nDiO, nDiO + 1) |
|
1372 for iRotC in range(-nRotC, nRotC + 1) |
|
1373 for iRetC in range(-nRetC, nRetC + 1) |
|
1374 for iDiC in range(-nDiC, nDiC + 1) |
|
1375 for iTP in range(-nTP, nTP + 1) |
|
1376 for iTS in range(-nTS, nTS + 1) |
|
1377 for iRP in range(-nRP, nRP + 1) |
|
1378 for iRS in range(-nRS, nRS + 1) |
|
1379 for iERaT in range(-nERaT, nERaT + 1) |
|
1380 for iRotaT in range(-nRotaT, nRotaT + 1) |
|
1381 for iRetT in range(-nRetT, nRetT + 1) |
|
1382 for iERaR in range(-nERaR, nERaR + 1) |
|
1383 for iRotaR in range(-nRotaR, nRotaR + 1) |
|
1384 for iRetR in range(-nRetR, nRetR + 1)]: |
|
1385 |
|
1386 if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO |
|
1387 if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO |
|
1388 if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO |
|
1389 if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC |
|
1390 if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC |
|
1391 if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC |
|
1392 if nTP > 0: TP = TP0 + iTP * dTP / nTP |
|
1393 if nTS > 0: TS = TS0 + iTS * dTS / nTS |
|
1394 if nRP > 0: RP = RP0 + iRP * dRP / nRP |
|
1395 if nRS > 0: RS = RS0 + iRS * dRS / nRS |
|
1396 if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT |
|
1397 if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT |
|
1398 if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT |
|
1399 if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR |
|
1400 if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR |
|
1401 if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR |
|
1402 |
|
1403 # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN)) |
|
1404 |
|
1405 # receiver optics |
|
1406 CosO = np.cos(np.deg2rad(RetO)) |
|
1407 SinO = np.sin(np.deg2rad(RetO)) |
|
1408 ZiO = (1. - DiO ** 2) ** 0.5 |
|
1409 WiO = (1. - ZiO * CosO) |
|
1410 S2g = np.sin(np.deg2rad(2 * RotO)) |
|
1411 C2g = np.cos(np.deg2rad(2 * RotO)) |
|
1412 # calibrator |
|
1413 CosC = np.cos(np.deg2rad(RetC)) |
|
1414 SinC = np.sin(np.deg2rad(RetC)) |
|
1415 ZiC = (1. - DiC ** 2) ** 0.5 |
|
1416 WiC = (1. - ZiC * CosC) |
|
1417 |
|
1418 # analyser |
|
1419 # For POLLY_XTs |
|
1420 if (RS_RP_depend_on_TS_TP): |
|
1421 RS = 1.0 - TS |
|
1422 RP = 1.0 - TP |
|
1423 TiT = 0.5 * (TP + TS) |
|
1424 DiT = (TP - TS) / (TP + TS) |
|
1425 ZiT = (1. - DiT ** 2.) ** 0.5 |
|
1426 TiR = 0.5 * (RP + RS) |
|
1427 DiR = (RP - RS) / (RP + RS) |
|
1428 ZiR = (1. - DiR ** 2.) ** 0.5 |
|
1429 CosT = np.cos(np.deg2rad(RetT)) |
|
1430 SinT = np.sin(np.deg2rad(RetT)) |
|
1431 CosR = np.cos(np.deg2rad(RetR)) |
|
1432 SinR = np.sin(np.deg2rad(RetR)) |
|
1433 |
|
1434 # cleaning pol-filter |
|
1435 DaT = (1.0 - ERaT) / (1.0 + ERaT) |
|
1436 DaR = (1.0 - ERaR) / (1.0 + ERaR) |
|
1437 TaT = 0.5 * (1.0 + ERaT) |
|
1438 TaR = 0.5 * (1.0 + ERaR) |
|
1439 |
|
1440 S2aT = np.sin(np.deg2rad(h * 2.0 * RotaT)) |
|
1441 C2aT = np.cos(np.deg2rad(2.0 * RotaT)) |
|
1442 S2aR = np.sin(np.deg2rad(h * 2.0 * RotaR)) |
|
1443 C2aR = np.cos(np.deg2rad(2.0 * RotaR)) |
|
1444 |
|
1445 # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter |
|
1446 ATPT = (1 + C2aT * DaT * DiT) # unpolarized transmission correction |
|
1447 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
1448 ATP1 = 1.0 |
|
1449 ATP2 = Y * (DiT + C2aT * DaT) / ATPT |
|
1450 ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT |
|
1451 ATP4 = S2aT * DaT * ZiT * SinT / ATPT |
|
1452 ATP = np.array([ATP1, ATP2, ATP3, ATP4]) |
|
1453 DTa = ATP2 * Y |
|
1454 |
|
1455 ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction |
|
1456 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
1457 ARP1 = 1 |
|
1458 ARP2 = Y * (DiR + C2aR * DaR) / ARPT |
|
1459 ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT |
|
1460 ARP4 = S2aR * DaR * ZiR * SinR / ARPT |
|
1461 ARP = np.array([ARP1, ARP2, ARP3, ARP4]) |
|
1462 DRa = ARP2 * Y |
|
1463 |
|
1464 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
1465 if LocC == 4: # Calibrator before the PBS |
|
1466 # print("Calibrator location not implemented yet") |
|
1467 |
|
1468 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
1469 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
1470 S2e = np.sin(np.deg2rad(h * 2 * RotC)) |
|
1471 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1472 # rotated AinP by epsilon Eq. C.3 |
|
1473 ATP2e = C2e * ATP2 + S2e * ATP3 |
|
1474 ATP3e = C2e * ATP3 - S2e * ATP2 |
|
1475 ARP2e = C2e * ARP2 + S2e * ARP3 |
|
1476 ARP3e = C2e * ARP3 - S2e * ARP2 |
|
1477 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) |
|
1478 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) |
|
1479 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
1480 A = C2g * QinE - S2g * UinE |
|
1481 B = S2g * QinE + C2g * UinE |
|
1482 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
1483 Co = ZiO * SinO * VinE |
|
1484 Ca = (WiO * B - 2 * ZiO * SinO * VinE) |
|
1485 # C = Co + aCal*Ca |
|
1486 # IinP = (IinE + DiO*aCal*A) |
|
1487 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
1488 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
1489 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
1490 IinPo = IinE |
|
1491 QinPo = (C2g * DiO * IinE - S2g * Co) |
|
1492 UinPo = (S2g * DiO * IinE + C2g * Co) |
|
1493 VinPo = ZiO * CosO * VinE |
|
1494 |
|
1495 IinPa = DiO * A |
|
1496 QinPa = QinE - S2g * Ca |
|
1497 UinPa = -UinE + C2g * Ca |
|
1498 VinPa = ZiO * (SinO * B - 2 * CosO * VinE) |
|
1499 |
|
1500 IinP = IinPo + aCal * IinPa |
|
1501 QinP = QinPo + aCal * QinPa |
|
1502 UinP = UinPo + aCal * UinPa |
|
1503 VinP = VinPo + aCal * VinPa |
|
1504 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
1505 # QinPe = C2e*QinP + S2e*UinP |
|
1506 # UinPe = C2e*UinP - S2e*QinP |
|
1507 QinPoe = C2e * QinPo + S2e * UinPo |
|
1508 UinPoe = C2e * UinPo - S2e * QinPo |
|
1509 QinPae = C2e * QinPa + S2e * UinPa |
|
1510 UinPae = C2e * UinPa - S2e * QinPa |
|
1511 QinPe = C2e * QinP + S2e * UinP |
|
1512 UinPe = C2e * UinP - S2e * QinP |
|
1513 |
|
1514 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1515 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1516 # parameters for calibration with aCal |
|
1517 AT = ATP1 * IinP + h * ATP4 * VinP |
|
1518 BT = ATP3e * QinP - h * ATP2e * UinP |
|
1519 AR = ARP1 * IinP + h * ARP4 * VinP |
|
1520 BR = ARP3e * QinP - h * ARP2e * UinP |
|
1521 # Correction parameters for normal measurements; they are independent of LDR |
|
1522 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1523 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1524 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1525 GT = np.dot(ATP, IS1) |
|
1526 GR = np.dot(ARP, IS1) |
|
1527 HT = np.dot(ATP, IS2) |
|
1528 HR = np.dot(ARP, IS2) |
|
1529 else: |
|
1530 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1531 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1532 GT = np.dot(ATPe, IS1) |
|
1533 GR = np.dot(ARPe, IS1) |
|
1534 HT = np.dot(ATPe, IS2) |
|
1535 HR = np.dot(ARPe, IS2) |
|
1536 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1537 # parameters for calibration with aCal |
|
1538 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) |
|
1539 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
1540 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) |
|
1541 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
1542 # Correction parameters for normal measurements; they are independent of LDR |
|
1543 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1544 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1545 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1546 GT = np.dot(ATP, IS1) |
|
1547 GR = np.dot(ARP, IS1) |
|
1548 HT = np.dot(ATP, IS2) |
|
1549 HR = np.dot(ARP, IS2) |
|
1550 else: |
|
1551 IS1e = np.array( |
|
1552 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
1553 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
1554 IS2e = np.array( |
|
1555 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
1556 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
1557 GT = np.dot(ATPe, IS1e) |
|
1558 GR = np.dot(ARPe, IS1e) |
|
1559 HT = np.dot(ATPe, IS2e) |
|
1560 HR = np.dot(ARPe, IS2e) |
|
1561 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1562 # parameters for calibration with aCal |
|
1563 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
1564 ATP2e * QinPe + ATP3e * UinPe) + ZiC * ( |
|
1565 sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) |
|
1566 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( |
|
1567 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
1568 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
1569 ARP2e * QinPe + ARP3e * UinPe) + ZiC * ( |
|
1570 sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) |
|
1571 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( |
|
1572 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
1573 # Correction parameters for normal measurements; they are independent of LDR |
|
1574 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1575 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1576 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1577 GT = np.dot(ATP, IS1) |
|
1578 GR = np.dot(ARP, IS1) |
|
1579 HT = np.dot(ATP, IS2) |
|
1580 HR = np.dot(ARP, IS2) |
|
1581 else: |
|
1582 IS1e = np.array( |
|
1583 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
1584 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
1585 IS2e = np.array( |
|
1586 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
1587 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
1588 GT = np.dot(ATPe, IS1e) |
|
1589 GR = np.dot(ARPe, IS1e) |
|
1590 HT = np.dot(ATPe, IS2e) |
|
1591 HR = np.dot(ARPe, IS2e) |
|
1592 else: |
|
1593 print("Calibrator not implemented yet") |
|
1594 sys.exit() |
|
1595 |
|
1596 elif LocC == 3: # C before receiver optics Eq.57 |
|
1597 |
|
1598 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
1599 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
1600 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
1601 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1602 |
|
1603 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1604 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
1605 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
1606 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
1607 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
1608 |
|
1609 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
1610 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
1611 ATF1 = ATF[0] |
|
1612 ATF2 = ATF[1] |
|
1613 ATF3 = ATF[2] |
|
1614 ATF4 = ATF[3] |
|
1615 ARF1 = ARF[0] |
|
1616 ARF2 = ARF[1] |
|
1617 ARF3 = ARF[2] |
|
1618 ARF4 = ARF[3] |
|
1619 |
|
1620 # rotated AinF by epsilon |
|
1621 ATF2e = C2e * ATF[1] + S2e * ATF[2] |
|
1622 ATF3e = C2e * ATF[2] - S2e * ATF[1] |
|
1623 ARF2e = C2e * ARF[1] + S2e * ARF[2] |
|
1624 ARF3e = C2e * ARF[2] - S2e * ARF[1] |
|
1625 |
|
1626 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) |
|
1627 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) |
|
1628 |
|
1629 QinEe = C2e * QinE + S2e * UinE |
|
1630 UinEe = C2e * UinE - S2e * QinE |
|
1631 |
|
1632 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1633 IinF = IinE |
|
1634 QinF = aCal * QinE |
|
1635 UinF = -aCal * UinE |
|
1636 VinF = (1. - 2. * aCal) * VinE |
|
1637 |
|
1638 IinFo = IinE |
|
1639 QinFo = 0. |
|
1640 UinFo = 0. |
|
1641 VinFo = VinE |
|
1642 |
|
1643 IinFa = 0. |
|
1644 QinFa = QinE |
|
1645 UinFa = -UinE |
|
1646 VinFa = -2. * VinE |
|
1647 |
|
1648 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
1649 QinFe = C2e * QinF + S2e * UinF |
|
1650 UinFe = C2e * UinF - S2e * QinF |
|
1651 QinFoe = C2e * QinFo + S2e * UinFo |
|
1652 UinFoe = C2e * UinFo - S2e * QinFo |
|
1653 QinFae = C2e * QinFa + S2e * UinFa |
|
1654 UinFae = C2e * UinFa - S2e * QinFa |
|
1655 |
|
1656 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1657 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1658 AT = ATF1 * IinF + ATF4 * h * VinF |
|
1659 BT = ATF3e * QinF - ATF2e * h * UinF |
|
1660 AR = ARF1 * IinF + ARF4 * h * VinF |
|
1661 BR = ARF3e * QinF - ARF2e * h * UinF |
|
1662 |
|
1663 # Correction parameters for normal measurements; they are independent of LDR |
|
1664 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1665 GT = ATF1 * IinE + ATF4 * VinE |
|
1666 GR = ARF1 * IinE + ARF4 * VinE |
|
1667 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE |
|
1668 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE |
|
1669 else: |
|
1670 GT = ATF1 * IinE + ATF4 * h * VinE |
|
1671 GR = ARF1 * IinE + ARF4 * h * VinE |
|
1672 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE |
|
1673 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE |
|
1674 |
|
1675 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1676 # p = +45°, m = -45° |
|
1677 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) |
|
1678 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) |
|
1679 |
|
1680 AT = np.dot(ATFe, IF1e) |
|
1681 AR = np.dot(ARFe, IF1e) |
|
1682 BT = np.dot(ATFe, IF2e) |
|
1683 BR = np.dot(ARFe, IF2e) |
|
1684 |
|
1685 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
1686 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1687 IS1 = np.array([IinE, 0, 0, VinE]) |
|
1688 IS2 = np.array([0, QinE, -UinE, -2 * VinE]) |
|
1689 |
|
1690 GT = np.dot(ATF, IS1) |
|
1691 GR = np.dot(ARF, IS1) |
|
1692 HT = np.dot(ATF, IS2) |
|
1693 HR = np.dot(ARF, IS2) |
|
1694 else: |
|
1695 IS1e = np.array( |
|
1696 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
1697 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
1698 IS2e = np.array( |
|
1699 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
1700 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
1701 GT = np.dot(ATFe, IS1e) |
|
1702 GR = np.dot(ARFe, IS1e) |
|
1703 HT = np.dot(ATFe, IS2e) |
|
1704 HR = np.dot(ARFe, IS2e) |
|
1705 |
|
1706 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1707 # p = +22.5°, m = -22.5° |
|
1708 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe, |
|
1709 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, |
|
1710 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) |
|
1711 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, |
|
1712 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) |
|
1713 |
|
1714 AT = np.dot(ATFe, IF1e) |
|
1715 AR = np.dot(ARFe, IF1e) |
|
1716 BT = np.dot(ATFe, IF2e) |
|
1717 BR = np.dot(ARFe, IF2e) |
|
1718 |
|
1719 # Correction parameters for normal measurements; they are independent of LDR |
|
1720 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1721 # IS1 = np.array([IinE,0,0,VinE]) |
|
1722 # IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
1723 IS1 = np.array([IinFo, 0, 0, VinFo]) |
|
1724 IS2 = np.array([0, QinFa, UinFa, VinFa]) |
|
1725 GT = np.dot(ATF, IS1) |
|
1726 GR = np.dot(ARF, IS1) |
|
1727 HT = np.dot(ATF, IS2) |
|
1728 HR = np.dot(ARF, IS2) |
|
1729 else: |
|
1730 # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE]) |
|
1731 # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)]) |
|
1732 IS1e = np.array( |
|
1733 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
1734 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
1735 IS2e = np.array( |
|
1736 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
1737 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
1738 GT = np.dot(ATFe, IS1e) |
|
1739 GR = np.dot(ARFe, IS1e) |
|
1740 HT = np.dot(ATFe, IS2e) |
|
1741 HR = np.dot(ARFe, IS2e) |
|
1742 |
|
1743 |
|
1744 else: |
|
1745 print('Calibrator not implemented yet') |
|
1746 sys.exit() |
|
1747 |
|
1748 elif LocC == 2: # C behind emitter optics Eq.57 |
|
1749 # print("Calibrator location not implemented yet") |
|
1750 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
1751 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1752 |
|
1753 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1754 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
1755 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
1756 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
1757 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
1758 |
|
1759 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
1760 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
1761 ATF1 = ATF[0] |
|
1762 ATF2 = ATF[1] |
|
1763 ATF3 = ATF[2] |
|
1764 ATF4 = ATF[3] |
|
1765 ARF1 = ARF[0] |
|
1766 ARF2 = ARF[1] |
|
1767 ARF3 = ARF[2] |
|
1768 ARF4 = ARF[3] |
|
1769 |
|
1770 # AS with C behind the emitter -------------------------------------------- |
|
1771 # terms without aCal |
|
1772 ATE1o, ARE1o = ATF1, ARF1 |
|
1773 ATE2o, ARE2o = 0., 0. |
|
1774 ATE3o, ARE3o = 0., 0. |
|
1775 ATE4o, ARE4o = ATF4, ARF4 |
|
1776 # terms with aCal |
|
1777 ATE1a, ARE1a = 0., 0. |
|
1778 ATE2a, ARE2a = ATF2, ARF2 |
|
1779 ATE3a, ARE3a = -ATF3, -ARF3 |
|
1780 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4 |
|
1781 # rotated AinEa by epsilon |
|
1782 ATE2ae = C2e * ATF2 + S2e * ATF3 |
|
1783 ATE3ae = -S2e * ATF2 - C2e * ATF3 |
|
1784 ARE2ae = C2e * ARF2 + S2e * ARF3 |
|
1785 ARE3ae = -S2e * ARF2 - C2e * ARF3 |
|
1786 |
|
1787 ATE1 = ATE1o |
|
1788 ATE2e = aCal * ATE2ae |
|
1789 ATE3e = aCal * ATE3ae |
|
1790 ATE4 = (1 - 2 * aCal) * ATF4 |
|
1791 ARE1 = ARE1o |
|
1792 ARE2e = aCal * ARE2ae |
|
1793 ARE3e = aCal * ARE3ae |
|
1794 ARE4 = (1. - 2. * aCal) * ARF4 |
|
1795 |
|
1796 # rotated IinE |
|
1797 QinEe = C2e * QinE + S2e * UinE |
|
1798 UinEe = C2e * UinE - S2e * QinE |
|
1799 |
|
1800 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1801 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
1802 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE |
|
1803 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) |
|
1804 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE |
|
1805 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) |
|
1806 |
|
1807 # Correction parameters for normal measurements; they are independent of LDR |
|
1808 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1809 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1810 GT = ATE1o * IinE + ATE4o * h * VinE |
|
1811 GR = ARE1o * IinE + ARE4o * h * VinE |
|
1812 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE |
|
1813 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE |
|
1814 else: |
|
1815 GT = ATE1o * IinE + ATE4o * h * VinE |
|
1816 GR = ARE1o * IinE + ARE4o * h * VinE |
|
1817 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE |
|
1818 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE |
|
1819 |
|
1820 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
1821 # p = +45°, m = -45° |
|
1822 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe |
|
1823 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) |
|
1824 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe |
|
1825 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) |
|
1826 |
|
1827 # Correction parameters for normal measurements; they are independent of LDR |
|
1828 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1829 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1830 GT = ATE1o * IinE + ATE4o * VinE |
|
1831 GR = ARE1o * IinE + ARE4o * VinE |
|
1832 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
1833 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
1834 else: |
|
1835 D = IinE + DiC * QinEe |
|
1836 A = DiC * IinE + QinEe |
|
1837 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
1838 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
1839 GT = ATE1o * D + ATE4o * C |
|
1840 GR = ARE1o * D + ARE4o * C |
|
1841 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
1842 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
1843 |
|
1844 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1845 # p = +22.5°, m = -22.5° |
|
1846 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, |
|
1847 (1. - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, |
|
1848 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) |
|
1849 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, |
|
1850 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) |
|
1851 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) |
|
1852 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) |
|
1853 AT = np.dot(ATEe, IE1e) |
|
1854 AR = np.dot(AREe, IE1e) |
|
1855 BT = np.dot(ATEe, IE2e) |
|
1856 BR = np.dot(AREe, IE2e) |
|
1857 |
|
1858 # Correction parameters for normal measurements; they are independent of LDR |
|
1859 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1860 GT = ATE1o * IinE + ATE4o * VinE |
|
1861 GR = ARE1o * IinE + ARE4o * VinE |
|
1862 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
1863 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
1864 else: |
|
1865 D = IinE + DiC * QinEe |
|
1866 A = DiC * IinE + QinEe |
|
1867 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
1868 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
1869 GT = ATE1o * D + ATE4o * C |
|
1870 GR = ARE1o * D + ARE4o * C |
|
1871 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
1872 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
1873 else: |
|
1874 print('Calibrator not implemented yet') |
|
1875 sys.exit() |
|
1876 |
|
1877 for iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr \ |
|
1878 in [ |
|
1879 (iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr) |
|
1880 for iTCalT in range(-nTCalT, nTCalT + 1) # Etax |
|
1881 for iTCalR in range(-nTCalR, nTCalR + 1) # Etax |
|
1882 for iNCalTp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1883 for iNCalTm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1884 for iNCalRp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1885 for iNCalRm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1886 for iNIt in range(-nNI, nNI + 1) |
|
1887 for iNIr in range(-nNI, nNI + 1)]: |
|
1888 |
|
1889 # Calibration signals with aCal => Determination of the correction K of the real calibration factor |
|
1890 IoutTp = TTa * TiC * TiO * TiE * (AT + BT) |
|
1891 IoutTm = TTa * TiC * TiO * TiE * (AT - BT) |
|
1892 IoutRp = TRa * TiC * TiO * TiE * (AR + BR) |
|
1893 IoutRm = TRa * TiC * TiO * TiE * (AR - BR) |
|
1894 |
|
1895 if nTCalT > 0: TCalT = TCalT0 + iTCalT * dTCalT / nTCalT |
|
1896 if nTCalR > 0: TCalR = TCalR0 + iTCalR * dTCalR / nTCalR |
|
1897 # signal noise errors |
|
1898 # ----- random error calculation ---------- |
|
1899 # noise must be calculated from/with the actually measured signals; influence of TCalT, TCalR errors on noise are not considered ? |
|
1900 # actually measured signal counts are in input file and don't change |
|
1901 # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent |
|
1902 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
1903 if nNCal > 0: |
|
1904 if (CalcFrom0deg): |
|
1905 dIoutTp = (NCalT * IoutTp) ** -0.5 |
|
1906 dIoutTm = (NCalT * IoutTm) ** -0.5 |
|
1907 dIoutRp = (NCalR * IoutRp) ** -0.5 |
|
1908 dIoutRm = (NCalR * IoutRm) ** -0.5 |
|
1909 else: |
|
1910 dIoutTp = dIoutTp0 * (IoutTp / IoutTp0) |
|
1911 dIoutTm = dIoutTm0 * (IoutTm / IoutTm0) |
|
1912 dIoutRp = dIoutRp0 * (IoutRp / IoutRp0) |
|
1913 dIoutRm = dIoutRm0 * (IoutRm / IoutRm0) |
|
1914 # print(iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr, IoutTp, dIoutTp) |
|
1915 IoutTp = IoutTp * (1. + iNCalTp * dIoutTp / nNCal) |
|
1916 IoutTm = IoutTm * (1. + iNCalTm * dIoutTm / nNCal) |
|
1917 IoutRp = IoutRp * (1. + iNCalRp * dIoutRp / nNCal) |
|
1918 IoutRm = IoutRm * (1. + iNCalRm * dIoutRm / nNCal) |
|
1919 |
|
1920 IoutTp = IoutTp * TCalT / TCalT0 |
|
1921 IoutTm = IoutTm * TCalT / TCalT0 |
|
1922 IoutRp = IoutRp * TCalR / TCalR0 |
|
1923 IoutRm = IoutRm * TCalR / TCalR0 |
|
1924 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 for true and assumed true systems |
|
1925 # calibration factor |
|
1926 Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84; corrected according to the papers supplement Eqs. (S.10.10.1) ff |
|
1927 # possibly real calibration factor |
|
1928 Etapx = IoutRp / IoutTp |
|
1929 Etamx = IoutRm / IoutTm |
|
1930 Etax = (Etapx * Etamx) ** 0.5 |
|
1931 K = Etax / Eta |
|
1932 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km)) |
|
1933 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km)) |
|
1934 |
|
1935 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
1936 # Eta_test_p = (IoutRp/IoutTp) |
|
1937 # Eta_test_m = (IoutRm/IoutTm) |
|
1938 # Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
1939 ''' |
|
1940 for iIt, iIr \ |
|
1941 in [(iIt, iIr) |
|
1942 for iIt in range(-nNI, nNI + 1) |
|
1943 for iIr in range(-nNI, nNI + 1)]: |
|
1944 ''' |
|
1945 |
|
1946 iN = iN + 1 |
|
1947 if (iN == 10001): |
|
1948 ctime = clock() |
|
1949 print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="") |
|
1950 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") |
|
1951 ctime = clock() |
|
1952 if ((ctime - dtime) > 10): |
|
1953 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") |
|
1954 dtime = ctime |
|
1955 |
|
1956 # *** loop for different real LDRs ********************************************************************** |
|
1957 iLDR = -1 |
|
1958 for LDRTrue in LDRrange: |
|
1959 iLDR = iLDR + 1 |
|
1960 atrue = (1. - LDRTrue) / (1. + LDRTrue) |
|
1961 # ----- Forward simulated signals and LDRsim with atrue; from input file; not considering TiC. |
|
1962 It = TTa * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT) |
|
1963 Ir = TRa * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR) |
|
1964 # # signal noise errors; standard deviation of signals; assumed to be statisitcally independent |
|
1965 # because the signals depend on LDRtrue, the errors dIt and dIr must be calculated for each LDRtrue |
|
1966 if (CalcFrom0deg): |
|
1967 ''' |
|
1968 dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) |
|
1969 dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) |
|
1970 ''' |
|
1971 dIt = ((It * NI * eFacT) ** -0.5) |
|
1972 dIr = ((Ir * NI * eFacR) ** -0.5) |
|
1973 else: |
|
1974 dIt = ((It * NI * eFacT) ** -0.5) |
|
1975 dIr = ((Ir * NI * eFacR) ** -0.5) |
|
1976 ''' |
|
1977 # does this work? Why not as above? |
|
1978 dIt = ((NCalT * 2. * NILfac / TCalT ) ** -0.5) |
|
1979 dIr = ((NCalR * 2. * NILfac / TCalR) ** -0.5) |
|
1980 ''' |
|
1981 # error nNI: one-sigma in steps to left and right for 0° signals |
|
1982 if nNI > 0: |
|
1983 It = It * (1. + iNIt * dIt / nNI) |
|
1984 Ir = Ir * (1. + iNIr * dIr / nNI) |
|
1985 |
|
1986 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
1987 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file |
|
1988 |
|
1989 # ----- Backward correction |
|
1990 # Corrected LDRCorr with assumed true G0,H0,K0,Eta0 from forward simulated (real) LDRsim(atrue) |
|
1991 LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim / (Etax / K0) * (GT0 - HT0)) |
|
1992 |
|
1993 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent |
|
1994 # LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) |
|
1995 # Without any correction |
|
1996 LDRunCorr = LDRsim / Etax |
|
1997 # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) |
|
1998 |
|
1999 |
|
2000 ''' |
|
2001 # -- F11corr from It and Ir and calibration EtaX |
|
2002 Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1" |
|
2003 F11corr = 1 / (TiO * TiE) * ( |
|
2004 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. |
|
2005 ''' |
|
2006 # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue) |
|
2007 Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1" |
|
2008 F11corr = 1 / (TiO * TiE) * ( |
|
2009 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. |
|
2010 |
|
2011 # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)" |
|
2012 # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64) |
|
2013 |
|
2014 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs) |
|
2015 # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1" |
|
2016 # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0)) |
|
2017 # ! see below line 1673ff |
|
2018 |
|
2019 aF11corr[iLDR, iN] = F11corr |
|
2020 aLDRcorr[iLDR, iN] = LDRCorr # LDRCorr # LDRsim # for test only |
|
2021 aLDRsim[iLDR, iN] = LDRsim # LDRCorr # LDRsim # for test only |
|
2022 # aPLDR[iLDR, iN] = CalcPLDR(LDRCorr, BSR[iLDR], LDRm0) |
|
2023 aEtax[iLDR, iN] = Etax |
|
2024 aEtapx[iLDR, iN] = Etapx |
|
2025 aEtamx[iLDR, iN] = Etamx |
|
2026 |
|
2027 aGHK[0, iN] = GR |
|
2028 aGHK[1, iN] = GT |
|
2029 aGHK[2, iN] = HR |
|
2030 aGHK[3, iN] = HT |
|
2031 aGHK[4, iN] = K |
|
2032 |
|
2033 aLDRCal[iN] = iLDRCal |
|
2034 aQin[iN] = iQin |
|
2035 aVin[iN] = iVin |
|
2036 aERaT[iN] = iERaT |
|
2037 aERaR[iN] = iERaR |
|
2038 aRotaT[iN] = iRotaT |
|
2039 aRotaR[iN] = iRotaR |
|
2040 aRetT[iN] = iRetT |
|
2041 aRetR[iN] = iRetR |
|
2042 |
|
2043 aRotL[iN] = iRotL |
|
2044 aRotE[iN] = iRotE |
|
2045 aRetE[iN] = iRetE |
|
2046 aRotO[iN] = iRotO |
|
2047 aRetO[iN] = iRetO |
|
2048 aRotC[iN] = iRotC |
|
2049 aRetC[iN] = iRetC |
|
2050 aDiO[iN] = iDiO |
|
2051 aDiE[iN] = iDiE |
|
2052 aDiC[iN] = iDiC |
|
2053 aTP[iN] = iTP |
|
2054 aTS[iN] = iTS |
|
2055 aRP[iN] = iRP |
|
2056 aRS[iN] = iRS |
|
2057 aTCalT[iN] = iTCalT |
|
2058 aTCalR[iN] = iTCalR |
|
2059 |
|
2060 aNCalTp[iN] = iNCalTp # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
2061 aNCalTm[iN] = iNCalTm # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
2062 aNCalRp[iN] = iNCalRp # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
2063 aNCalRm[iN] = iNCalRm # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
2064 aNIt[iN] = iNIt # It, Tr |
|
2065 aNIr[iN] = iNIr # It, Tr |
|
2066 |
|
2067 # --- END loop |
|
2068 btime = clock() |
|
2069 # print("\r done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ..."), # , end="\r"); |
|
2070 print(" done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ...") |
|
2071 # --- Plot ----------------------------------------------------------------- |
|
2072 print("Errors from GHK correction uncertainties:") |
|
2073 if (sns_loaded): |
|
2074 sns.set_style("whitegrid") |
|
2075 sns.set_palette("bright6", 6) |
|
2076 # for older seaborn versions use: |
|
2077 # sns.set_palette("bright", 6) |
|
2078 |
|
2079 ''' |
|
2080 fig2 = plt.figure() |
|
2081 plt.plot(aLDRcorr[2,:],'b.') |
|
2082 plt.plot(aLDRcorr[3,:],'r.') |
|
2083 plt.plot(aLDRcorr[4,:],'g.') |
|
2084 #plt.plot(aLDRcorr[6,:],'c.') |
|
2085 plt.show |
|
2086 ''' |
|
2087 |
|
2088 # Plot LDR |
|
2089 def PlotSubHist(aVar, aX, X0, daX, iaX, naX): |
|
2090 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
2091 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2092 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2093 iLDR = -1 |
|
2094 for LDRTrue in LDRrange: |
|
2095 aXmean = np.zeros(2 * naX + 1) |
|
2096 iLDR = iLDR + 1 |
|
2097 LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) |
|
2098 LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) |
|
2099 if (LDRmax[iLDR] > 10): LDRmax[iLDR] = 10 |
|
2100 if (LDRmin[iLDR] < -10): LDRmin[iLDR] = -10 |
|
2101 Rmin = LDRmin[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2102 Rmax = LDRmax[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2103 |
|
2104 # Determine mean distance of all aXmean from each other for each iLDR |
|
2105 meanDist = 0.0 |
|
2106 for iaX in range(-naX, naX + 1): |
|
2107 # mean LDRCorr value for certain error (iaX) of parameter aVar |
|
2108 aXmean[iaX + naX] = np.mean(aLDRcorr[iLDR, aX == iaX]) |
|
2109 # relative to absolute spread of LDRCorrs |
|
2110 meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRmax[iLDR] - LDRmin[iLDR]) * 100 |
|
2111 |
|
2112 plt.subplot(1, 5, iLDR + 1) |
|
2113 (n, bins, patches) = plt.hist(aLDRcorr[iLDR, :], |
|
2114 bins=100, log=False, |
|
2115 range=[Rmin, Rmax], |
|
2116 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2117 |
|
2118 for iaX in range(-naX, naX + 1): |
|
2119 # mean LDRCorr value for certain error (iaX) of parameter aVar |
|
2120 plt.hist(aLDRcorr[iLDR, aX == iaX], |
|
2121 range=[Rmin, Rmax], |
|
2122 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2123 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2124 |
|
2125 if (iLDR == 2): |
|
2126 leg = plt.legend() |
|
2127 leg.get_frame().set_alpha(0.1) |
|
2128 |
|
2129 plt.tick_params(axis='both', labelsize=10) |
|
2130 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2131 plt.gca().set_title("{0:3.0f}%".format(meanDist)) |
|
2132 plt.gca().set_xlabel('LDRtrue', color="red") |
|
2133 |
|
2134 # plt.ylabel('frequency', fontsize=10) |
|
2135 # plt.xlabel('LDRCorr', fontsize=10) |
|
2136 # fig.tight_layout() |
|
2137 fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) |
|
2138 # plt.show() |
|
2139 # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
2140 # plt.close |
|
2141 return |
|
2142 |
|
2143 def PlotLDRsim(aVar, aX, X0, daX, iaX, naX): |
|
2144 # aVar is the name of the parameter and aX is the subset of aLDRsim which is coloured in the plot |
|
2145 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2146 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2147 iLDR = -1 |
|
2148 for LDRTrue in LDRrange: |
|
2149 aXmean = np.zeros(2 * naX + 1) |
|
2150 iLDR = iLDR + 1 |
|
2151 LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) |
|
2152 LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) |
|
2153 # print("LDRsimmin[iLDR], LDRsimmax[iLDR] = ", LDRsimmin[iLDR], LDRsimmax[iLDR]) |
|
2154 # if (LDRsimmax[iLDR] > 10): LDRsimmax[iLDR] = 10 |
|
2155 # if (LDRsimmin[iLDR] < -10): LDRsimmin[iLDR] = -10 |
|
2156 Rmin = LDRsimmin[iLDR] * 0.995 # np.min(aLDRsim[iLDR,:]) * 0.995 |
|
2157 Rmax = LDRsimmax[iLDR] * 1.005 # np.max(aLDRsim[iLDR,:]) * 1.005 |
|
2158 # print("Rmin, Rmax = ", Rmin, Rmax) |
|
2159 |
|
2160 # Determine mean distance of all aXmean from each other for each iLDR |
|
2161 meanDist = 0.0 |
|
2162 for iaX in range(-naX, naX + 1): |
|
2163 # mean LDRCorr value for certain error (iaX) of parameter aVar |
|
2164 aXmean[iaX + naX] = np.mean(aLDRsim[iLDR, aX == iaX]) |
|
2165 # relative to absolute spread of LDRCorrs |
|
2166 meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRsimmax[iLDR] - LDRsimmin[iLDR]) * 100 |
|
2167 |
|
2168 plt.subplot(1, 5, iLDR + 1) |
|
2169 (n, bins, patches) = plt.hist(aLDRsim[iLDR, :], |
|
2170 bins=100, log=False, |
|
2171 range=[Rmin, Rmax], |
|
2172 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2173 |
|
2174 for iaX in range(-naX, naX + 1): |
|
2175 # mean LDRCorr value for certain error (iaX) of parameter aVar |
|
2176 plt.hist(aLDRsim[iLDR, aX == iaX], |
|
2177 range=[Rmin, Rmax], |
|
2178 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2179 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2180 |
|
2181 if (iLDR == 2): |
|
2182 leg = plt.legend() |
|
2183 leg.get_frame().set_alpha(0.1) |
|
2184 |
|
2185 plt.tick_params(axis='both', labelsize=10) |
|
2186 plt.plot([LDRsim0[iLDR], LDRsim0[iLDR]], [0, np.max(n)], 'r-', lw=2) |
|
2187 plt.gca().set_title("{0:3.0f}%".format(meanDist)) |
|
2188 plt.gca().set_xlabel('LDRsim0', color="red") |
|
2189 |
|
2190 fig.suptitle('LDRsim - ' +LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) |
|
2191 return |
|
2192 |
|
2193 |
|
2194 # Plot Etax |
|
2195 def PlotEtax(aVar, aX, X0, daX, iaX, naX): |
|
2196 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
2197 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2198 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2199 iLDR = -1 |
|
2200 for LDRTrue in LDRrange: |
|
2201 aXmean = np.zeros(2 * naX + 1) |
|
2202 iLDR = iLDR + 1 |
|
2203 Etaxmin = np.amin(aEtax[iLDR, :]) |
|
2204 Etaxmax = np.amax(aEtax[iLDR, :]) |
|
2205 Rmin = Etaxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2206 Rmax = Etaxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2207 |
|
2208 # Determine mean distance of all aXmean from each other for each iLDR |
|
2209 meanDist = 0.0 |
|
2210 for iaX in range(-naX, naX + 1): |
|
2211 # mean Etax value for certain error (iaX) of parameter aVar |
|
2212 aXmean[iaX + naX] = np.mean(aEtax[iLDR, aX == iaX]) |
|
2213 # relative to absolute spread of Etax |
|
2214 meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etaxmax - Etaxmin) * 100 |
|
2215 |
|
2216 plt.subplot(1, 5, iLDR + 1) |
|
2217 (n, bins, patches) = plt.hist(aEtax[iLDR, :], |
|
2218 bins=50, log=False, |
|
2219 range=[Rmin, Rmax], |
|
2220 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2221 for iaX in range(-naX, naX + 1): |
|
2222 plt.hist(aEtax[iLDR, aX == iaX], |
|
2223 range=[Rmin, Rmax], |
|
2224 bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2225 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2226 if (iLDR == 2): |
|
2227 leg = plt.legend() |
|
2228 leg.get_frame().set_alpha(0.1) |
|
2229 plt.tick_params(axis='both', labelsize=10) |
|
2230 plt.plot([Etax0, Etax0], [0, np.max(n)], 'r-', lw=2) |
|
2231 plt.gca().set_title("{0:3.0f}%".format(meanDist)) |
|
2232 plt.gca().set_xlabel('Etax0', color="red") |
|
2233 fig.suptitle('Etax - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) |
|
2234 return |
|
2235 |
|
2236 def PlotEtapx(aVar, aX, X0, daX, iaX, naX): |
|
2237 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
2238 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2239 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2240 iLDR = -1 |
|
2241 for LDRTrue in LDRrange: |
|
2242 aXmean = np.zeros(2 * naX + 1) |
|
2243 iLDR = iLDR + 1 |
|
2244 Etapxmin = np.amin(aEtapx[iLDR, :]) |
|
2245 Etapxmax = np.amax(aEtapx[iLDR, :]) |
|
2246 Rmin = Etapxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2247 Rmax = Etapxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2248 |
|
2249 # Determine mean distance of all aXmean from each other for each iLDR |
|
2250 meanDist = 0.0 |
|
2251 for iaX in range(-naX, naX + 1): |
|
2252 # mean Etapx value for certain error (iaX) of parameter aVar |
|
2253 aXmean[iaX + naX] = np.mean(aEtapx[iLDR, aX == iaX]) |
|
2254 # relative to absolute spread of Etapx |
|
2255 meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etapxmax - Etapxmin) * 100 |
|
2256 |
|
2257 plt.subplot(1, 5, iLDR + 1) |
|
2258 (n, bins, patches) = plt.hist(aEtapx[iLDR, :], |
|
2259 bins=50, log=False, |
|
2260 range=[Rmin, Rmax], |
|
2261 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2262 for iaX in range(-naX, naX + 1): |
|
2263 plt.hist(aEtapx[iLDR, aX == iaX], |
|
2264 range=[Rmin, Rmax], |
|
2265 bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2266 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2267 if (iLDR == 2): |
|
2268 leg = plt.legend() |
|
2269 leg.get_frame().set_alpha(0.1) |
|
2270 plt.tick_params(axis='both', labelsize=10) |
|
2271 plt.plot([Etapx0, Etapx0], [0, np.max(n)], 'r-', lw=2) |
|
2272 plt.gca().set_title("{0:3.0f}%".format(meanDist)) |
|
2273 plt.gca().set_xlabel('Etapx0', color="red") |
|
2274 fig.suptitle('Etapx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) |
|
2275 return |
|
2276 |
|
2277 def PlotEtamx(aVar, aX, X0, daX, iaX, naX): |
|
2278 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
2279 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2280 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2281 iLDR = -1 |
|
2282 for LDRTrue in LDRrange: |
|
2283 aXmean = np.zeros(2 * naX + 1) |
|
2284 iLDR = iLDR + 1 |
|
2285 Etamxmin = np.amin(aEtamx[iLDR, :]) |
|
2286 Etamxmax = np.amax(aEtamx[iLDR, :]) |
|
2287 Rmin = Etamxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2288 Rmax = Etamxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2289 |
|
2290 # Determine mean distance of all aXmean from each other for each iLDR |
|
2291 meanDist = 0.0 |
|
2292 for iaX in range(-naX, naX + 1): |
|
2293 # mean Etamx value for certain error (iaX) of parameter aVar |
|
2294 aXmean[iaX + naX] = np.mean(aEtamx[iLDR, aX == iaX]) |
|
2295 # relative to absolute spread of Etamx |
|
2296 meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etamxmax - Etamxmin) * 100 |
|
2297 |
|
2298 plt.subplot(1, 5, iLDR + 1) |
|
2299 (n, bins, patches) = plt.hist(aEtamx[iLDR, :], |
|
2300 bins=50, log=False, |
|
2301 range=[Rmin, Rmax], |
|
2302 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2303 for iaX in range(-naX, naX + 1): |
|
2304 plt.hist(aEtamx[iLDR, aX == iaX], |
|
2305 range=[Rmin, Rmax], |
|
2306 bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2307 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2308 if (iLDR == 2): |
|
2309 leg = plt.legend() |
|
2310 leg.get_frame().set_alpha(0.1) |
|
2311 plt.tick_params(axis='both', labelsize=10) |
|
2312 plt.plot([Etamx0, Etamx0], [0, np.max(n)], 'r-', lw=2) |
|
2313 plt.gca().set_title("{0:3.0f}%".format(meanDist)) |
|
2314 plt.gca().set_xlabel('Etamx0', color="red") |
|
2315 fig.suptitle('Etamx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) |
|
2316 return |
|
2317 |
|
2318 # calc contribution of the error of aVar = aX to aY for each LDRtrue |
|
2319 def Contribution(aVar, aX, X0, daX, iaX, naX, aY, Ysum, widthSum): |
|
2320 # aVar is the name of the parameter and aX is the subset of aY which is coloured in the plot |
|
2321 # example: Contribution("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP, aLDRcorr, DOLPcontr) |
|
2322 iLDR = -1 |
|
2323 # Ysum, widthSum = np.zeros(5) |
|
2324 meanDist = np.zeros(5) # iLDR |
|
2325 widthDist = np.zeros(5) # iLDR |
|
2326 for LDRTrue in LDRrange: |
|
2327 aXmean = np.zeros(2 * naX + 1) |
|
2328 aXwidth = np.zeros(2 * naX + 1) |
|
2329 iLDR = iLDR + 1 |
|
2330 # total width of distribution |
|
2331 aYmin = np.amin(aY[iLDR, :]) |
|
2332 aYmax = np.amax(aY[iLDR, :]) |
|
2333 aYwidth = aYmax - aYmin |
|
2334 # Determine mean distance of all aXmean from each other for each iLDR |
|
2335 for iaX in range(-naX, naX + 1): |
|
2336 # mean LDRCorr value for all errors iaX of parameter aVar |
|
2337 aXmean[iaX + naX] = np.mean(aY[iLDR, aX == iaX]) |
|
2338 aXwidth[iaX + naX] = np.max(aY[iLDR, aX == iaX]) - np.min(aY[iLDR, aX == iaX]) |
|
2339 # relative to absolute spread of LDRCorrs |
|
2340 meanDist[iLDR] = (np.max(aXmean) - np.min(aXmean)) / aYwidth * 1000 |
|
2341 # meanDist[iLDR] = (aYwidth - aXwidth[naX]) / aYwidth * 1000 |
|
2342 widthDist[iLDR] = (np.max(aXwidth) - aXwidth[naX]) / aYwidth * 1000 |
|
2343 |
|
2344 print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ |
|
2345 .format(aVar,meanDist[0],meanDist[1],meanDist[2],meanDist[3],meanDist[4],widthDist[0],widthDist[1],widthDist[2],widthDist[3],widthDist[4])) |
|
2346 Ysum = Ysum + meanDist |
|
2347 widthSum = widthSum + widthDist |
|
2348 return(Ysum, widthSum) |
|
2349 |
|
2350 # print(.format(LDRrangeA[iLDR],)) |
|
2351 |
|
2352 # error contributions to a certain output aY; loop over all variables |
|
2353 def Contribution_aY(aYvar, aY): |
|
2354 Ysum = np.zeros(5) |
|
2355 widthSum = np.zeros(5) |
|
2356 # meanDist = np.zeros(5) # iLDR |
|
2357 LDRrangeA = np.array(LDRrange) |
|
2358 print() |
|
2359 print(aYvar + ": contribution to the total error (per mill)") |
|
2360 print(" of individual parameter errors of combined parameter errors") |
|
2361 print(" at LDRtrue {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f}"\ |
|
2362 .format(LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4],LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4])) |
|
2363 print() |
|
2364 if (nQin > 0): Ysum, widthSum = Contribution("Qin", aQin, Qin0, dQin, iQin, nQin, aY, Ysum, widthSum) |
|
2365 if (nVin > 0): Ysum, widthSum = Contribution("Vin", aVin, Vin0, dVin, iVin, nVin, aY, Ysum, widthSum) |
|
2366 if (nRotL > 0): Ysum, widthSum = Contribution("RotL", aRotL, RotL0, dRotL, iRotL, nRotL, aY, Ysum, widthSum) |
|
2367 if (nRetE > 0): Ysum, widthSum = Contribution("RetE", aRetE, RetE0, dRetE, iRetE, nRetE, aY, Ysum, widthSum) |
|
2368 if (nRotE > 0): Ysum, widthSum = Contribution("RotE", aRotE, RotE0, dRotE, iRotE, nRotE, aY, Ysum, widthSum) |
|
2369 if (nDiE > 0): Ysum, widthSum = Contribution("DiE", aDiE, DiE0, dDiE, iDiE, nDiE, aY, Ysum, widthSum) |
|
2370 if (nRetO > 0): Ysum, widthSum = Contribution("RetO", aRetO, RetO0, dRetO, iRetO, nRetO, aY, Ysum, widthSum) |
|
2371 if (nRotO > 0): Ysum, widthSum = Contribution("RotO", aRotO, RotO0, dRotO, iRotO, nRotO, aY, Ysum, widthSum) |
|
2372 if (nDiO > 0): Ysum, widthSum = Contribution("DiO", aDiO, DiO0, dDiO, iDiO, nDiO, aY, Ysum, widthSum) |
|
2373 if (nDiC > 0): Ysum, widthSum = Contribution("DiC", aDiC, DiC0, dDiC, iDiC, nDiC, aY, Ysum, widthSum) |
|
2374 if (nRotC > 0): Ysum, widthSum = Contribution("RotC", aRotC, RotC0, dRotC, iRotC, nRotC, aY, Ysum, widthSum) |
|
2375 if (nRetC > 0): Ysum, widthSum = Contribution("RetC", aRetC, RetC0, dRetC, iRetC, nRetC, aY, Ysum, widthSum) |
|
2376 if (nTP > 0): Ysum, widthSum = Contribution("TP", aTP, TP0, dTP, iTP, nTP, aY, Ysum, widthSum) |
|
2377 if (nTS > 0): Ysum, widthSum = Contribution("TS", aTS, TS0, dTS, iTS, nTS, aY, Ysum, widthSum) |
|
2378 if (nRP > 0): Ysum, widthSum = Contribution("RP", aRP, RP0, dRP, iRP, nRP, aY, Ysum, widthSum) |
|
2379 if (nRS > 0): Ysum, widthSum = Contribution("RS", aRS, RS0, dRS, iRS, nRS, aY, Ysum, widthSum) |
|
2380 if (nRetT > 0): Ysum, widthSum = Contribution("RetT", aRetT, RetT0, dRetT, iRetT, nRetT, aY, Ysum, widthSum) |
|
2381 if (nRetR > 0): Ysum, widthSum = Contribution("RetR", aRetR, RetR0, dRetR, iRetR, nRetR, aY, Ysum, widthSum) |
|
2382 if (nERaT > 0): Ysum, widthSum = Contribution("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT, aY, Ysum, widthSum) |
|
2383 if (nERaR > 0): Ysum, widthSum = Contribution("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR, aY, Ysum, widthSum) |
|
2384 if (nRotaT > 0): Ysum, widthSum = Contribution("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT, aY, Ysum, widthSum) |
|
2385 if (nRotaR > 0): Ysum, widthSum = Contribution("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR, aY, Ysum, widthSum) |
|
2386 if (nLDRCal > 0): Ysum, widthSum = Contribution("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal, aY, Ysum, widthSum) |
|
2387 if (nTCalT > 0): Ysum, widthSum = Contribution("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT, aY, Ysum, widthSum) |
|
2388 if (nTCalR > 0): Ysum, widthSum = Contribution("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR, aY, Ysum, widthSum) |
|
2389 if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal, aY, Ysum, widthSum) |
|
2390 if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal, aY, Ysum, widthSum) |
|
2391 if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal, aY, Ysum, widthSum) |
|
2392 if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal, aY, Ysum, widthSum) |
|
2393 if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIt", aNIt, 0, 1, iNIt, nNI, aY, Ysum, widthSum) |
|
2394 if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIr", aNIr, 0, 1, iNIr, nNI, aY, Ysum, widthSum) |
|
2395 print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ |
|
2396 .format("Sum ",Ysum[0],Ysum[1],Ysum[2],Ysum[3],Ysum[4],widthSum[0],widthSum[1],widthSum[2],widthSum[3],widthSum[4])) |
|
2397 |
|
2398 |
|
2399 # Plot LDR histograms |
|
2400 if (nQin > 0): PlotSubHist("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2401 if (nVin > 0): PlotSubHist("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2402 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2403 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2404 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2405 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2406 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2407 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2408 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2409 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2410 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2411 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2412 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP) |
|
2413 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS) |
|
2414 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP) |
|
2415 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS) |
|
2416 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2417 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2418 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2419 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2420 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2421 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2422 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2423 if (nTCalT > 0): PlotSubHist("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2424 if (nTCalR > 0): PlotSubHist("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2425 if (nNCal > 0): PlotSubHist("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2426 if (nNCal > 0): PlotSubHist("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2427 if (nNCal > 0): PlotSubHist("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2428 if (nNCal > 0): PlotSubHist("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2429 if (nNI > 0): PlotSubHist("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2430 if (nNI > 0): PlotSubHist("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2431 plt.show() |
|
2432 plt.close |
|
2433 |
|
2434 |
|
2435 |
|
2436 # --- Plot LDRmin, LDRmax |
|
2437 iLDR = -1 |
|
2438 for LDRTrue in LDRrange: |
|
2439 iLDR = iLDR + 1 |
|
2440 LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) |
|
2441 LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) |
|
2442 LDRstd[iLDR] = np.std(aLDRcorr[iLDR, :]) |
|
2443 LDRmean[iLDR] = np.mean(aLDRcorr[iLDR, :]) |
|
2444 LDRmedian[iLDR] = np.median(aLDRcorr[iLDR, :]) |
|
2445 LDRskew[iLDR] = skew(aLDRcorr[iLDR, :],bias=False) |
|
2446 LDRkurt[iLDR] = kurtosis(aLDRcorr[iLDR, :],fisher=True,bias=False) |
|
2447 |
|
2448 fig2 = plt.figure() |
|
2449 LDRrangeA = np.array(LDRrange) |
|
2450 if((np.amax(LDRmax - LDRrangeA)-np.amin(LDRmin - LDRrangeA)) < 0.001): |
|
2451 plt.ylim(-0.001,0.001) |
|
2452 plt.plot(LDRrangeA, LDRmax - LDRrangeA, linewidth=2.0, color='b') |
|
2453 plt.plot(LDRrangeA, LDRmin - LDRrangeA, linewidth=2.0, color='g') |
|
2454 |
|
2455 plt.xlabel('LDRtrue', fontsize=18) |
|
2456 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14) |
|
2457 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18) |
|
2458 # plt.ylimit(-0.07, 0.07) |
|
2459 plt.show() |
|
2460 plt.close |
|
2461 |
|
2462 # --- Save LDRmin, LDRmax to file |
|
2463 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python |
|
2464 with open('output_files\\' + OutputFile, 'a') as f: |
|
2465 # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'w') as f: |
|
2466 with redirect_stdout(f): |
|
2467 print("Lidar ID: " + LID) |
|
2468 print() |
|
2469 print("minimum and maximum values of the distributions of possibly measured LDR for different LDRtrue") |
|
2470 print("LDRtrue , LDRmin, LDRmax") |
|
2471 for i in range(len(LDRrangeA)): |
|
2472 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrangeA[i], LDRmin[i], LDRmax[i])) |
|
2473 print() |
|
2474 # Print LDR statistics |
|
2475 print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") |
|
2476 iLDR = -1 |
|
2477 LDRrangeA = np.array(LDRrange) |
|
2478 for LDRTrue in LDRrange: |
|
2479 iLDR = iLDR + 1 |
|
2480 print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}"\ |
|
2481 .format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], \ |
|
2482 LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR], LDRkurt[iLDR], LDRskew[iLDR])) |
|
2483 print() |
|
2484 # Calculate and print statistics for calibration factors |
|
2485 print("minimum and maximum values of the distributions of signal ratios and calibration factors for different LDRtrue") |
|
2486 iLDR = -1 |
|
2487 LDRrangeA = np.array(LDRrange) |
|
2488 print("LDRtrue , LDRsim, (max-min)/2, relerr") |
|
2489 for LDRTrue in LDRrange: |
|
2490 iLDR = iLDR + 1 |
|
2491 LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) |
|
2492 LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) |
|
2493 # LDRsimstd = np.std(aLDRsim[iLDR, :]) |
|
2494 LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) |
|
2495 # LDRsimmedian = np.median(aLDRsim[iLDR, :]) |
|
2496 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR],LDRsimmean[iLDR],(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2,(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) |
|
2497 iLDR = -1 |
|
2498 print("LDRtrue , Etax , (max-min)/2, relerr") |
|
2499 for LDRTrue in LDRrange: |
|
2500 iLDR = iLDR + 1 |
|
2501 Etaxmin = np.amin(aEtax[iLDR, :]) |
|
2502 Etaxmax = np.amax(aEtax[iLDR, :]) |
|
2503 # Etaxstd = np.std(aEtax[iLDR, :]) |
|
2504 Etaxmean = np.mean(aEtax[iLDR, :]) |
|
2505 # Etaxmedian = np.median(aEtax[iLDR, :]) |
|
2506 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) |
|
2507 iLDR = -1 |
|
2508 print("LDRtrue , Etapx , (max-min)/2, relerr") |
|
2509 for LDRTrue in LDRrange: |
|
2510 iLDR = iLDR + 1 |
|
2511 Etapxmin = np.amin(aEtapx[iLDR, :]) |
|
2512 Etapxmax = np.amax(aEtapx[iLDR, :]) |
|
2513 # Etapxstd = np.std(aEtapx[iLDR, :]) |
|
2514 Etapxmean = np.mean(aEtapx[iLDR, :]) |
|
2515 # Etapxmedian = np.median(aEtapx[iLDR, :]) |
|
2516 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) |
|
2517 iLDR = -1 |
|
2518 print("LDRtrue , Etamx , (max-min)/2, relerr") |
|
2519 for LDRTrue in LDRrange: |
|
2520 iLDR = iLDR + 1 |
|
2521 Etamxmin = np.amin(aEtamx[iLDR, :]) |
|
2522 Etamxmax = np.amax(aEtamx[iLDR, :]) |
|
2523 # Etamxstd = np.std(aEtamx[iLDR, :]) |
|
2524 Etamxmean = np.mean(aEtamx[iLDR, :]) |
|
2525 # Etamxmedian = np.median(aEtamx[iLDR, :]) |
|
2526 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) |
|
2527 |
|
2528 # Print LDR statistics |
|
2529 print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") |
|
2530 iLDR = -1 |
|
2531 LDRrangeA = np.array(LDRrange) |
|
2532 for LDRTrue in LDRrange: |
|
2533 iLDR = iLDR + 1 |
|
2534 print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}".format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR],LDRkurt[iLDR],LDRskew[iLDR])) |
|
2535 |
|
2536 |
|
2537 with open('output_files\\' + OutputFile, 'a') as f: |
|
2538 # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'a') as f: |
|
2539 with redirect_stdout(f): |
|
2540 Contribution_aY("LDRCorr", aLDRcorr) |
|
2541 Contribution_aY("LDRsim", aLDRsim) |
|
2542 Contribution_aY("EtaX, D90", aEtax) |
|
2543 Contribution_aY("Etapx, +45°", aEtapx) |
|
2544 Contribution_aY("Etamx -45°", aEtamx) |
|
2545 |
|
2546 |
|
2547 # Plot other histograms |
|
2548 if (bPlotEtax): |
|
2549 |
|
2550 if (nQin > 0): PlotLDRsim("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2551 if (nVin > 0): PlotLDRsim("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2552 if (nRotL > 0): PlotLDRsim("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2553 if (nRetE > 0): PlotLDRsim("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2554 if (nRotE > 0): PlotLDRsim("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2555 if (nDiE > 0): PlotLDRsim("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2556 if (nRetO > 0): PlotLDRsim("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2557 if (nRotO > 0): PlotLDRsim("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2558 if (nDiO > 0): PlotLDRsim("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2559 if (nDiC > 0): PlotLDRsim("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2560 if (nRotC > 0): PlotLDRsim("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2561 if (nRetC > 0): PlotLDRsim("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2562 if (nTP > 0): PlotLDRsim("TP", aTP, TP0, dTP, iTP, nTP) |
|
2563 if (nTS > 0): PlotLDRsim("TS", aTS, TS0, dTS, iTS, nTS) |
|
2564 if (nRP > 0): PlotLDRsim("RP", aRP, RP0, dRP, iRP, nRP) |
|
2565 if (nRS > 0): PlotLDRsim("RS", aRS, RS0, dRS, iRS, nRS) |
|
2566 if (nRetT > 0): PlotLDRsim("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2567 if (nRetR > 0): PlotLDRsim("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2568 if (nERaT > 0): PlotLDRsim("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2569 if (nERaR > 0): PlotLDRsim("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2570 if (nRotaT > 0): PlotLDRsim("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2571 if (nRotaR > 0): PlotLDRsim("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2572 if (nLDRCal > 0): PlotLDRsim("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2573 if (nTCalT > 0): PlotLDRsim("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2574 if (nTCalR > 0): PlotLDRsim("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2575 if (nNCal > 0): PlotLDRsim("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2576 if (nNCal > 0): PlotLDRsim("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2577 if (nNCal > 0): PlotLDRsim("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2578 if (nNCal > 0): PlotLDRsim("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2579 if (nNI > 0): PlotLDRsim("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2580 if (nNI > 0): PlotLDRsim("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2581 plt.show() |
|
2582 plt.close |
|
2583 print("---------------------------------------...producing more plots...------------------------------------------------------------------") |
|
2584 |
|
2585 if (nQin > 0): PlotEtax("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2586 if (nVin > 0): PlotEtax("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2587 if (nRotL > 0): PlotEtax("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2588 if (nRetE > 0): PlotEtax("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2589 if (nRotE > 0): PlotEtax("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2590 if (nDiE > 0): PlotEtax("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2591 if (nRetO > 0): PlotEtax("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2592 if (nRotO > 0): PlotEtax("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2593 if (nDiO > 0): PlotEtax("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2594 if (nDiC > 0): PlotEtax("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2595 if (nRotC > 0): PlotEtax("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2596 if (nRetC > 0): PlotEtax("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2597 if (nTP > 0): PlotEtax("TP", aTP, TP0, dTP, iTP, nTP) |
|
2598 if (nTS > 0): PlotEtax("TS", aTS, TS0, dTS, iTS, nTS) |
|
2599 if (nRP > 0): PlotEtax("RP", aRP, RP0, dRP, iRP, nRP) |
|
2600 if (nRS > 0): PlotEtax("RS", aRS, RS0, dRS, iRS, nRS) |
|
2601 if (nRetT > 0): PlotEtax("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2602 if (nRetR > 0): PlotEtax("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2603 if (nERaT > 0): PlotEtax("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2604 if (nERaR > 0): PlotEtax("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2605 if (nRotaT > 0): PlotEtax("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2606 if (nRotaR > 0): PlotEtax("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2607 if (nLDRCal > 0): PlotEtax("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2608 if (nTCalT > 0): PlotEtax("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2609 if (nTCalR > 0): PlotEtax("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2610 if (nNCal > 0): PlotEtax("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2611 if (nNCal > 0): PlotEtax("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2612 if (nNCal > 0): PlotEtax("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2613 if (nNCal > 0): PlotEtax("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2614 if (nNI > 0): PlotEtax("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2615 if (nNI > 0): PlotEtax("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2616 plt.show() |
|
2617 plt.close |
|
2618 print("---------------------------------------...producing more plots...------------------------------------------------------------------") |
|
2619 |
|
2620 if (nQin > 0): PlotEtapx("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2621 if (nVin > 0): PlotEtapx("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2622 if (nRotL > 0): PlotEtapx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2623 if (nRetE > 0): PlotEtapx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2624 if (nRotE > 0): PlotEtapx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2625 if (nDiE > 0): PlotEtapx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2626 if (nRetO > 0): PlotEtapx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2627 if (nRotO > 0): PlotEtapx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2628 if (nDiO > 0): PlotEtapx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2629 if (nDiC > 0): PlotEtapx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2630 if (nRotC > 0): PlotEtapx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2631 if (nRetC > 0): PlotEtapx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2632 if (nTP > 0): PlotEtapx("TP", aTP, TP0, dTP, iTP, nTP) |
|
2633 if (nTS > 0): PlotEtapx("TS", aTS, TS0, dTS, iTS, nTS) |
|
2634 if (nRP > 0): PlotEtapx("RP", aRP, RP0, dRP, iRP, nRP) |
|
2635 if (nRS > 0): PlotEtapx("RS", aRS, RS0, dRS, iRS, nRS) |
|
2636 if (nRetT > 0): PlotEtapx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2637 if (nRetR > 0): PlotEtapx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2638 if (nERaT > 0): PlotEtapx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2639 if (nERaR > 0): PlotEtapx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2640 if (nRotaT > 0): PlotEtapx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2641 if (nRotaR > 0): PlotEtapx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2642 if (nLDRCal > 0): PlotEtapx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2643 if (nTCalT > 0): PlotEtapx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2644 if (nTCalR > 0): PlotEtapx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2645 if (nNCal > 0): PlotEtapx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2646 if (nNCal > 0): PlotEtapx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2647 if (nNCal > 0): PlotEtapx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2648 if (nNCal > 0): PlotEtapx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2649 if (nNI > 0): PlotEtapx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2650 if (nNI > 0): PlotEtapx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2651 plt.show() |
|
2652 plt.close |
|
2653 print("---------------------------------------...producing more plots...------------------------------------------------------------------") |
|
2654 |
|
2655 if (nQin > 0): PlotEtamx("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2656 if (nVin > 0): PlotEtamx("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2657 if (nRotL > 0): PlotEtamx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2658 if (nRetE > 0): PlotEtamx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2659 if (nRotE > 0): PlotEtamx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2660 if (nDiE > 0): PlotEtamx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2661 if (nRetO > 0): PlotEtamx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2662 if (nRotO > 0): PlotEtamx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2663 if (nDiO > 0): PlotEtamx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2664 if (nDiC > 0): PlotEtamx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2665 if (nRotC > 0): PlotEtamx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2666 if (nRetC > 0): PlotEtamx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2667 if (nTP > 0): PlotEtamx("TP", aTP, TP0, dTP, iTP, nTP) |
|
2668 if (nTS > 0): PlotEtamx("TS", aTS, TS0, dTS, iTS, nTS) |
|
2669 if (nRP > 0): PlotEtamx("RP", aRP, RP0, dRP, iRP, nRP) |
|
2670 if (nRS > 0): PlotEtamx("RS", aRS, RS0, dRS, iRS, nRS) |
|
2671 if (nRetT > 0): PlotEtamx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2672 if (nRetR > 0): PlotEtamx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2673 if (nERaT > 0): PlotEtamx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2674 if (nERaR > 0): PlotEtamx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2675 if (nRotaT > 0): PlotEtamx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2676 if (nRotaR > 0): PlotEtamx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2677 if (nLDRCal > 0): PlotEtamx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2678 if (nTCalT > 0): PlotEtamx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2679 if (nTCalR > 0): PlotEtamx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2680 if (nNCal > 0): PlotEtamx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2681 if (nNCal > 0): PlotEtamx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2682 if (nNCal > 0): PlotEtamx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2683 if (nNCal > 0): PlotEtamx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2684 if (nNI > 0): PlotEtamx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2685 if (nNI > 0): PlotEtamx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2686 plt.show() |
|
2687 plt.close |
|
2688 |
|
2689 # Print Etax statistics |
|
2690 Etaxmin = np.amin(aEtax[1, :]) |
|
2691 Etaxmax = np.amax(aEtax[1, :]) |
|
2692 Etaxstd = np.std(aEtax[1, :]) |
|
2693 Etaxmean = np.mean(aEtax[1, :]) |
|
2694 Etaxmedian = np.median(aEtax[1, :]) |
|
2695 print("Etax , max-mean, min-mean, median, mean ± std, eta") |
|
2696 print("{0:8.5f} ±({1:8.5f},{2:8.5f}),{3:8.5f},{4:8.5f}±{5:8.5f},{6:8.5f}".format(Etax0, Etaxmax-Etax0, Etaxmin-Etax0, Etaxmedian, Etaxmean, Etaxstd, Etax0 / K0)) |
|
2697 print() |
|
2698 |
|
2699 # Calculate and print statistics for calibration factors |
|
2700 iLDR = -1 |
|
2701 LDRrangeA = np.array(LDRrange) |
|
2702 print("LDR...., LDRsim, (max-min)/2, relerr") |
|
2703 for LDRTrue in LDRrange: |
|
2704 iLDR = iLDR + 1 |
|
2705 LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) |
|
2706 LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) |
|
2707 # LDRsimstd = np.std(aLDRsim[iLDR, :]) |
|
2708 LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) |
|
2709 # LDRsimmedian = np.median(aLDRsim[iLDR, :]) |
|
2710 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], LDRsimmean[iLDR], (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2, (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) |
|
2711 iLDR = -1 |
|
2712 print("LDR...., Etax , (max-min)/2, relerr") |
|
2713 for LDRTrue in LDRrange: |
|
2714 iLDR = iLDR + 1 |
|
2715 Etaxmin = np.amin(aEtax[iLDR, :]) |
|
2716 Etaxmax = np.amax(aEtax[iLDR, :]) |
|
2717 # Etaxstd = np.std(aEtax[iLDR, :]) |
|
2718 Etaxmean = np.mean(aEtax[iLDR, :]) |
|
2719 # Etaxmedian = np.median(aEtax[iLDR, :]) |
|
2720 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) |
|
2721 iLDR = -1 |
|
2722 print("LDR...., Etapx , (max-min)/2, relerr") |
|
2723 for LDRTrue in LDRrange: |
|
2724 iLDR = iLDR + 1 |
|
2725 Etapxmin = np.amin(aEtapx[iLDR, :]) |
|
2726 Etapxmax = np.amax(aEtapx[iLDR, :]) |
|
2727 # Etapxstd = np.std(aEtapx[iLDR, :]) |
|
2728 Etapxmean = np.mean(aEtapx[iLDR, :]) |
|
2729 # Etapxmedian = np.median(aEtapx[iLDR, :]) |
|
2730 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) |
|
2731 iLDR = -1 |
|
2732 print("LDR...., Etamx , (max-min)/2, relerr") |
|
2733 for LDRTrue in LDRrange: |
|
2734 iLDR = iLDR + 1 |
|
2735 Etamxmin = np.amin(aEtamx[iLDR, :]) |
|
2736 Etamxmax = np.amax(aEtamx[iLDR, :]) |
|
2737 # Etamxstd = np.std(aEtamx[iLDR, :]) |
|
2738 Etamxmean = np.mean(aEtamx[iLDR, :]) |
|
2739 # Etamxmedian = np.median(aEtamx[iLDR, :]) |
|
2740 print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) |
|
2741 |
|
2742 f.close() |
|
2743 |
|
2744 |
|
2745 ''' |
|
2746 # --- Plot F11 histograms |
|
2747 print() |
|
2748 print(" ############################################################################## ") |
|
2749 print(Text1) |
|
2750 print() |
|
2751 |
|
2752 iLDR = 5 |
|
2753 for LDRTrue in LDRrange: |
|
2754 iLDR = iLDR - 1 |
|
2755 #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0 |
|
2756 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0 |
|
2757 # Plot F11 |
|
2758 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX): |
|
2759 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2760 iLDR = -1 |
|
2761 for LDRTrue in LDRrange: |
|
2762 iLDR = iLDR + 1 |
|
2763 |
|
2764 #F11min[iLDR] = np.min(aF11corr[iLDR,:]) |
|
2765 #F11max[iLDR] = np.max(aF11corr[iLDR,:]) |
|
2766 #Rmin = F11min[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2767 #Rmax = F11max[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2768 |
|
2769 #Rmin = 0.8 |
|
2770 #Rmax = 1.2 |
|
2771 |
|
2772 #plt.subplot(5,2,iLDR+1) |
|
2773 plt.subplot(1,5,iLDR+1) |
|
2774 (n, bins, patches) = plt.hist(aF11corr[iLDR,:], |
|
2775 bins=100, log=False, |
|
2776 alpha=0.5, density=False, color = '0.5', histtype='stepfilled') |
|
2777 |
|
2778 for iaX in range(-naX,naX+1): |
|
2779 plt.hist(aF11corr[iLDR,aX == iaX], |
|
2780 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) |
|
2781 |
|
2782 if (iLDR == 2): plt.legend() |
|
2783 |
|
2784 plt.tick_params(axis='both', labelsize=9) |
|
2785 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2786 |
|
2787 #plt.title(LID + ' ' + aVar, fontsize=18) |
|
2788 #plt.ylabel('frequency', fontsize=10) |
|
2789 #plt.xlabel('LDRCorr', fontsize=10) |
|
2790 #fig.tight_layout() |
|
2791 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
2792 #plt.show() |
|
2793 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
2794 #plt.close |
|
2795 return |
|
2796 |
|
2797 if (nQin > 0): PlotSubHistF11("Qin", aQin, Qin0, dQin, iQin, nQin) |
|
2798 if (nVin > 0): PlotSubHistF11("Vin", aVin, Vin0, dVin, iVin, nVin) |
|
2799 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2800 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2801 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2802 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2803 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2804 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2805 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2806 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2807 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2808 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2809 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP) |
|
2810 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS) |
|
2811 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP) |
|
2812 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS) |
|
2813 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2814 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2815 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2816 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2817 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2818 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2819 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2820 if (nTCalT > 0): PlotSubHistF11("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2821 if (nTCalR > 0): PlotSubHistF11("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2822 if (nNCal > 0): PlotSubHistF11("CalNoise", aNCal, 0, 1/nNCal, iNCal, nNCal) |
|
2823 if (nNI > 0): PlotSubHistF11("SigNoise", aNI, 0, 1/nNI, iNI, nNI) |
|
2824 |
|
2825 |
|
2826 plt.show() |
|
2827 plt.close |
|
2828 |
|
2829 ''' |
|
2830 ''' |
|
2831 # only histogram |
|
2832 #print("******************* " + aVar + " *******************") |
|
2833 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10)) |
|
2834 iLDR = -1 |
|
2835 for LDRTrue in LDRrange: |
|
2836 iLDR = iLDR + 1 |
|
2837 LDRmin[iLDR] = np.min(aLDRcorr[iLDR,:]) |
|
2838 LDRmax[iLDR] = np.max(aLDRcorr[iLDR,:]) |
|
2839 Rmin = np.min(aLDRcorr[iLDR,:]) * 0.999 |
|
2840 Rmax = np.max(aLDRcorr[iLDR,:]) * 1.001 |
|
2841 plt.subplot(5,2,iLDR+1) |
|
2842 (n, bins, patches) = plt.hist(aLDRcorr[iLDR,:], |
|
2843 range=[Rmin, Rmax], |
|
2844 bins=200, log=False, alpha=0.2, density=False, color = '0.5', histtype='stepfilled') |
|
2845 plt.tick_params(axis='both', labelsize=9) |
|
2846 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2847 plt.show() |
|
2848 plt.close |
|
2849 # --- End of Plot F11 histograms |
|
2850 ''' |
|
2851 |
|
2852 |
|
2853 ''' |
|
2854 # --- Plot K over LDRCal |
|
2855 fig3 = plt.figure() |
|
2856 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aGHK[4,:], linewidth=2.0, color='b') |
|
2857 |
|
2858 plt.xlabel('LDRCal', fontsize=18) |
|
2859 plt.ylabel('K', fontsize=14) |
|
2860 plt.title(LID, fontsize=18) |
|
2861 plt.show() |
|
2862 plt.close |
|
2863 ''' |
|
2864 |
|
2865 # Additional plot routines ======> |
|
2866 ''' |
|
2867 #****************************************************************************** |
|
2868 # 1. Plot LDRCorrected - LDR(measured Icross/Iparallel) |
|
2869 LDRa = np.arange(1.,100.)*0.005 |
|
2870 LDRCorra = np.arange(1.,100.) |
|
2871 if Y == - 1.: LDRa = 1./LDRa |
|
2872 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT)) |
|
2873 if Y == - 1.: LDRa = 1./LDRa |
|
2874 # |
|
2875 #fig = plt.figure() |
|
2876 plt.plot(LDRa,LDRCorra-LDRa) |
|
2877 plt.plot([0.,0.5],[0.,0.5]) |
|
2878 plt.suptitle('LDRCorrected - LDR(measured Icross/Iparallel)', fontsize=16) |
|
2879 plt.xlabel('LDR', fontsize=18) |
|
2880 plt.ylabel('LDRCorr - LDR', fontsize=16) |
|
2881 #plt.savefig('test.png') |
|
2882 # |
|
2883 ''' |
|
2884 ''' |
|
2885 #****************************************************************************** |
|
2886 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue |
|
2887 LDRa = np.arange(1.,100.)*0.005 |
|
2888 LDRsima = np.arange(1.,100.) |
|
2889 |
|
2890 atruea = (1.-LDRa)/(1+LDRa) |
|
2891 Ita = TiT*TiO*IinL*(GT+atruea*HT) |
|
2892 Ira = TiR*TiO*IinL*(GR+atruea*HR) |
|
2893 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file |
|
2894 if Y == -1.: LDRsima = 1./LDRsima |
|
2895 # |
|
2896 #fig = plt.figure() |
|
2897 plt.plot(LDRa,LDRsima) |
|
2898 plt.plot([0.,0.5],[0.,0.5]) |
|
2899 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10) |
|
2900 plt.xlabel('LDRtrue', fontsize=18) |
|
2901 plt.ylabel('LDRsim', fontsize=16) |
|
2902 #plt.savefig('test.png') |
|
2903 # |
|
2904 ''' |
|