system_settings/optic_input_0.9.8h-PollyXT_Cyprus_532_210429_vf_4.py

changeset 51
10fb0fc3d79f
equal deleted inserted replaced
49:7c14c9a085ba 51:10fb0fc3d79f
1 # This Python script will be executed from within the main lidar_correction_ghk.py
2 # Probably it will be better in the future to let the main script rather read a conguration file,
3 # which might improve the portability of the code within an executable.
4 # Due to problems I had with some two letter variables, most variables are now with at least
5 # three letters mixed small and capital.
6 # To be used with lidar_correction_ghk.py ver. 0.9.5 and larger
7
8 # Do you want to calculate the errors? If not, just the GHK-parameters are determined.
9 Error_Calc = True
10
11 # Header to identify the lidar system
12 EID = "li" # Earlinet station ID
13 LID = "PollyXT Cyprus 210429 532 approx 4" # Additional lidar ID (short descriptive text)
14 print(" Lidar system :", EID, ", ", LID)
15
16 # +++ IL Laser and +-Uncertainty
17 Qin, dQin, nQin = 0.9672, 0.01, 1 # second Stokes vector parameter; default 1 => linear polarization 0.999 => LDR = 0.0005
18 Vin, dVin, nVin = 0.0, 0.0, 0 # fourth Stokes vector parameter; default 0 => corresponds to LDR 0.0005 with DOP 1
19 RotL, dRotL, nRotL = 91.65, 0.24, 1 #alpha; rotation of laser polarization in degrees; alle wellenlängen im PollyXT Lacros sind vertical zum opt. Tisch polarisiert.
20
21 # +++ ME Emitter optics and +-Uncertainty; default = no emitter optics
22 DiE, dDiE, nDiE = 0.0, 0.02, 0 # Diattenuation
23 TiE = 1.0 # Unpolarized transmittance
24 RetE, dRetE, nRetE = 0., 180., 0 # Retardance in degrees
25 RotE, dRotE, nRotE = 0., 1.0, 0 # beta: Rotation of the optical element in degrees
26
27 # +++ MO Receiver optics including telescope
28 DiO, dDiO, nDiO = 0.0, 0.02, 0 # Diattenuation
29 TiO = 1.0 # Unpolarized transmittance
30 RetO, dRetO, nRetO = 0., 180., 0 # Retardance in degrees
31 RotO, dRotO, nRotO = 0., 0.5, 0 # gamma: Rotation of the optical element in degrees
32
33 # +++++ PBS MT Transmitting path defined with TS, TP, PolFilter extinction ratio ERaT, and +-Uncertainty
34 # --- Polarizing beam splitter transmitting path
35 TP, dTP, nTP = 0.5, 0.01, 1 # transmittance of the PBS for parallel polarized light
36 TS, dTS, nTS = 0.5, 0.01, 1 # transmittance of the PBS for cross polarized light
37 RetT, dRetT, nRetT = 0.0, 180., 0 # Retardance in degrees
38 # --- Pol.Filter behind transmitted path of PBS
39 ERaT, dERaT, nERaT = 1.0 , 0 , 0 # Extinction ratio 0.00075 +/- 0.00025
40 RotaT, dRotaT, nRotaT = 0., 1., 1 # Rotation of the Pol.-filter in degrees; usually close to 0° because TP >> TS, but for PollyXTs it can also be close to 90°
41 # --
42 TiT = 0.5 * (TP + TS)
43 DiT = (TP-TS)/(TP+TS)
44 DaT = (1-ERaT)/(1+ERaT)
45 TaT = 0.5*(1+ERaT)
46
47 # +++++ PBS MR Reflecting path defined with RS, RP, PolFilter extinction ratio ERaR and +-Uncertainty
48 # ---- for PBS without absorption the change of RS and RP must depend on the change of TP and TS. Hence the values and uncertainties are not independent.
49 RS_RP_depend_on_TS_TP = False
50 # --- Polarizing beam splitter reflecting path
51 #if(RS_RP_depend_on_TS_TP):
52 # RP, dRP, nRP = 1-TP, 0.00, 0 # do not change this
53 # RS, dRS, nRS = 1-TS, 0.00, 0 # do not change this
54 #else:
55 RP, dRP, nRP = 0.002, 0.001, 1 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for parallel polarized light
56 RS, dRS, nRS = 0.998, 0.001, 1 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for cross polarized light
57 RetR, dRetR, nRetR = 0.0, 180., 0 # Retardance in degrees
58 # --- Pol.Filter behind reflected path of PBS
59 ERaR, dERaR, nERaR = 1.0, 0.0, 0 # Extinction ratio
60 RotaR, dRotaR, nRotaR = 0., 1., 0 # Rotation of the Pol.-filter in degrees; usually close to 90° because RS >> RP, but for PollyXTs it can also be close to 0°
61 # --
62 TiR = 0.5* (RP + RS)
63 DiR = (RP-RS)/(RP+RS)
64 DaR = (1-ERaR)/(1+ERaR)
65 TaR = 0.5*(1+ERaR)
66
67 # NEW --- Additional ND filter transmission (attenuation) during the calibration
68 TCalT, dTCalT, nTCalT = 1, 0.01, 0 # transmitting path, default 1, 0, 0
69 TCalR, dTCalR, nTCalR = 1, 0.0001, 0 # reflecting path, default 1, 0, 0
70
71 # +++ Orientation of the PBS with respect to the reference plane (see Improvements_of_lidar_correction_ghk_ver.0.9.8_190124.pdf)
72 # Y = +1: polarisation in reference plane is finally transmitted,
73 # Y = -1: polarisation in reference plane is finally reflected.
74 Y = -1.
75
76 # +++ Calibrator Location
77 # --- Calibrator Type used; defined by matrix values below
78 TypeC = 3 #Type of calibrator: 1 = mechanical rotator; 2 = hwp rotator (fixed retardation); 3 = linear polarizer; 4 = qwp; 5 = circular polarizer; 6 = real HWP calibration +-22.5°
79 # --- Calibrator Location
80 LocC = 3 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
81 # --- MC Calibrator parameters
82 if TypeC == 1: #mechanical rotator
83 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation
84 TiC = 1.
85 RetC, dRetC, nRetC = 0., 0., 0 # Retardance in degrees
86 RotC, dRotC, nRotC = 0., 1.0, 1 #constant calibrator rotation offset epsilon
87 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
88 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 1 calibrator
89 elif TypeC == 2: # HWP rotator without retardance!
90 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0
91 TiC = 1.
92 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees
93 #NOTE: use here twice the HWP-rotation-angle
94 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
95 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 2 calibrator
96 elif TypeC == 3: # linear polarizer calibrator. Diattenuation DiC = (1-ERC)/(1+ERC); ERC = extinction ratio of calibrator
97 DiC, dDiC, nDiC = 0.99928, 0.00021, 1 # Diattenuation; ideal 1.0
98 TiC = 0.4 # ideal 0.5
99 RetC, dRetC, nRetC = 0., 0., 0 # Retardance in degrees
100 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator rotation offset epsilon
101 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
102 elif TypeC == 4: # QWP calibrator
103 DiC, dDiC, nDiC = 0.0, 0., 0 # Diattenuation; ideal 0.0
104 TiC = 1.0 # ideal 0.5
105 RetC, dRetC, nRetC = 90., 0., 0 # Retardance in degrees
106 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
107 RotationErrorEpsilonForNormalMeasurements = False # is False for TypeC == 4 calibrator
108 elif TypeC == 6: # real half-wave plate rotator calibration at +-22.5° => rotated_diattenuator_X22x5deg.odt
109 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0
110 TiC = 1.
111 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees
112 #Note: use real HWP angles here
113 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
114 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 6 calibrator
115 else:
116 print ('calibrator not implemented yet')
117 sys.exit()
118
119 # --- LDRCal uncertainty: atmospheric linear depolarization ratio in the range used for the polarisation calibration during the calibration measurements
120 LDRCal,dLDRCal,nLDRCal= 0.11, 0.1, 1 # spans the atmopsheric variability
121 # --- example: LDRCal uncertainty with almost clean air
122 # LDRCal,dLDRCal,nLDRCal= 0.009, 0.005, 1 # spans the interference filter influence between Cabannes and Rayleigh scattering
123
124 # ====================================================
125 # NOTE: there is no need to change anything below.
126 # ====================================================
127 # !!! don't change anything in this section !!!
128 bPlotEtax = False # plot error histogramms for Etax
129 # NEW *** Only for signal noise errors ***
130 nNCal = 0 # error nNCal, calibration signals: one-sigma (fixed) in nNCal steps to left and right
131 nNI = 0 # error nNI, 0° signals: one-sigma (fixed) in nNI steps to left and right; NI signals are calculated from NCalT and NCalR in main programm, but noise is assumed to be independent.
132
133 # --- number of photon counts in the signal summed up in the calibration range during the calibration measurements
134 NCalT = 40000 # default 1e6, assumed the same in +45° and -45° signals; counts with ND-filter TCalT
135 NCalR = 40000 # default 1e6, assumed the same in +45° and -45° signals; counts with ND-filter TCalR
136 NILfac = 1 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2
137 # LDRmeas below will be used to calculate IR and IT of 0° signals.
138 # calculate signal counts only from parallel 0° signal assuming the same electronic amplification in both channels; overwrites above values
139 CalcFrom0deg = True
140 NI = 100000000 #number of photon counts in the parallel 0°-signal 40000
141
142 if(CalcFrom0deg):
143 # either eFactT or eFacR is = 1 => rel. amplification
144 eFacT = 1 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1
145 eFacR = 1 # rel. amplification of reflected channel, approximate values are sufficient; def. = 1
146 NILfac = 1 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2
147
148 NCalT = NI / NILfac * TCalT * eFacT # photon counts in transmitted signal during calibration
149 NCalR = NI / NILfac * TCalR * eFacR # photon counts in reflected signal during calibration
150 # LDRmeas below will be used to calculate IR and IT of 0° signals.
151 # NEW *** End of signal noise error parameters ***
152
153 # --- LDRtrue for simulation of measurement => LDRsim
154 LDRtrue = 0.004
155 LDRtrue2 = 0.004
156
157 # --- measured LDRm will be corrected with calculated parameters GHK
158 LDRmeas = 0.3
159
160 # --- this is just for correct transfer of the variables to the main file
161 Qin0, dQin, nQin = Qin, dQin, nQin
162 Vin0, dVin, nVin = Vin, dVin, nVin
163 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
164 # Emitter
165 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
166 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
167 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
168 # Receiver
169 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
170 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
171 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
172 # Calibrator
173 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
174 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
175 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
176 # PBS
177 TP0, dTP, nTP = TP, dTP, nTP
178 TS0, dTS, nTS = TS, dTS, nTS
179 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
180
181 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
182 RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT
183
184 RP0, dRP, nRP = RP, dRP, nRP
185 RS0, dRS, nRS = RS, dRS, nRS
186 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
187
188 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
189 RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR
190
191 LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal

mercurial