|
1 # -*- coding: utf-8 -*- |
|
2 """ |
|
3 Copyright 2016 Volker Freudenthaler |
|
4 |
|
5 Licensed under the EUPL, Version 1.1 only (the "Licence"). |
|
6 |
|
7 You may not use this work except in compliance with the Licence. |
|
8 A copy of the Licence is distributed with the code. Alternatively, you may obtain |
|
9 a copy of the Licence at: |
|
10 |
|
11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl |
|
12 |
|
13 Unless required by applicable law or agreed to in writing, software distributed |
|
14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS |
|
15 OF ANY KIND, either express or implied. See the Licence for the specific language governing |
|
16 permissions and limitations under the Licence. |
|
17 |
|
18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf |
|
19 With equations code from Appendix C |
|
20 Python 3.4.2 |
|
21 """ |
|
22 #!/usr/bin/env python3 |
|
23 from __future__ import print_function |
|
24 #import math |
|
25 import numpy as np |
|
26 import sys |
|
27 import os |
|
28 #import seaborn as sns |
|
29 import matplotlib.pyplot as plt |
|
30 from time import clock |
|
31 |
|
32 #from matplotlib.backends.backend_pdf import PdfPages |
|
33 #pdffile = '{}.pdf'.format('path') |
|
34 #pp = PdfPages(pdffile) |
|
35 ## pp.savefig can be called multiple times to save to multiple pages |
|
36 #pp.savefig() |
|
37 #pp.close() |
|
38 |
|
39 from contextlib import contextmanager |
|
40 @contextmanager |
|
41 def redirect_stdout(new_target): |
|
42 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout |
|
43 try: |
|
44 yield new_target # run some code with the replaced stdout |
|
45 finally: |
|
46 sys.stdout.flush() |
|
47 sys.stdout = old_target # restore to the previous value |
|
48 ''' |
|
49 real_raw_input = vars(__builtins__).get('raw_input',input) |
|
50 ''' |
|
51 try: |
|
52 import __builtin__ |
|
53 input = getattr(__builtin__, 'raw_input') |
|
54 except (ImportError, AttributeError): |
|
55 pass |
|
56 |
|
57 from distutils.util import strtobool |
|
58 def user_yes_no_query(question): |
|
59 sys.stdout.write('%s [y/n]\n' % question) |
|
60 while True: |
|
61 try: |
|
62 return strtobool(input().lower()) |
|
63 except ValueError: |
|
64 sys.stdout.write('Please respond with \'y\' or \'n\'.\n') |
|
65 |
|
66 #if user_yes_no_query('want to exit?') == 1: sys.exit() |
|
67 |
|
68 ''' |
|
69 ## {{{ http://code.activestate.com/recipes/577058/ (r2) |
|
70 def query_yes_no(question, default="yes"): |
|
71 valid = {"yes":"yes", "y":"yes", "ye":"yes", |
|
72 "no":"no", "n":"no"} |
|
73 if default == None: |
|
74 prompt = " [y/n] " |
|
75 elif default == "yes": |
|
76 prompt = " [Y/n] " |
|
77 elif default == "no": |
|
78 prompt = " [y/N] " |
|
79 else: |
|
80 raise ValueError("invalid default answer: '%s'" % default) |
|
81 |
|
82 while 1: |
|
83 sys.stdout.write(question + prompt) |
|
84 choice = input().lower() |
|
85 if default is not None and choice == '': |
|
86 return default |
|
87 elif choice in valid.keys(): |
|
88 return valid[choice] |
|
89 else: |
|
90 sys.stdout.write("Please respond with 'yes' or 'no' "\ |
|
91 "(or 'y' or 'n').\n") |
|
92 ## end of http://code.activestate.com/recipes/577058/ }}} |
|
93 ''' |
|
94 abspath = os.path.abspath(__file__) |
|
95 dname = os.path.dirname(abspath) |
|
96 fname = os.path.basename(abspath) |
|
97 os.chdir(dname) |
|
98 |
|
99 #PrintToOutputFile = True |
|
100 |
|
101 sqr05 = 0.5**0.5 |
|
102 |
|
103 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below |
|
104 LID = "internal" |
|
105 EID = "internal" |
|
106 # --- IL Laser IL and +-Uncertainty |
|
107 bL = 1. #degree of linear polarization; default 1 |
|
108 RotL, dRotL, nRotL = 0.0, 0.0, 1 #alpha; rotation of laser polarization in degrees; default 0 |
|
109 # --- ME Emitter and +-Uncertainty |
|
110 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation |
|
111 TiE = 1. # Unpolarized transmittance |
|
112 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees |
|
113 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees |
|
114 # --- MO Receiver Optics including telescope |
|
115 DiO, dDiO, nDiO = -0.055, 0.003, 1 |
|
116 TiO = 0.9 |
|
117 RetO, dRetO, nRetO = 0., 180.0, 2 |
|
118 RotO, dRotO, nRotO = 0., 0.1, 1 #gamma |
|
119 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty |
|
120 TP, dTP, nTP = 0.98, 0.02, 1 |
|
121 TS, dTS, nTS = 0.001, 0.001, 1 |
|
122 TiT = 0.5 * (TP + TS) |
|
123 DiT = (TP-TS)/(TP+TS) |
|
124 # PolFilter |
|
125 RetT, dRetT, nRetT = 0., 180., 0 |
|
126 ERaT, dERaT, nERaT = 0.001, 0.001, 1 |
|
127 RotaT, dRotaT, nRotaT = 0., 3., 1 |
|
128 DaT = (1-ERaT)/(1+ERaT) |
|
129 TaT = 0.5*(1+ERaT) |
|
130 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty |
|
131 RS, dRS, nRS = 1 - TS, 0., 0 |
|
132 RP, dRP, nRP = 1 - TP, 0., 0 |
|
133 TiR = 0.5 * (RP + RS) |
|
134 DiR = (RP-RS)/(RP+RS) |
|
135 # PolFilter |
|
136 RetR, dRetR, nRetR = 0., 180., 0 |
|
137 ERaR, dERaR, nERaR = 0.001, 0.001, 1 |
|
138 RotaR,dRotaR,nRotaR = 90., 3., 1 |
|
139 DaR = (1-ERaR)/(1+ERaR) |
|
140 TaR = 0.5*(1+ERaR) |
|
141 |
|
142 # Parellel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1 |
|
143 Y = -1. |
|
144 |
|
145 # Calibrator = type defined by matrix values |
|
146 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4 |
|
147 |
|
148 TypeC = 3 # linear polarizer calibrator |
|
149 # example with extinction ratio 0.001 |
|
150 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0 |
|
151 TiC = 0.5 # ideal 0.5 |
|
152 RetC, dRetC, nRetC = 0., 0., 0 |
|
153 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator offset epsilon |
|
154 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator |
|
155 |
|
156 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements |
|
157 RotationErrorEpsilonForNormalMeasurements = True |
|
158 |
|
159 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) |
|
160 LDRCal0,dLDRCal,nLDRCal= 0.25, 0.04, 1 |
|
161 LDRCal = LDRCal0 |
|
162 # measured LDRm will be corrected with calculated parameters |
|
163 LDRmeas = 0.015 |
|
164 # LDRtrue for simulation of measurement => LDRsim |
|
165 LDRtrue = 0.5 |
|
166 LDRtrue2 = 0.004 |
|
167 |
|
168 # Initialize other values to 0 |
|
169 ER, nER, dER = 0.001, 0, 0.001 |
|
170 K = 0. |
|
171 Km = 0. |
|
172 Kp = 0. |
|
173 LDRcorr = 0. |
|
174 Eta = 0. |
|
175 Ir = 0. |
|
176 It = 0. |
|
177 h = 1. |
|
178 |
|
179 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS'] |
|
180 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer', 'real HWP +-22.5°'] |
|
181 dY = ['reflected channel', '', 'transmitted channel'] |
|
182 |
|
183 # end of initial definition of variables |
|
184 # ******************************************************************************************************************************* |
|
185 |
|
186 # --- Read actual lidar system parameters from ./optic_input.py (must be in the same directory) |
|
187 |
|
188 #InputFile = 'optic_input_ver6e_PollyXTSea.py' |
|
189 #InputFile = 'optic_input_ver6e_PollyXTSea_JA.py' |
|
190 #InputFile = 'optic_input_ver6e_PollyXT_RALPH.py' |
|
191 #InputFile = 'optic_input_ver8c_PollyXT_RALPH.py' |
|
192 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_2.py' |
|
193 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_3.py' |
|
194 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_4.py' |
|
195 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_5.py' |
|
196 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_6.py' |
|
197 InputFile = 'optic_input_ver8c_PollyXT_RALPH_7.py' |
|
198 #InputFile = 'optic_input_ver6e_Bertha_b_355.py' |
|
199 #InputFile = 'optic_input_ver6e_Bertha_b_532.py' |
|
200 #InputFile = 'optic_input_ver6e_Bertha_b_1064.py' |
|
201 |
|
202 ''' |
|
203 print("From ", dname) |
|
204 print("Running ", fname) |
|
205 print("Reading input file ", InputFile, " for") |
|
206 ''' |
|
207 # this works with Python 2 - and 3? |
|
208 exec(open('./'+InputFile).read(), globals()) |
|
209 # end of read actual system parameters |
|
210 |
|
211 # --- Manual Parameter Change --- |
|
212 # (use for quick parameter changes without changing the input file ) |
|
213 #DiO = 0. |
|
214 #LDRtrue = 0.45 |
|
215 #LDRtrue2 = 0.004 |
|
216 #Y = -1 |
|
217 #LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS |
|
218 ##TypeC = 6 Don't change the TypeC here |
|
219 #RotationErrorEpsilonForNormalMeasurements = True |
|
220 #LDRCal = 0.25 |
|
221 #bL = 0.8 |
|
222 ## --- Errors |
|
223 RotL0, dRotL, nRotL = RotL, dRotL, nRotL |
|
224 |
|
225 DiE0, dDiE, nDiE = DiE, dDiE, nDiE |
|
226 RetE0, dRetE, nRetE = RetE, dRetE, nRetE |
|
227 RotE0, dRotE, nRotE = RotE, dRotE, nRotE |
|
228 |
|
229 DiO0, dDiO, nDiO = DiO, dDiO, nDiO |
|
230 RetO0, dRetO, nRetO = RetO, dRetO, nRetO |
|
231 RotO0, dRotO, nRotO = RotO, dRotO, nRotO |
|
232 |
|
233 DiC0, dDiC, nDiC = DiC, dDiC, nDiC |
|
234 RetC0, dRetC, nRetC = RetC, dRetC, nRetC |
|
235 RotC0, dRotC, nRotC = RotC, dRotC, nRotC |
|
236 |
|
237 TP0, dTP, nTP = TP, dTP, nTP |
|
238 TS0, dTS, nTS = TS, dTS, nTS |
|
239 RetT0, dRetT, nRetT = RetT, dRetT, nRetT |
|
240 |
|
241 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT |
|
242 RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT |
|
243 |
|
244 RP0, dRP, nRP = RP, dRP, nRP |
|
245 RS0, dRS, nRS = RS, dRS, nRS |
|
246 RetR0, dRetR, nRetR = RetR, dRetR, nRetR |
|
247 |
|
248 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR |
|
249 RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR |
|
250 |
|
251 LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal |
|
252 #LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,0 |
|
253 # ---------- End of manual parameter change |
|
254 |
|
255 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0 |
|
256 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0 , ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0 |
|
257 LDRCal = LDRCal0 |
|
258 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0,0,0,0,0,0 |
|
259 |
|
260 TiT = 0.5 * (TP + TS) |
|
261 DiT = (TP-TS)/(TP+TS) |
|
262 ZiT = (1. - DiT**2)**0.5 |
|
263 TiR = 0.5 * (RP + RS) |
|
264 DiR = (RP-RS)/(RP+RS) |
|
265 ZiR = (1. - DiR**2)**0.5 |
|
266 |
|
267 # -------------------------------------------------------- |
|
268 def Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal): |
|
269 # ---- Do the calculations of bra-ket vectors |
|
270 h = -1. if TypeC == 2 else 1 |
|
271 # from input file: assumed LDRCal for calibration measurements |
|
272 aCal = (1.-LDRCal)/(1+LDRCal) |
|
273 # from input file: measured LDRm and true LDRtrue, LDRtrue2 => |
|
274 #ameas = (1.-LDRmeas)/(1+LDRmeas) |
|
275 atrue = (1.-LDRtrue)/(1+LDRtrue) |
|
276 #atrue2 = (1.-LDRtrue2)/(1+LDRtrue2) |
|
277 |
|
278 # angles of emitter and laser and calibrator and receiver optics |
|
279 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
280 S2a = np.sin(2*np.deg2rad(RotL)) |
|
281 C2a = np.cos(2*np.deg2rad(RotL)) |
|
282 S2b = np.sin(2*np.deg2rad(RotE)) |
|
283 C2b = np.cos(2*np.deg2rad(RotE)) |
|
284 S2ab = np.sin(np.deg2rad(2*RotL-2*RotE)) |
|
285 C2ab = np.cos(np.deg2rad(2*RotL-2*RotE)) |
|
286 S2g = np.sin(np.deg2rad(2*RotO)) |
|
287 C2g = np.cos(np.deg2rad(2*RotO)) |
|
288 |
|
289 # Laser with Degree of linear polarization DOLP = bL |
|
290 IinL = 1. |
|
291 QinL = bL |
|
292 UinL = 0. |
|
293 VinL = (1. - bL**2)**0.5 |
|
294 |
|
295 # Stokes Input Vector rotation Eq. E.4 |
|
296 A = C2a*QinL - S2a*UinL |
|
297 B = S2a*QinL + C2a*UinL |
|
298 # Stokes Input Vector rotation Eq. E.9 |
|
299 C = C2ab*QinL - S2ab*UinL |
|
300 D = S2ab*QinL + C2ab*UinL |
|
301 |
|
302 # emitter optics |
|
303 CosE = np.cos(np.deg2rad(RetE)) |
|
304 SinE = np.sin(np.deg2rad(RetE)) |
|
305 ZiE = (1. - DiE**2)**0.5 |
|
306 WiE = (1. - ZiE*CosE) |
|
307 |
|
308 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
309 # b = beta |
|
310 IinE = (IinL + DiE*C) |
|
311 QinE = (C2b*DiE*IinL + A + S2b*(WiE*D - ZiE*SinE*VinL)) |
|
312 UinE = (S2b*DiE*IinL + B - C2b*(WiE*D - ZiE*SinE*VinL)) |
|
313 VinE = (-ZiE*SinE*D + ZiE*CosE*VinL) |
|
314 |
|
315 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
316 IinF = IinE |
|
317 QinF = aCal*QinE |
|
318 UinF = -aCal*UinE |
|
319 VinF = (1.-2.*aCal)*VinE |
|
320 |
|
321 # receiver optics |
|
322 CosO = np.cos(np.deg2rad(RetO)) |
|
323 SinO = np.sin(np.deg2rad(RetO)) |
|
324 ZiO = (1. - DiO**2)**0.5 |
|
325 WiO = (1. - ZiO*CosO) |
|
326 |
|
327 # calibrator |
|
328 CosC = np.cos(np.deg2rad(RetC)) |
|
329 SinC = np.sin(np.deg2rad(RetC)) |
|
330 ZiC = (1. - DiC**2)**0.5 |
|
331 WiC = (1. - ZiC*CosC) |
|
332 |
|
333 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
334 A = C2g*QinE - S2g*UinE |
|
335 B = S2g*QinE + C2g*UinE |
|
336 |
|
337 IinP = (IinE + DiO*aCal*A) |
|
338 QinP = (C2g*DiO*IinE + aCal*QinE - S2g*(WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)) |
|
339 UinP = (S2g*DiO*IinE - aCal*UinE + C2g*(WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)) |
|
340 VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
341 |
|
342 #------------------------- |
|
343 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
344 #F11sim = TiO*(IinE + DiO*atrue*A)/IinE |
|
345 #------------------------- |
|
346 |
|
347 # For PollyXT |
|
348 # analyser |
|
349 RS = 1 - TS |
|
350 RP = 1 - TP |
|
351 |
|
352 TiT = 0.5 * (TP + TS) |
|
353 DiT = (TP-TS)/(TP+TS) |
|
354 ZiT = (1. - DiT**2)**0.5 |
|
355 TiR = 0.5 * (RP + RS) |
|
356 DiR = (RP-RS)/(RP+RS) |
|
357 ZiR = (1. - DiR**2)**0.5 |
|
358 CosT = np.cos(np.deg2rad(RetT)) |
|
359 SinT = np.sin(np.deg2rad(RetT)) |
|
360 CosR = np.cos(np.deg2rad(RetR)) |
|
361 SinR = np.sin(np.deg2rad(RetR)) |
|
362 |
|
363 DaT = (1-ERaT)/(1+ERaT) |
|
364 DaR = (1-ERaR)/(1+ERaR) |
|
365 TaT = 0.5*(1+ERaT) |
|
366 TaR = 0.5*(1+ERaR) |
|
367 |
|
368 S2aT = np.sin(np.deg2rad(h*2*RotaT)) |
|
369 C2aT = np.cos(np.deg2rad(2*RotaT)) |
|
370 S2aR = np.sin(np.deg2rad(h*2*RotaR)) |
|
371 C2aR = np.cos(np.deg2rad(2*RotaR)) |
|
372 |
|
373 # Aanalyzer As before the PBS Eq. D.5 |
|
374 ATP1 = (1+C2aT*DaT*DiT) |
|
375 ATP2 = Y*(DiT+C2aT*DaT) |
|
376 ATP3 = Y*S2aT*DaT*ZiT*CosT |
|
377 ATP4 = S2aT*DaT*ZiT*SinT |
|
378 ATP = np.array([ATP1,ATP2,ATP3,ATP4]) |
|
379 |
|
380 ARP1 = (1+C2aR*DaR*DiR) |
|
381 ARP2 = Y*(DiR+C2aR*DaR) |
|
382 ARP3 = Y*S2aR*DaR*ZiR*CosR |
|
383 ARP4 = S2aR*DaR*ZiR*SinR |
|
384 ARP = np.array([ARP1,ARP2,ARP3,ARP4]) |
|
385 |
|
386 DTa = ATP2*Y/ATP1 |
|
387 DRa = ARP2*Y/ARP1 |
|
388 |
|
389 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
390 if LocC == 4: # Calibrator before the PBS |
|
391 #print("Calibrator location not implemented yet") |
|
392 |
|
393 #S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
394 #C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
395 S2e = np.sin(np.deg2rad(h*2*RotC)) |
|
396 C2e = np.cos(np.deg2rad(2*RotC)) |
|
397 # rotated AinP by epsilon Eq. C.3 |
|
398 ATP2e = C2e*ATP2 + S2e*ATP3 |
|
399 ATP3e = C2e*ATP3 - S2e*ATP2 |
|
400 ARP2e = C2e*ARP2 + S2e*ARP3 |
|
401 ARP3e = C2e*ARP3 - S2e*ARP2 |
|
402 ATPe = np.array([ATP1,ATP2e,ATP3e,ATP4]) |
|
403 ARPe = np.array([ARP1,ARP2e,ARP3e,ARP4]) |
|
404 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
405 A = C2g*QinE - S2g*UinE |
|
406 B = S2g*QinE + C2g*UinE |
|
407 #C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
408 Co = ZiO*SinO*VinE |
|
409 Ca = (WiO*B - 2*ZiO*SinO*VinE) |
|
410 #C = Co + aCal*Ca |
|
411 #IinP = (IinE + DiO*aCal*A) |
|
412 #QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
413 #UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
414 #VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
415 IinPo = IinE |
|
416 QinPo = (C2g*DiO*IinE - S2g*Co) |
|
417 UinPo = (S2g*DiO*IinE + C2g*Co) |
|
418 VinPo = ZiO*CosO*VinE |
|
419 |
|
420 IinPa = DiO*A |
|
421 QinPa = QinE - S2g*Ca |
|
422 UinPa = -UinE + C2g*Ca |
|
423 VinPa = ZiO*(SinO*B - 2*CosO*VinE) |
|
424 |
|
425 IinP = IinPo + aCal*IinPa |
|
426 QinP = QinPo + aCal*QinPa |
|
427 UinP = UinPo + aCal*UinPa |
|
428 VinP = VinPo + aCal*VinPa |
|
429 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
430 #QinPe = C2e*QinP + S2e*UinP |
|
431 #UinPe = C2e*UinP - S2e*QinP |
|
432 QinPoe = C2e*QinPo + S2e*UinPo |
|
433 UinPoe = C2e*UinPo - S2e*QinPo |
|
434 QinPae = C2e*QinPa + S2e*UinPa |
|
435 UinPae = C2e*UinPa - S2e*QinPa |
|
436 QinPe = C2e*QinP + S2e*UinP |
|
437 UinPe = C2e*UinP - S2e*QinP |
|
438 |
|
439 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
440 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
441 # parameters for calibration with aCal |
|
442 AT = ATP1*IinP + h*ATP4*VinP |
|
443 BT = ATP3e*QinP - h*ATP2e*UinP |
|
444 AR = ARP1*IinP + h*ARP4*VinP |
|
445 BR = ARP3e*QinP - h*ARP2e*UinP |
|
446 # Correction paremeters for normal measurements; they are independent of LDR |
|
447 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
448 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
449 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
450 GT = np.dot(ATP,IS1) |
|
451 GR = np.dot(ARP,IS1) |
|
452 HT = np.dot(ATP,IS2) |
|
453 HR = np.dot(ARP,IS2) |
|
454 else: |
|
455 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
456 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
457 GT = np.dot(ATPe,IS1) |
|
458 GR = np.dot(ARPe,IS1) |
|
459 HT = np.dot(ATPe,IS2) |
|
460 HR = np.dot(ARPe,IS2) |
|
461 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
462 # parameters for calibration with aCal |
|
463 AT = ATP1*IinP + ATP3e*UinPe + ZiC*CosC*(ATP2e*QinPe + ATP4*VinP) |
|
464 BT = DiC*(ATP1*UinPe + ATP3e*IinP) - ZiC*SinC*(ATP2e*VinP - ATP4*QinPe) |
|
465 AR = ARP1*IinP + ARP3e*UinPe + ZiC*CosC*(ARP2e*QinPe + ARP4*VinP) |
|
466 BR = DiC*(ARP1*UinPe + ARP3e*IinP) - ZiC*SinC*(ARP2e*VinP - ARP4*QinPe) |
|
467 # Correction paremeters for normal measurements; they are independent of LDR |
|
468 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
469 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
470 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
471 GT = np.dot(ATP,IS1) |
|
472 GR = np.dot(ARP,IS1) |
|
473 HT = np.dot(ATP,IS2) |
|
474 HR = np.dot(ARP,IS2) |
|
475 else: |
|
476 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)]) |
|
477 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)]) |
|
478 GT = np.dot(ATPe,IS1e) |
|
479 GR = np.dot(ARPe,IS1e) |
|
480 HT = np.dot(ATPe,IS2e) |
|
481 HR = np.dot(ARPe,IS2e) |
|
482 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
483 # parameters for calibration with aCal |
|
484 AT = ATP1*IinP + sqr05*DiC*(ATP1*QinPe + ATP2e*IinP) + (1-0.5*WiC)*(ATP2e*QinPe + ATP3e*UinPe) + ZiC*(sqr05*SinC*(ATP3e*VinP-ATP4*UinPe) + ATP4*CosC*VinP) |
|
485 BT = sqr05*DiC*(ATP1*UinPe + ATP3e*IinP) + 0.5*WiC*(ATP2e*UinPe + ATP3e*QinPe) - sqr05*ZiC*SinC*(ATP2e*VinP - ATP4*QinPe) |
|
486 AR = ARP1*IinP + sqr05*DiC*(ARP1*QinPe + ARP2e*IinP) + (1-0.5*WiC)*(ARP2e*QinPe + ARP3e*UinPe) + ZiC*(sqr05*SinC*(ARP3e*VinP-ARP4*UinPe) + ARP4*CosC*VinP) |
|
487 BR = sqr05*DiC*(ARP1*UinPe + ARP3e*IinP) + 0.5*WiC*(ARP2e*UinPe + ARP3e*QinPe) - sqr05*ZiC*SinC*(ARP2e*VinP - ARP4*QinPe) |
|
488 # Correction paremeters for normal measurements; they are independent of LDR |
|
489 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
490 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
491 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
492 GT = np.dot(ATP,IS1) |
|
493 GR = np.dot(ARP,IS1) |
|
494 HT = np.dot(ATP,IS2) |
|
495 HR = np.dot(ARP,IS2) |
|
496 else: |
|
497 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)]) |
|
498 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)]) |
|
499 GT = np.dot(ATPe,IS1e) |
|
500 GR = np.dot(ARPe,IS1e) |
|
501 HT = np.dot(ATPe,IS2e) |
|
502 HR = np.dot(ARPe,IS2e) |
|
503 else: |
|
504 print("Calibrator not implemented yet") |
|
505 sys.exit() |
|
506 |
|
507 elif LocC == 3: # C before receiver optics Eq.57 |
|
508 |
|
509 #S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
510 #C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
511 S2e = np.sin(np.deg2rad(2*RotC)) |
|
512 C2e = np.cos(np.deg2rad(2*RotC)) |
|
513 |
|
514 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt) |
|
515 AF1 = np.array([1,C2g*DiO,S2g*DiO,0]) |
|
516 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO]) |
|
517 AF3 = np.array([S2g*DiO,S2g*C2g*WiO,1-C2g**2*WiO,C2g*ZiO*SinO]) |
|
518 AF4 = np.array([0,S2g*SinO,-C2g*SinO,CosO]) |
|
519 |
|
520 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4) |
|
521 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4) |
|
522 ATF2 = ATF[1] |
|
523 ATF3 = ATF[2] |
|
524 ARF2 = ARF[1] |
|
525 ARF3 = ARF[2] |
|
526 |
|
527 # rotated AinF by epsilon |
|
528 ATF1 = ATF[0] |
|
529 ATF4 = ATF[3] |
|
530 ATF2e = C2e*ATF[1] + S2e*ATF[2] |
|
531 ATF3e = C2e*ATF[2] - S2e*ATF[1] |
|
532 ARF1 = ARF[0] |
|
533 ARF4 = ARF[3] |
|
534 ARF2e = C2e*ARF[1] + S2e*ARF[2] |
|
535 ARF3e = C2e*ARF[2] - S2e*ARF[1] |
|
536 |
|
537 ATFe = np.array([ATF1,ATF2e,ATF3e,ATF4]) |
|
538 ARFe = np.array([ARF1,ARF2e,ARF3e,ARF4]) |
|
539 |
|
540 QinEe = C2e*QinE + S2e*UinE |
|
541 UinEe = C2e*UinE - S2e*QinE |
|
542 |
|
543 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
544 IinF = IinE |
|
545 QinF = aCal*QinE |
|
546 UinF = -aCal*UinE |
|
547 VinF = (1.-2.*aCal)*VinE |
|
548 |
|
549 IinFo = IinE |
|
550 QinFo = 0. |
|
551 UinFo = 0. |
|
552 VinFo = VinE |
|
553 |
|
554 IinFa = 0. |
|
555 QinFa = QinE |
|
556 UinFa = -UinE |
|
557 VinFa = -2.*VinE |
|
558 |
|
559 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
560 QinFe = C2e*QinF + S2e*UinF |
|
561 UinFe = C2e*UinF - S2e*QinF |
|
562 QinFoe = C2e*QinFo + S2e*UinFo |
|
563 UinFoe = C2e*UinFo - S2e*QinFo |
|
564 QinFae = C2e*QinFa + S2e*UinFa |
|
565 UinFae = C2e*UinFa - S2e*QinFa |
|
566 |
|
567 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
568 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
569 # parameters for calibration with aCal |
|
570 AT = ATF1*IinF + ATF4*h*VinF |
|
571 BT = ATF3e*QinF - ATF2e*h*UinF |
|
572 AR = ARF1*IinF + ARF4*h*VinF |
|
573 BR = ARF3e*QinF - ARF2e*h*UinF |
|
574 # Correction paremeters for normal measurements; they are independent of LDR |
|
575 if (not RotationErrorEpsilonForNormalMeasurements): |
|
576 GT = ATF1*IinE + ATF4*VinE |
|
577 GR = ARF1*IinE + ARF4*VinE |
|
578 HT = ATF2*QinE - ATF3*UinE - ATF4*2*VinE |
|
579 HR = ARF2*QinE - ARF3*UinE - ARF4*2*VinE |
|
580 else: |
|
581 GT = ATF1*IinE + ATF4*h*VinE |
|
582 GR = ARF1*IinE + ARF4*h*VinE |
|
583 HT = ATF2e*QinE - ATF3e*h*UinE - ATF4*h*2*VinE |
|
584 HR = ARF2e*QinE - ARF3e*h*UinE - ARF4*h*2*VinE |
|
585 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
586 # p = +45°, m = -45° |
|
587 IF1e = np.array([IinF, ZiC*CosC*QinFe, UinFe, ZiC*CosC*VinF]) |
|
588 IF2e = np.array([DiC*UinFe, -ZiC*SinC*VinF, DiC*IinF, ZiC*SinC*QinFe]) |
|
589 AT = np.dot(ATFe,IF1e) |
|
590 AR = np.dot(ARFe,IF1e) |
|
591 BT = np.dot(ATFe,IF2e) |
|
592 BR = np.dot(ARFe,IF2e) |
|
593 |
|
594 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
595 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
596 IS1 = np.array([IinE,0,0,VinE]) |
|
597 IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
598 GT = np.dot(ATF,IS1) |
|
599 GR = np.dot(ARF,IS1) |
|
600 HT = np.dot(ATF,IS2) |
|
601 HR = np.dot(ARF,IS2) |
|
602 else: |
|
603 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)]) |
|
604 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)]) |
|
605 GT = np.dot(ATFe,IS1e) |
|
606 GR = np.dot(ARFe,IS1e) |
|
607 HT = np.dot(ATFe,IS2e) |
|
608 HR = np.dot(ARFe,IS2e) |
|
609 |
|
610 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
611 # parameters for calibration with aCal |
|
612 IF1e = np.array([IinF+sqr05*DiC*QinFe, sqr05*DiC*IinF+(1-0.5*WiC)*QinFe, (1-0.5*WiC)*UinFe+sqr05*ZiC*SinC*VinF, -sqr05*ZiC*SinC*UinFe+ZiC*CosC*VinF]) |
|
613 IF2e = np.array([sqr05*DiC*UinFe, 0.5*WiC*UinFe-sqr05*ZiC*SinC*VinF, sqr05*DiC*IinF+0.5*WiC*QinFe, sqr05*ZiC*SinC*QinFe]) |
|
614 AT = np.dot(ATFe,IF1e) |
|
615 AR = np.dot(ARFe,IF1e) |
|
616 BT = np.dot(ATFe,IF2e) |
|
617 BR = np.dot(ARFe,IF2e) |
|
618 |
|
619 # Correction paremeters for normal measurements; they are independent of LDR |
|
620 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
621 #IS1 = np.array([IinE,0,0,VinE]) |
|
622 #IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
623 IS1 = np.array([IinFo,0,0,VinFo]) |
|
624 IS2 = np.array([0,QinFa,UinFa,VinFa]) |
|
625 GT = np.dot(ATF,IS1) |
|
626 GR = np.dot(ARF,IS1) |
|
627 HT = np.dot(ATF,IS2) |
|
628 HR = np.dot(ARF,IS2) |
|
629 else: |
|
630 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)]) |
|
631 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)]) |
|
632 #IS1e = np.array([IinFo,0,0,VinFo]) |
|
633 #IS2e = np.array([0,QinFae,UinFae,VinFa]) |
|
634 GT = np.dot(ATFe,IS1e) |
|
635 GR = np.dot(ARFe,IS1e) |
|
636 HT = np.dot(ATFe,IS2e) |
|
637 HR = np.dot(ARFe,IS2e) |
|
638 |
|
639 else: |
|
640 print('Calibrator not implemented yet') |
|
641 sys.exit() |
|
642 |
|
643 elif LocC == 2: # C behind emitter optics Eq.57 ------------------------------------------------------- |
|
644 #print("Calibrator location not implemented yet") |
|
645 S2e = np.sin(np.deg2rad(2*RotC)) |
|
646 C2e = np.cos(np.deg2rad(2*RotC)) |
|
647 |
|
648 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
649 AF1 = np.array([1,C2g*DiO,S2g*DiO,0]) |
|
650 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO]) |
|
651 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO]) |
|
652 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO]) |
|
653 |
|
654 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4) |
|
655 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4) |
|
656 ATF1 = ATF[0] |
|
657 ATF2 = ATF[1] |
|
658 ATF3 = ATF[2] |
|
659 ATF4 = ATF[3] |
|
660 ARF1 = ARF[0] |
|
661 ARF2 = ARF[1] |
|
662 ARF3 = ARF[2] |
|
663 ARF4 = ARF[3] |
|
664 |
|
665 # AS with C behind the emitter |
|
666 # terms without aCal |
|
667 ATE1o, ARE1o = ATF1, ARF1 |
|
668 ATE2o, ARE2o = 0., 0. |
|
669 ATE3o, ARE3o = 0., 0. |
|
670 ATE4o, ARE4o = ATF4, ARF4 |
|
671 # terms with aCal |
|
672 ATE1a, ARE1a = 0. , 0. |
|
673 ATE2a, ARE2a = ATF2, ARF2 |
|
674 ATE3a, ARE3a = -ATF3, -ARF3 |
|
675 ATE4a, ARE4a = -2*ATF4, -2*ARF4 |
|
676 # rotated AinEa by epsilon |
|
677 ATE2ae = C2e*ATF2 + S2e*ATF3 |
|
678 ATE3ae = -S2e*ATF2 - C2e*ATF3 |
|
679 ARE2ae = C2e*ARF2 + S2e*ARF3 |
|
680 ARE3ae = -S2e*ARF2 - C2e*ARF3 |
|
681 |
|
682 ATE1 = ATE1o |
|
683 ATE2e = aCal*ATE2ae |
|
684 ATE3e = aCal*ATE3ae |
|
685 ATE4 = (1-2*aCal)*ATF4 |
|
686 ARE1 = ARE1o |
|
687 ARE2e = aCal*ARE2ae |
|
688 ARE3e = aCal*ARE3ae |
|
689 ARE4 = (1-2*aCal)*ARF4 |
|
690 |
|
691 # rotated IinE |
|
692 QinEe = C2e*QinE + S2e*UinE |
|
693 UinEe = C2e*UinE - S2e*QinE |
|
694 |
|
695 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
696 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
697 AT = ATE1o*IinE + (ATE4o+aCal*ATE4a)*h*VinE |
|
698 BT = aCal * (ATE3ae*QinEe - ATE2ae*h*UinEe) |
|
699 AR = ARE1o*IinE + (ARE4o+aCal*ARE4a)*h*VinE |
|
700 BR = aCal * (ARE3ae*QinEe - ARE2ae*h*UinEe) |
|
701 |
|
702 # Correction paremeters for normal measurements; they are independent of LDR |
|
703 if (not RotationErrorEpsilonForNormalMeasurements): |
|
704 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
705 GT = ATE1o*IinE + ATE4o*h*VinE |
|
706 GR = ARE1o*IinE + ARE4o*h*VinE |
|
707 HT = ATE2a*QinE + ATE3a*h*UinEe + ATE4a*h*VinE |
|
708 HR = ARE2a*QinE + ARE3a*h*UinEe + ARE4a*h*VinE |
|
709 else: |
|
710 GT = ATE1o*IinE + ATE4o*h*VinE |
|
711 GR = ARE1o*IinE + ARE4o*h*VinE |
|
712 HT = ATE2ae*QinE + ATE3ae*h*UinEe + ATE4a*h*VinE |
|
713 HR = ARE2ae*QinE + ARE3ae*h*UinEe + ARE4a*h*VinE |
|
714 |
|
715 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
716 # p = +45°, m = -45° |
|
717 AT = ATE1*IinE + ZiC*CosC*(ATE2e*QinEe + ATE4*VinE) + ATE3e*UinEe |
|
718 BT = DiC*(ATE1*UinEe + ATE3e*IinE) + ZiC*SinC*(ATE4*QinEe - ATE2e*VinE) |
|
719 AR = ARE1*IinE + ZiC*CosC*(ARE2e*QinEe + ARE4*VinE) + ARE3e*UinEe |
|
720 BR = DiC*(ARE1*UinEe + ARE3e*IinE) + ZiC*SinC*(ARE4*QinEe - ARE2e*VinE) |
|
721 |
|
722 # Correction paremeters for normal measurements; they are independent of LDR |
|
723 if (not RotationErrorEpsilonForNormalMeasurements): |
|
724 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
725 GT = ATE1o*IinE + ATE4o*VinE |
|
726 GR = ARE1o*IinE + ARE4o*VinE |
|
727 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE |
|
728 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE |
|
729 else: |
|
730 D = IinE + DiC*QinEe |
|
731 A = DiC*IinE + QinEe |
|
732 B = ZiC*(CosC*UinEe + SinC*VinE) |
|
733 C = -ZiC*(SinC*UinEe - CosC*VinE) |
|
734 GT = ATE1o*D + ATE4o*C |
|
735 GR = ARE1o*D + ARE4o*C |
|
736 HT = ATE2a*A + ATE3a*B + ATE4a*C |
|
737 HR = ARE2a*A + ARE3a*B + ARE4a*C |
|
738 |
|
739 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
740 # p = +22.5°, m = -22.5° |
|
741 IE1e = np.array([IinE+sqr05*DiC*QinEe, sqr05*DiC*IinE+(1-0.5*WiC)*QinEe, (1-0.5*WiC)*UinEe+sqr05*ZiC*SinC*VinE, -sqr05*ZiC*SinC*UinEe+ZiC*CosC*VinE]) |
|
742 IE2e = np.array([sqr05*DiC*UinEe, 0.5*WiC*UinEe-sqr05*ZiC*SinC*VinE, sqr05*DiC*IinE+0.5*WiC*QinEe, sqr05*ZiC*SinC*QinEe]) |
|
743 ATEe = np.array([ATE1,ATE2e,ATE3e,ATE4]) |
|
744 AREe = np.array([ARE1,ARE2e,ARE3e,ARE4]) |
|
745 AT = np.dot(ATEe,IE1e) |
|
746 AR = np.dot(AREe,IE1e) |
|
747 BT = np.dot(ATEe,IE2e) |
|
748 BR = np.dot(AREe,IE2e) |
|
749 |
|
750 # Correction paremeters for normal measurements; they are independent of LDR |
|
751 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
752 GT = ATE1o*IinE + ATE4o*VinE |
|
753 GR = ARE1o*IinE + ARE4o*VinE |
|
754 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE |
|
755 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE |
|
756 else: |
|
757 D = IinE + DiC*QinEe |
|
758 A = DiC*IinE + QinEe |
|
759 B = ZiC*(CosC*UinEe + SinC*VinE) |
|
760 C = -ZiC*(SinC*UinEe - CosC*VinE) |
|
761 GT = ATE1o*D + ATE4o*C |
|
762 GR = ARE1o*D + ARE4o*C |
|
763 HT = ATE2a*A + ATE3a*B + ATE4a*C |
|
764 HR = ARE2a*A + ARE3a*B + ARE4a*C |
|
765 |
|
766 else: |
|
767 print('Calibrator not implemented yet') |
|
768 sys.exit() |
|
769 |
|
770 else: |
|
771 print("Calibrator location not implemented yet") |
|
772 sys.exit() |
|
773 |
|
774 # Determination of the correction K of the calibration factor |
|
775 IoutTp = TaT*TiT*TiO*TiE*(AT + BT) |
|
776 IoutTm = TaT*TiT*TiO*TiE*(AT - BT) |
|
777 IoutRp = TaR*TiR*TiO*TiE*(AR + BR) |
|
778 IoutRm = TaR*TiR*TiO*TiE*(AR - BR) |
|
779 |
|
780 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 |
|
781 Etapx = IoutRp/IoutTp |
|
782 Etamx = IoutRm/IoutTm |
|
783 Etax = (Etapx*Etamx)**0.5 |
|
784 |
|
785 Eta = (TaR*TiR)/(TaT*TiT) # Eta = Eta*/K Eq. 84 |
|
786 K = Etax / Eta |
|
787 |
|
788 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
789 #Eta_test_p = (IoutRp/IoutTp) |
|
790 #Eta_test_m = (IoutRm/IoutTm) |
|
791 #Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
792 |
|
793 # ----- Forward simulated signals and LDRsim with atrue; from input file |
|
794 It = TaT*TiT*TiO*TiE*(GT+atrue*HT) |
|
795 Ir = TaR*TiR*TiO*TiE*(GR+atrue*HR) |
|
796 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
797 LDRsim = Ir/It # simulated uncorrected LDR with Y from input file |
|
798 # Corrected LDRsimCorr from forward simulated LDRsim (atrue) |
|
799 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT)) |
|
800 if Y == -1.: |
|
801 LDRsimx = 1./LDRsim |
|
802 else: |
|
803 LDRsimx = LDRsim |
|
804 |
|
805 # The following is correct without doubt |
|
806 #LDRCorr = (LDRsim*K/Etax*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT)) |
|
807 |
|
808 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent |
|
809 LDRCorr = (LDRsim/Eta*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT)) |
|
810 |
|
811 TTa = TiT*TaT #*ATP1 |
|
812 TRa = TiR*TaR #*ARP1 |
|
813 |
|
814 F11sim = 1/(TiO*TiE)*((HR*Etax/K*It/TTa-HT*Ir/TRa)/(HR*GT-HT*GR)) # IL = 1, Etat = Etar = 1 |
|
815 |
|
816 return (GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim) |
|
817 # ******************************************************************************************************************************* |
|
818 |
|
819 # --- CALC truth |
|
820 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
821 |
|
822 # -------------------------------------------------------- |
|
823 with open('output_' + LID + '.dat', 'w') as f: |
|
824 with redirect_stdout(f): |
|
825 print("From ", dname) |
|
826 print("Running ", fname) |
|
827 print("Reading input file ", InputFile) #, " for Lidar system :", EID, ", ", LID) |
|
828 print("for Lidar system: ", EID, ", ", LID) |
|
829 # --- Print iput information********************************* |
|
830 print(" --- Input parameters: value ±error / ±steps ----------------------") |
|
831 print("{0:8} {1:8} {2:8.5f}; {3:8} {4:7.4f}±{5:7.4f}/{6:2d}".format("Laser: ", "DOLP = ", bL, " rotation alpha = ", RotL0, dRotL, nRotL)) |
|
832 print(" Diatt., Tunpol, Retard., Rotation (deg)") |
|
833 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE)) |
|
834 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO)) |
|
835 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC)) |
|
836 print("{0:12}".format(" --- Pol.-filter ---")) |
|
837 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERT, ERR :", ERaT0, dERaT, nERaT, ERaR0, dERaR, nERaR)) |
|
838 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("RotaT , RotaR :", RotaT0, dRotaT, nRotaT, RotaR0,dRotaR,nRotaR)) |
|
839 print("{0:12}".format(" --- PBS ---")) |
|
840 print("{0:12}{1:7.4f}±{2:7.4f}/{9:2d}, {3:7.4f}±{4:7.4f}/{10:2d}, {5:7.4f}±{6:7.4f}/{11:2d},{7:7.4f}±{8:7.4f}/{12:2d}".format("TP,TS,RP,RS :", TP0, dTP, TS0, dTS, RP0, dRP, RS0, dRS, nTP, nTS, nRP, nRS)) |
|
841 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format("DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y)) |
|
842 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---")) |
|
843 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format("DTa,TTa,DRa,TRa: ", DTa0, TTa0, DRa0, TRa0)) |
|
844 print() |
|
845 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements) |
|
846 #print ('LocC = ', LocC, Loc[LocC], '; TypeC = ',TypeC, Type[TypeC]) |
|
847 print(Type[TypeC], Loc[LocC], "; Parallel signal detected in", dY[int(Y+1)]) |
|
848 # end of print actual system parameters |
|
849 # ****************************************************************************** |
|
850 |
|
851 #print() |
|
852 #print(" --- LDRCal during calibration | simulated and corrected LDRs -------------") |
|
853 #print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr")) |
|
854 #print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr)) |
|
855 #print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr")) |
|
856 #print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr)) |
|
857 #print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr")) |
|
858 #print(" --- LDRCal during calibration") |
|
859 print("{0:26}: {1:6.3f}±{2:5.3f}/{3:2d}".format("LDRCal during calibration", LDRCal0, dLDRCal, nLDRCal)) |
|
860 |
|
861 #print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim)) |
|
862 print() |
|
863 |
|
864 K0List = np.zeros(3) |
|
865 LDRsimxList = np.zeros(3) |
|
866 LDRCalList = 0.004, 0.2, 0.45 |
|
867 for i,LDRCal in enumerate(LDRCalList): |
|
868 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) |
|
869 K0List[i] = K0 |
|
870 LDRsimxList[i] = LDRsimx |
|
871 |
|
872 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:9},{6:9}".format(" GR", " GT", " HR", " HT", " K(0.004)", " K(0.2)", " K(0.45)")) |
|
873 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f}".format(GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2])) |
|
874 print('========================================================================') |
|
875 |
|
876 print("{0:9},{1:9},{2:9}".format(" LDRtrue", " LDRsimx", " LDRCorr")) |
|
877 LDRtrueList = 0.004, 0.02, 0.2, 0.45 |
|
878 for i,LDRtrue in enumerate(LDRtrueList): |
|
879 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
880 print("{0:9.5f},{1:9.5f},{2:9.5f}".format(LDRtrue, LDRsimx, LDRCorr)) |
|
881 |
|
882 |
|
883 file = open('output_' + LID + '.dat', 'r') |
|
884 print (file.read()) |
|
885 file.close() |
|
886 |
|
887 ''' |
|
888 if(PrintToOutputFile): |
|
889 f = open('output_ver7.dat', 'w') |
|
890 old_target = sys.stdout |
|
891 sys.stdout = f |
|
892 |
|
893 print("something") |
|
894 |
|
895 if(PrintToOutputFile): |
|
896 sys.stdout.flush() |
|
897 f.close |
|
898 sys.stdout = old_target |
|
899 ''' |
|
900 # --- CALC again truth with LDRCal0 to reset all 0-values |
|
901 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
902 |
|
903 # --- Start Errors calculation |
|
904 |
|
905 iN = -1 |
|
906 N = ((nRotL*2+1)* |
|
907 (nRotE*2+1)*(nRetE*2+1)*(nDiE*2+1)* |
|
908 (nRotO*2+1)*(nRetO*2+1)*(nDiO*2+1)* |
|
909 (nRotC*2+1)*(nRetC*2+1)*(nDiC*2+1)* |
|
910 (nTP*2+1)*(nTS*2+1)*(nRP*2+1)*(nRS*2+1)*(nERaT*2+1)*(nERaR*2+1)* |
|
911 (nRotaT*2+1)*(nRotaR*2+1)*(nRetT*2+1)*(nRetR*2+1)*(nLDRCal*2+1)) |
|
912 print("N = ",N ," ", end="") |
|
913 |
|
914 if N > 1e6: |
|
915 if user_yes_no_query('Warning: processing ' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
916 if N > 5e6: |
|
917 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format(N/4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit() |
|
918 |
|
919 #if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
920 |
|
921 # --- Arrays for plotting ------ |
|
922 LDRmin = np.zeros(5) |
|
923 LDRmax = np.zeros(5) |
|
924 F11min = np.zeros(5) |
|
925 F11max = np.zeros(5) |
|
926 |
|
927 LDRrange = np.zeros(5) |
|
928 LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45 |
|
929 #aLDRsimx = np.zeros(N) |
|
930 #aLDRsimx2 = np.zeros(N) |
|
931 #aLDRcorr = np.zeros(N) |
|
932 #aLDRcorr2 = np.zeros(N) |
|
933 aERaT = np.zeros(N) |
|
934 aERaR = np.zeros(N) |
|
935 aRotaT = np.zeros(N) |
|
936 aRotaR = np.zeros(N) |
|
937 aRetT = np.zeros(N) |
|
938 aRetR = np.zeros(N) |
|
939 aTP = np.zeros(N) |
|
940 aTS = np.zeros(N) |
|
941 aRP = np.zeros(N) |
|
942 aRS = np.zeros(N) |
|
943 aDiE = np.zeros(N) |
|
944 aDiO = np.zeros(N) |
|
945 aDiC = np.zeros(N) |
|
946 aRotC = np.zeros(N) |
|
947 aRetC = np.zeros(N) |
|
948 aRotL = np.zeros(N) |
|
949 aRetE = np.zeros(N) |
|
950 aRotE = np.zeros(N) |
|
951 aRetO = np.zeros(N) |
|
952 aRotO = np.zeros(N) |
|
953 aLDRCal = np.zeros(N) |
|
954 aA = np.zeros((5,N)) |
|
955 aX = np.zeros((5,N)) |
|
956 aF11corr = np.zeros((5,N)) |
|
957 |
|
958 atime = clock() |
|
959 dtime = clock() |
|
960 |
|
961 # --- Calc Error signals |
|
962 #GT, HT, GR, HR, K, Eta, LDRsim = Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS) |
|
963 # ---- Do the calculations of bra-ket vectors |
|
964 h = -1. if TypeC == 2 else 1 |
|
965 |
|
966 # from input file: measured LDRm and true LDRtrue, LDRtrue2 => |
|
967 ameas = (1.-LDRmeas)/(1+LDRmeas) |
|
968 atrue = (1.-LDRtrue)/(1+LDRtrue) |
|
969 atrue2 = (1.-LDRtrue2)/(1+LDRtrue2) |
|
970 |
|
971 for iLDRCal in range(-nLDRCal,nLDRCal+1): |
|
972 # from input file: assumed LDRCal for calibration measurements |
|
973 LDRCal = LDRCal0 |
|
974 if nLDRCal > 0: LDRCal = LDRCal0 + iLDRCal*dLDRCal/nLDRCal |
|
975 |
|
976 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) |
|
977 aCal = (1.-LDRCal)/(1+LDRCal) |
|
978 for iRotL, iRotE, iRetE, iDiE \ |
|
979 in [(iRotL,iRotE,iRetE,iDiE) |
|
980 for iRotL in range(-nRotL,nRotL+1) |
|
981 for iRotE in range(-nRotE,nRotE+1) |
|
982 for iRetE in range(-nRetE,nRetE+1) |
|
983 for iDiE in range(-nDiE,nDiE+1)]: |
|
984 |
|
985 if nRotL > 0: RotL = RotL0 + iRotL*dRotL/nRotL |
|
986 if nRotE > 0: RotE = RotE0 + iRotE*dRotE/nRotE |
|
987 if nRetE > 0: RetE = RetE0 + iRetE*dRetE/nRetE |
|
988 if nDiE > 0: DiE = DiE0 + iDiE*dDiE/nDiE |
|
989 |
|
990 # angles of emitter and laser and calibrator and receiver optics |
|
991 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
992 S2a = np.sin(2*np.deg2rad(RotL)) |
|
993 C2a = np.cos(2*np.deg2rad(RotL)) |
|
994 S2b = np.sin(2*np.deg2rad(RotE)) |
|
995 C2b = np.cos(2*np.deg2rad(RotE)) |
|
996 S2ab = np.sin(np.deg2rad(2*RotL-2*RotE)) |
|
997 C2ab = np.cos(np.deg2rad(2*RotL-2*RotE)) |
|
998 |
|
999 # Laser with Degree of linear polarization DOLP = bL |
|
1000 IinL = 1. |
|
1001 QinL = bL |
|
1002 UinL = 0. |
|
1003 VinL = (1. - bL**2)**0.5 |
|
1004 |
|
1005 # Stokes Input Vector rotation Eq. E.4 |
|
1006 A = C2a*QinL - S2a*UinL |
|
1007 B = S2a*QinL + C2a*UinL |
|
1008 # Stokes Input Vector rotation Eq. E.9 |
|
1009 C = C2ab*QinL - S2ab*UinL |
|
1010 D = S2ab*QinL + C2ab*UinL |
|
1011 |
|
1012 # emitter optics |
|
1013 CosE = np.cos(np.deg2rad(RetE)) |
|
1014 SinE = np.sin(np.deg2rad(RetE)) |
|
1015 ZiE = (1. - DiE**2)**0.5 |
|
1016 WiE = (1. - ZiE*CosE) |
|
1017 |
|
1018 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
1019 # b = beta |
|
1020 IinE = (IinL + DiE*C) |
|
1021 QinE = (C2b*DiE*IinL + A + S2b*(WiE*D - ZiE*SinE*VinL)) |
|
1022 UinE = (S2b*DiE*IinL + B - C2b*(WiE*D - ZiE*SinE*VinL)) |
|
1023 VinE = (-ZiE*SinE*D + ZiE*CosE*VinL) |
|
1024 |
|
1025 #------------------------- |
|
1026 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
1027 #F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE |
|
1028 #------------------------- |
|
1029 |
|
1030 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \ |
|
1031 in [(iRotO,iRetO,iDiO,iRotC,iRetC,iDiC,iTP,iTS,iRP,iRS,iERaT,iRotaT,iRetT,iERaR,iRotaR,iRetR ) |
|
1032 for iRotO in range(-nRotO,nRotO+1) |
|
1033 for iRetO in range(-nRetO,nRetO+1) |
|
1034 for iDiO in range(-nDiO,nDiO+1) |
|
1035 for iRotC in range(-nRotC,nRotC+1) |
|
1036 for iRetC in range(-nRetC,nRetC+1) |
|
1037 for iDiC in range(-nDiC,nDiC+1) |
|
1038 for iTP in range(-nTP,nTP+1) |
|
1039 for iTS in range(-nTS,nTS+1) |
|
1040 for iRP in range(-nRP,nRP+1) |
|
1041 for iRS in range(-nRS,nRS+1) |
|
1042 for iERaT in range(-nERaT,nERaT+1) |
|
1043 for iRotaT in range(-nRotaT,nRotaT+1) |
|
1044 for iRetT in range(-nRetT,nRetT+1) |
|
1045 for iERaR in range(-nERaR,nERaR+1) |
|
1046 for iRotaR in range(-nRotaR,nRotaR+1) |
|
1047 for iRetR in range(-nRetR,nRetR+1)]: |
|
1048 |
|
1049 iN = iN + 1 |
|
1050 if (iN == 10001): |
|
1051 ctime = clock() |
|
1052 print(" estimated time ", "{0:4.2f}".format(N/10000 * (ctime-atime)), "sec ") #, end="") |
|
1053 print("\r elapsed time ", "{0:5.0f}".format((ctime-atime)), "sec ", end="\r") |
|
1054 ctime = clock() |
|
1055 if ((ctime - dtime) > 10): |
|
1056 print("\r elapsed time ", "{0:5.0f}".format((ctime-atime)), "sec ", end="\r") |
|
1057 dtime = ctime |
|
1058 |
|
1059 if nRotO > 0: RotO = RotO0 + iRotO*dRotO/nRotO |
|
1060 if nRetO > 0: RetO = RetO0 + iRetO*dRetO/nRetO |
|
1061 if nDiO > 0: DiO = DiO0 + iDiO*dDiO/nDiO |
|
1062 if nRotC > 0: RotC = RotC0 + iRotC*dRotC/nRotC |
|
1063 if nRetC > 0: RetC = RetC0 + iRetC*dRetC/nRetC |
|
1064 if nDiC > 0: DiC = DiC0 + iDiC*dDiC/nDiC |
|
1065 if nTP > 0: TP = TP0 + iTP*dTP/nTP |
|
1066 if nTS > 0: TS = TS0 + iTS*dTS/nTS |
|
1067 if nRP > 0: RP = RP0 + iRP*dRP/nRP |
|
1068 if nRS > 0: RS = RS0 + iRS*dRS/nRS |
|
1069 if nERaT > 0: ERaT = ERaT0 + iERaT*dERaT/nERaT |
|
1070 if nRotaT > 0:RotaT= RotaT0+ iRotaT*dRotaT/nRotaT |
|
1071 if nRetT > 0: RetT = RetT0 + iRetT*dRetT/nRetT |
|
1072 if nERaR > 0: ERaR = ERaR0 + iERaR*dERaR/nERaR |
|
1073 if nRotaR > 0:RotaR= RotaR0+ iRotaR*dRotaR/nRotaR |
|
1074 if nRetR > 0: RetR = RetR0 + iRetR*dRetR/nRetR |
|
1075 |
|
1076 #print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN)) |
|
1077 |
|
1078 # receiver optics |
|
1079 CosO = np.cos(np.deg2rad(RetO)) |
|
1080 SinO = np.sin(np.deg2rad(RetO)) |
|
1081 ZiO = (1. - DiO**2)**0.5 |
|
1082 WiO = (1. - ZiO*CosO) |
|
1083 S2g = np.sin(np.deg2rad(2*RotO)) |
|
1084 C2g = np.cos(np.deg2rad(2*RotO)) |
|
1085 # calibrator |
|
1086 CosC = np.cos(np.deg2rad(RetC)) |
|
1087 SinC = np.sin(np.deg2rad(RetC)) |
|
1088 ZiC = (1. - DiC**2)**0.5 |
|
1089 WiC = (1. - ZiC*CosC) |
|
1090 |
|
1091 #For POLLY_XT |
|
1092 # analyser |
|
1093 RS = 1 - TS |
|
1094 RP = 1 - TP |
|
1095 TiT = 0.5 * (TP + TS) |
|
1096 DiT = (TP-TS)/(TP+TS) |
|
1097 ZiT = (1. - DiT**2)**0.5 |
|
1098 TiR = 0.5 * (RP + RS) |
|
1099 DiR = (RP-RS)/(RP+RS) |
|
1100 ZiR = (1. - DiR**2)**0.5 |
|
1101 CosT = np.cos(np.deg2rad(RetT)) |
|
1102 SinT = np.sin(np.deg2rad(RetT)) |
|
1103 CosR = np.cos(np.deg2rad(RetR)) |
|
1104 SinR = np.sin(np.deg2rad(RetR)) |
|
1105 |
|
1106 DaT = (1-ERaT)/(1+ERaT) |
|
1107 DaR = (1-ERaR)/(1+ERaR) |
|
1108 TaT = 0.5*(1+ERaT) |
|
1109 TaR = 0.5*(1+ERaR) |
|
1110 |
|
1111 S2aT = np.sin(np.deg2rad(h*2*RotaT)) |
|
1112 C2aT = np.cos(np.deg2rad(2*RotaT)) |
|
1113 S2aR = np.sin(np.deg2rad(h*2*RotaR)) |
|
1114 C2aR = np.cos(np.deg2rad(2*RotaR)) |
|
1115 |
|
1116 # Aanalyzer As before the PBS Eq. D.5 |
|
1117 ATP1 = (1+C2aT*DaT*DiT) |
|
1118 ATP2 = Y*(DiT+C2aT*DaT) |
|
1119 ATP3 = Y*S2aT*DaT*ZiT*CosT |
|
1120 ATP4 = S2aT*DaT*ZiT*SinT |
|
1121 ATP = np.array([ATP1,ATP2,ATP3,ATP4]) |
|
1122 |
|
1123 ARP1 = (1+C2aR*DaR*DiR) |
|
1124 ARP2 = Y*(DiR+C2aR*DaR) |
|
1125 ARP3 = Y*S2aR*DaR*ZiR*CosR |
|
1126 ARP4 = S2aR*DaR*ZiR*SinR |
|
1127 ARP = np.array([ARP1,ARP2,ARP3,ARP4]) |
|
1128 |
|
1129 TTa = TiT*TaT #*ATP1 |
|
1130 TRa = TiR*TaR #*ARP1 |
|
1131 |
|
1132 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
1133 if LocC == 4: # Calibrator before the PBS |
|
1134 #print("Calibrator location not implemented yet") |
|
1135 |
|
1136 #S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
1137 #C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
1138 S2e = np.sin(np.deg2rad(h*2*RotC)) |
|
1139 C2e = np.cos(np.deg2rad(2*RotC)) |
|
1140 # rotated AinP by epsilon Eq. C.3 |
|
1141 ATP2e = C2e*ATP2 + S2e*ATP3 |
|
1142 ATP3e = C2e*ATP3 - S2e*ATP2 |
|
1143 ARP2e = C2e*ARP2 + S2e*ARP3 |
|
1144 ARP3e = C2e*ARP3 - S2e*ARP2 |
|
1145 ATPe = np.array([ATP1,ATP2e,ATP3e,ATP4]) |
|
1146 ARPe = np.array([ARP1,ARP2e,ARP3e,ARP4]) |
|
1147 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
1148 A = C2g*QinE - S2g*UinE |
|
1149 B = S2g*QinE + C2g*UinE |
|
1150 #C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
1151 Co = ZiO*SinO*VinE |
|
1152 Ca = (WiO*B - 2*ZiO*SinO*VinE) |
|
1153 #C = Co + aCal*Ca |
|
1154 #IinP = (IinE + DiO*aCal*A) |
|
1155 #QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
1156 #UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
1157 #VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
1158 IinPo = IinE |
|
1159 QinPo = (C2g*DiO*IinE - S2g*Co) |
|
1160 UinPo = (S2g*DiO*IinE + C2g*Co) |
|
1161 VinPo = ZiO*CosO*VinE |
|
1162 |
|
1163 IinPa = DiO*A |
|
1164 QinPa = QinE - S2g*Ca |
|
1165 UinPa = -UinE + C2g*Ca |
|
1166 VinPa = ZiO*(SinO*B - 2*CosO*VinE) |
|
1167 |
|
1168 IinP = IinPo + aCal*IinPa |
|
1169 QinP = QinPo + aCal*QinPa |
|
1170 UinP = UinPo + aCal*UinPa |
|
1171 VinP = VinPo + aCal*VinPa |
|
1172 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
1173 #QinPe = C2e*QinP + S2e*UinP |
|
1174 #UinPe = C2e*UinP - S2e*QinP |
|
1175 QinPoe = C2e*QinPo + S2e*UinPo |
|
1176 UinPoe = C2e*UinPo - S2e*QinPo |
|
1177 QinPae = C2e*QinPa + S2e*UinPa |
|
1178 UinPae = C2e*UinPa - S2e*QinPa |
|
1179 QinPe = C2e*QinP + S2e*UinP |
|
1180 UinPe = C2e*UinP - S2e*QinP |
|
1181 |
|
1182 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1183 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1184 # parameters for calibration with aCal |
|
1185 AT = ATP1*IinP + h*ATP4*VinP |
|
1186 BT = ATP3e*QinP - h*ATP2e*UinP |
|
1187 AR = ARP1*IinP + h*ARP4*VinP |
|
1188 BR = ARP3e*QinP - h*ARP2e*UinP |
|
1189 # Correction paremeters for normal measurements; they are independent of LDR |
|
1190 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1191 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
1192 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
1193 GT = np.dot(ATP,IS1) |
|
1194 GR = np.dot(ARP,IS1) |
|
1195 HT = np.dot(ATP,IS2) |
|
1196 HR = np.dot(ARP,IS2) |
|
1197 else: |
|
1198 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
1199 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
1200 GT = np.dot(ATPe,IS1) |
|
1201 GR = np.dot(ARPe,IS1) |
|
1202 HT = np.dot(ATPe,IS2) |
|
1203 HR = np.dot(ARPe,IS2) |
|
1204 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1205 # parameters for calibration with aCal |
|
1206 AT = ATP1*IinP + ATP3e*UinPe + ZiC*CosC*(ATP2e*QinPe + ATP4*VinP) |
|
1207 BT = DiC*(ATP1*UinPe + ATP3e*IinP) - ZiC*SinC*(ATP2e*VinP - ATP4*QinPe) |
|
1208 AR = ARP1*IinP + ARP3e*UinPe + ZiC*CosC*(ARP2e*QinPe + ARP4*VinP) |
|
1209 BR = DiC*(ARP1*UinPe + ARP3e*IinP) - ZiC*SinC*(ARP2e*VinP - ARP4*QinPe) |
|
1210 # Correction paremeters for normal measurements; they are independent of LDR |
|
1211 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1212 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
1213 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
1214 GT = np.dot(ATP,IS1) |
|
1215 GR = np.dot(ARP,IS1) |
|
1216 HT = np.dot(ATP,IS2) |
|
1217 HR = np.dot(ARP,IS2) |
|
1218 else: |
|
1219 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)]) |
|
1220 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)]) |
|
1221 GT = np.dot(ATPe,IS1e) |
|
1222 GR = np.dot(ARPe,IS1e) |
|
1223 HT = np.dot(ATPe,IS2e) |
|
1224 HR = np.dot(ARPe,IS2e) |
|
1225 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1226 # parameters for calibration with aCal |
|
1227 AT = ATP1*IinP + sqr05*DiC*(ATP1*QinPe + ATP2e*IinP) + (1-0.5*WiC)*(ATP2e*QinPe + ATP3e*UinPe) + ZiC*(sqr05*SinC*(ATP3e*VinP-ATP4*UinPe) + ATP4*CosC*VinP) |
|
1228 BT = sqr05*DiC*(ATP1*UinPe + ATP3e*IinP) + 0.5*WiC*(ATP2e*UinPe + ATP3e*QinPe) - sqr05*ZiC*SinC*(ATP2e*VinP - ATP4*QinPe) |
|
1229 AR = ARP1*IinP + sqr05*DiC*(ARP1*QinPe + ARP2e*IinP) + (1-0.5*WiC)*(ARP2e*QinPe + ARP3e*UinPe) + ZiC*(sqr05*SinC*(ARP3e*VinP-ARP4*UinPe) + ARP4*CosC*VinP) |
|
1230 BR = sqr05*DiC*(ARP1*UinPe + ARP3e*IinP) + 0.5*WiC*(ARP2e*UinPe + ARP3e*QinPe) - sqr05*ZiC*SinC*(ARP2e*VinP - ARP4*QinPe) |
|
1231 # Correction paremeters for normal measurements; they are independent of LDR |
|
1232 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1233 IS1 = np.array([IinPo,QinPo,UinPo,VinPo]) |
|
1234 IS2 = np.array([IinPa,QinPa,UinPa,VinPa]) |
|
1235 GT = np.dot(ATP,IS1) |
|
1236 GR = np.dot(ARP,IS1) |
|
1237 HT = np.dot(ATP,IS2) |
|
1238 HR = np.dot(ARP,IS2) |
|
1239 else: |
|
1240 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)]) |
|
1241 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)]) |
|
1242 GT = np.dot(ATPe,IS1e) |
|
1243 GR = np.dot(ARPe,IS1e) |
|
1244 HT = np.dot(ATPe,IS2e) |
|
1245 HR = np.dot(ARPe,IS2e) |
|
1246 else: |
|
1247 print("Calibrator not implemented yet") |
|
1248 sys.exit() |
|
1249 |
|
1250 elif LocC == 3: # C before receiver optics Eq.57 |
|
1251 |
|
1252 #S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
1253 #C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
1254 S2e = np.sin(np.deg2rad(2*RotC)) |
|
1255 C2e = np.cos(np.deg2rad(2*RotC)) |
|
1256 |
|
1257 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1258 AF1 = np.array([1,C2g*DiO,S2g*DiO,0]) |
|
1259 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO]) |
|
1260 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO]) |
|
1261 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO]) |
|
1262 |
|
1263 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4) |
|
1264 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4) |
|
1265 ATF1 = ATF[0] |
|
1266 ATF2 = ATF[1] |
|
1267 ATF3 = ATF[2] |
|
1268 ATF4 = ATF[3] |
|
1269 ARF1 = ARF[0] |
|
1270 ARF2 = ARF[1] |
|
1271 ARF3 = ARF[2] |
|
1272 ARF4 = ARF[3] |
|
1273 |
|
1274 # rotated AinF by epsilon |
|
1275 ATF2e = C2e*ATF[1] + S2e*ATF[2] |
|
1276 ATF3e = C2e*ATF[2] - S2e*ATF[1] |
|
1277 ARF2e = C2e*ARF[1] + S2e*ARF[2] |
|
1278 ARF3e = C2e*ARF[2] - S2e*ARF[1] |
|
1279 |
|
1280 ATFe = np.array([ATF1,ATF2e,ATF3e,ATF4]) |
|
1281 ARFe = np.array([ARF1,ARF2e,ARF3e,ARF4]) |
|
1282 |
|
1283 QinEe = C2e*QinE + S2e*UinE |
|
1284 UinEe = C2e*UinE - S2e*QinE |
|
1285 |
|
1286 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1287 IinF = IinE |
|
1288 QinF = aCal*QinE |
|
1289 UinF = -aCal*UinE |
|
1290 VinF = (1.-2.*aCal)*VinE |
|
1291 |
|
1292 IinFo = IinE |
|
1293 QinFo = 0. |
|
1294 UinFo = 0. |
|
1295 VinFo = VinE |
|
1296 |
|
1297 IinFa = 0. |
|
1298 QinFa = QinE |
|
1299 UinFa = -UinE |
|
1300 VinFa = -2.*VinE |
|
1301 |
|
1302 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
1303 QinFe = C2e*QinF + S2e*UinF |
|
1304 UinFe = C2e*UinF - S2e*QinF |
|
1305 QinFoe = C2e*QinFo + S2e*UinFo |
|
1306 UinFoe = C2e*UinFo - S2e*QinFo |
|
1307 QinFae = C2e*QinFa + S2e*UinFa |
|
1308 UinFae = C2e*UinFa - S2e*QinFa |
|
1309 |
|
1310 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1311 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1312 AT = ATF1*IinF + ATF4*h*VinF |
|
1313 BT = ATF3e*QinF - ATF2e*h*UinF |
|
1314 AR = ARF1*IinF + ARF4*h*VinF |
|
1315 BR = ARF3e*QinF - ARF2e*h*UinF |
|
1316 |
|
1317 # Correction paremeters for normal measurements; they are independent of LDR |
|
1318 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1319 GT = ATF1*IinE + ATF4*VinE |
|
1320 GR = ARF1*IinE + ARF4*VinE |
|
1321 HT = ATF2*QinE - ATF3*UinE - ATF4*2*VinE |
|
1322 HR = ARF2*QinE - ARF3*UinE - ARF4*2*VinE |
|
1323 else: |
|
1324 GT = ATF1*IinE + ATF4*h*VinE |
|
1325 GR = ARF1*IinE + ARF4*h*VinE |
|
1326 HT = ATF2e*QinE - ATF3e*h*UinE - ATF4*h*2*VinE |
|
1327 HR = ARF2e*QinE - ARF3e*h*UinE - ARF4*h*2*VinE |
|
1328 |
|
1329 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1330 # p = +45°, m = -45° |
|
1331 IF1e = np.array([IinF, ZiC*CosC*QinFe, UinFe, ZiC*CosC*VinF]) |
|
1332 IF2e = np.array([DiC*UinFe, -ZiC*SinC*VinF, DiC*IinF, ZiC*SinC*QinFe]) |
|
1333 |
|
1334 AT = np.dot(ATFe,IF1e) |
|
1335 AR = np.dot(ARFe,IF1e) |
|
1336 BT = np.dot(ATFe,IF2e) |
|
1337 BR = np.dot(ARFe,IF2e) |
|
1338 |
|
1339 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
1340 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1341 IS1 = np.array([IinE,0,0,VinE]) |
|
1342 IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
1343 |
|
1344 GT = np.dot(ATF,IS1) |
|
1345 GR = np.dot(ARF,IS1) |
|
1346 HT = np.dot(ATF,IS2) |
|
1347 HR = np.dot(ARF,IS2) |
|
1348 else: |
|
1349 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)]) |
|
1350 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)]) |
|
1351 GT = np.dot(ATFe,IS1e) |
|
1352 GR = np.dot(ARFe,IS1e) |
|
1353 HT = np.dot(ATFe,IS2e) |
|
1354 HR = np.dot(ARFe,IS2e) |
|
1355 |
|
1356 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1357 # p = +22.5°, m = -22.5° |
|
1358 IF1e = np.array([IinF+sqr05*DiC*QinFe, sqr05*DiC*IinF+(1-0.5*WiC)*QinFe, (1-0.5*WiC)*UinFe+sqr05*ZiC*SinC*VinF, -sqr05*ZiC*SinC*UinFe+ZiC*CosC*VinF]) |
|
1359 IF2e = np.array([sqr05*DiC*UinFe, 0.5*WiC*UinFe-sqr05*ZiC*SinC*VinF, sqr05*DiC*IinF+0.5*WiC*QinFe, sqr05*ZiC*SinC*QinFe]) |
|
1360 |
|
1361 AT = np.dot(ATFe,IF1e) |
|
1362 AR = np.dot(ARFe,IF1e) |
|
1363 BT = np.dot(ATFe,IF2e) |
|
1364 BR = np.dot(ARFe,IF2e) |
|
1365 |
|
1366 # Correction paremeters for normal measurements; they are independent of LDR |
|
1367 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1368 #IS1 = np.array([IinE,0,0,VinE]) |
|
1369 #IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
1370 IS1 = np.array([IinFo,0,0,VinFo]) |
|
1371 IS2 = np.array([0,QinFa,UinFa,VinFa]) |
|
1372 GT = np.dot(ATF,IS1) |
|
1373 GR = np.dot(ARF,IS1) |
|
1374 HT = np.dot(ATF,IS2) |
|
1375 HR = np.dot(ARF,IS2) |
|
1376 else: |
|
1377 #IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE]) |
|
1378 #IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)]) |
|
1379 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)]) |
|
1380 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)]) |
|
1381 GT = np.dot(ATFe,IS1e) |
|
1382 GR = np.dot(ARFe,IS1e) |
|
1383 HT = np.dot(ATFe,IS2e) |
|
1384 HR = np.dot(ARFe,IS2e) |
|
1385 |
|
1386 |
|
1387 else: |
|
1388 print('Calibrator not implemented yet') |
|
1389 sys.exit() |
|
1390 |
|
1391 elif LocC == 2: # C behind emitter optics Eq.57 |
|
1392 #print("Calibrator location not implemented yet") |
|
1393 S2e = np.sin(np.deg2rad(2*RotC)) |
|
1394 C2e = np.cos(np.deg2rad(2*RotC)) |
|
1395 |
|
1396 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1397 AF1 = np.array([1,C2g*DiO,S2g*DiO,0]) |
|
1398 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO]) |
|
1399 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO]) |
|
1400 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO]) |
|
1401 |
|
1402 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4) |
|
1403 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4) |
|
1404 ATF1 = ATF[0] |
|
1405 ATF2 = ATF[1] |
|
1406 ATF3 = ATF[2] |
|
1407 ATF4 = ATF[3] |
|
1408 ARF1 = ARF[0] |
|
1409 ARF2 = ARF[1] |
|
1410 ARF3 = ARF[2] |
|
1411 ARF4 = ARF[3] |
|
1412 |
|
1413 # AS with C behind the emitter -------------------------------------------- |
|
1414 # terms without aCal |
|
1415 ATE1o, ARE1o = ATF1, ARF1 |
|
1416 ATE2o, ARE2o = 0., 0. |
|
1417 ATE3o, ARE3o = 0., 0. |
|
1418 ATE4o, ARE4o = ATF4, ARF4 |
|
1419 # terms with aCal |
|
1420 ATE1a, ARE1a = 0. , 0. |
|
1421 ATE2a, ARE2a = ATF2, ARF2 |
|
1422 ATE3a, ARE3a = -ATF3, -ARF3 |
|
1423 ATE4a, ARE4a = -2*ATF4, -2*ARF4 |
|
1424 # rotated AinEa by epsilon |
|
1425 ATE2ae = C2e*ATF2 + S2e*ATF3 |
|
1426 ATE3ae = -S2e*ATF2 - C2e*ATF3 |
|
1427 ARE2ae = C2e*ARF2 + S2e*ARF3 |
|
1428 ARE3ae = -S2e*ARF2 - C2e*ARF3 |
|
1429 |
|
1430 ATE1 = ATE1o |
|
1431 ATE2e = aCal*ATE2ae |
|
1432 ATE3e = aCal*ATE3ae |
|
1433 ATE4 = (1-2*aCal)*ATF4 |
|
1434 ARE1 = ARE1o |
|
1435 ARE2e = aCal*ARE2ae |
|
1436 ARE3e = aCal*ARE3ae |
|
1437 ARE4 = (1-2*aCal)*ARF4 |
|
1438 |
|
1439 # rotated IinE |
|
1440 QinEe = C2e*QinE + S2e*UinE |
|
1441 UinEe = C2e*UinE - S2e*QinE |
|
1442 |
|
1443 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1444 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
1445 AT = ATE1o*IinE + (ATE4o+aCal*ATE4a)*h*VinE |
|
1446 BT = aCal * (ATE3ae*QinEe - ATE2ae*h*UinEe) |
|
1447 AR = ARE1o*IinE + (ARE4o+aCal*ARE4a)*h*VinE |
|
1448 BR = aCal * (ARE3ae*QinEe - ARE2ae*h*UinEe) |
|
1449 |
|
1450 # Correction paremeters for normal measurements; they are independent of LDR |
|
1451 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1452 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1453 GT = ATE1o*IinE + ATE4o*h*VinE |
|
1454 GR = ARE1o*IinE + ARE4o*h*VinE |
|
1455 HT = ATE2a*QinE + ATE3a*h*UinEe + ATE4a*h*VinE |
|
1456 HR = ARE2a*QinE + ARE3a*h*UinEe + ARE4a*h*VinE |
|
1457 else: |
|
1458 GT = ATE1o*IinE + ATE4o*h*VinE |
|
1459 GR = ARE1o*IinE + ARE4o*h*VinE |
|
1460 HT = ATE2ae*QinE + ATE3ae*h*UinEe + ATE4a*h*VinE |
|
1461 HR = ARE2ae*QinE + ARE3ae*h*UinEe + ARE4a*h*VinE |
|
1462 |
|
1463 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
1464 # p = +45°, m = -45° |
|
1465 AT = ATE1*IinE + ZiC*CosC*(ATE2e*QinEe + ATE4*VinE) + ATE3e*UinEe |
|
1466 BT = DiC*(ATE1*UinEe + ATE3e*IinE) + ZiC*SinC*(ATE4*QinEe - ATE2e*VinE) |
|
1467 AR = ARE1*IinE + ZiC*CosC*(ARE2e*QinEe + ARE4*VinE) + ARE3e*UinEe |
|
1468 BR = DiC*(ARE1*UinEe + ARE3e*IinE) + ZiC*SinC*(ARE4*QinEe - ARE2e*VinE) |
|
1469 |
|
1470 # Correction paremeters for normal measurements; they are independent of LDR |
|
1471 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1472 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1473 GT = ATE1o*IinE + ATE4o*VinE |
|
1474 GR = ARE1o*IinE + ARE4o*VinE |
|
1475 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE |
|
1476 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE |
|
1477 else: |
|
1478 D = IinE + DiC*QinEe |
|
1479 A = DiC*IinE + QinEe |
|
1480 B = ZiC*(CosC*UinEe + SinC*VinE) |
|
1481 C = -ZiC*(SinC*UinEe - CosC*VinE) |
|
1482 GT = ATE1o*D + ATE4o*C |
|
1483 GR = ARE1o*D + ARE4o*C |
|
1484 HT = ATE2a*A + ATE3a*B + ATE4a*C |
|
1485 HR = ARE2a*A + ARE3a*B + ARE4a*C |
|
1486 |
|
1487 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1488 # p = +22.5°, m = -22.5° |
|
1489 IE1e = np.array([IinE+sqr05*DiC*QinEe, sqr05*DiC*IinE+(1-0.5*WiC)*QinEe, (1-0.5*WiC)*UinEe+sqr05*ZiC*SinC*VinE, -sqr05*ZiC*SinC*UinEe+ZiC*CosC*VinE]) |
|
1490 IE2e = np.array([sqr05*DiC*UinEe, 0.5*WiC*UinEe-sqr05*ZiC*SinC*VinE, sqr05*DiC*IinE+0.5*WiC*QinEe, sqr05*ZiC*SinC*QinEe]) |
|
1491 ATEe = np.array([ATE1,ATE2e,ATE3e,ATE4]) |
|
1492 AREe = np.array([ARE1,ARE2e,ARE3e,ARE4]) |
|
1493 AT = np.dot(ATEe,IE1e) |
|
1494 AR = np.dot(AREe,IE1e) |
|
1495 BT = np.dot(ATEe,IE2e) |
|
1496 BR = np.dot(AREe,IE2e) |
|
1497 |
|
1498 # Correction paremeters for normal measurements; they are independent of LDR |
|
1499 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1500 GT = ATE1o*IinE + ATE4o*VinE |
|
1501 GR = ARE1o*IinE + ARE4o*VinE |
|
1502 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE |
|
1503 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE |
|
1504 else: |
|
1505 D = IinE + DiC*QinEe |
|
1506 A = DiC*IinE + QinEe |
|
1507 B = ZiC*(CosC*UinEe + SinC*VinE) |
|
1508 C = -ZiC*(SinC*UinEe - CosC*VinE) |
|
1509 GT = ATE1o*D + ATE4o*C |
|
1510 GR = ARE1o*D + ARE4o*C |
|
1511 HT = ATE2a*A + ATE3a*B + ATE4a*C |
|
1512 HR = ARE2a*A + ARE3a*B + ARE4a*C |
|
1513 |
|
1514 else: |
|
1515 print('Calibrator not implemented yet') |
|
1516 sys.exit() |
|
1517 |
|
1518 # Calibration signals with aCal => Determination of the correction K of the real calibration factor |
|
1519 IoutTp = TaT*TiT*TiO*TiE*(AT + BT) |
|
1520 IoutTm = TaT*TiT*TiO*TiE*(AT - BT) |
|
1521 IoutRp = TaR*TiR*TiO*TiE*(AR + BR) |
|
1522 IoutRm = TaR*TiR*TiO*TiE*(AR - BR) |
|
1523 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 |
|
1524 #Eta = TiR/TiT # Eta = Eta*/K Eq. 84 |
|
1525 Etapx = IoutRp/IoutTp |
|
1526 Etamx = IoutRm/IoutTm |
|
1527 Etax = (Etapx*Etamx)**0.5 |
|
1528 K = Etax / Eta0 |
|
1529 #print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km)) |
|
1530 #print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km)) |
|
1531 |
|
1532 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
1533 #Eta_test_p = (IoutRp/IoutTp) |
|
1534 #Eta_test_m = (IoutRm/IoutTm) |
|
1535 #Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
1536 |
|
1537 # ************************************************************************* |
|
1538 iLDR = -1 |
|
1539 for LDRTrue in LDRrange: |
|
1540 iLDR = iLDR + 1 |
|
1541 atrue = (1-LDRTrue)/(1+LDRTrue) |
|
1542 # ----- Forward simulated signals and LDRsim with atrue; from input file |
|
1543 It = TaT*TiT*TiO*TiE*(GT+atrue*HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT) |
|
1544 Ir = TaR*TiR*TiO*TiE*(GR+atrue*HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR) |
|
1545 |
|
1546 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
1547 LDRsim = Ir/It # simulated uncorrected LDR with Y from input file |
|
1548 ''' |
|
1549 if Y == 1.: |
|
1550 LDRsimx = LDRsim |
|
1551 LDRsimx2 = LDRsim2 |
|
1552 else: |
|
1553 LDRsimx = 1./LDRsim |
|
1554 LDRsimx2 = 1./LDRsim2 |
|
1555 ''' |
|
1556 # ----- Backward correction |
|
1557 # Corrected LDRCorr from forward simulated LDRsim (atrue) with assumed true G0,H0,K0 |
|
1558 LDRCorr = (LDRsim*K0/Etax*(GT0+HT0)-(GR0+HR0))/((GR0-HR0)-LDRsim*K0/Etax*(GT0-HT0)) |
|
1559 |
|
1560 # -- F11corr from It and Ir and calibration EtaX |
|
1561 Text1 = "F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1" |
|
1562 F11corr = 1/(TiO*TiE)*((HR0*Etax/K0*It/TTa-HT0*Ir/TRa)/(HR0*GT0-HT0*GR0)) # IL = 1 Eq.(64) |
|
1563 |
|
1564 #Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)" |
|
1565 #F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64) |
|
1566 |
|
1567 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs) |
|
1568 #Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1" |
|
1569 #F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0)) |
|
1570 # !!! see below line 1673ff |
|
1571 |
|
1572 aF11corr[iLDR,iN] = F11corr |
|
1573 aA[iLDR,iN] = LDRCorr |
|
1574 |
|
1575 aX[0,iN] = GR |
|
1576 aX[1,iN] = GT |
|
1577 aX[2,iN] = HR |
|
1578 aX[3,iN] = HT |
|
1579 aX[4,iN] = K |
|
1580 |
|
1581 aLDRCal[iN] = iLDRCal |
|
1582 aERaT[iN] = iERaT |
|
1583 aERaR[iN] = iERaR |
|
1584 aRotaT[iN] = iRotaT |
|
1585 aRotaR[iN] = iRotaR |
|
1586 aRetT[iN] = iRetT |
|
1587 aRetR[iN] = iRetR |
|
1588 |
|
1589 aRotL[iN] = iRotL |
|
1590 aRotE[iN] = iRotE |
|
1591 aRetE[iN] = iRetE |
|
1592 aRotO[iN] = iRotO |
|
1593 aRetO[iN] = iRetO |
|
1594 aRotC[iN] = iRotC |
|
1595 aRetC[iN] = iRetC |
|
1596 aDiO[iN] = iDiO |
|
1597 aDiE[iN] = iDiE |
|
1598 aDiC[iN] = iDiC |
|
1599 aTP[iN] = iTP |
|
1600 aTS[iN] = iTS |
|
1601 aRP[iN] = iRP |
|
1602 aRS[iN] = iRS |
|
1603 |
|
1604 # --- END loop |
|
1605 btime = clock() |
|
1606 print("\r done in ", "{0:5.0f}".format(btime-atime), "sec") #, end="\r") |
|
1607 |
|
1608 # --- Plot ----------------------------------------------------------------- |
|
1609 #sns.set_style("whitegrid") |
|
1610 #sns.set_palette("bright", 6) |
|
1611 |
|
1612 ''' |
|
1613 fig2 = plt.figure() |
|
1614 plt.plot(aA[2,:],'b.') |
|
1615 plt.plot(aA[3,:],'r.') |
|
1616 plt.plot(aA[4,:],'g.') |
|
1617 #plt.plot(aA[6,:],'c.') |
|
1618 plt.show |
|
1619 ''' |
|
1620 |
|
1621 |
|
1622 # Plot LDR |
|
1623 def PlotSubHist(aVar, aX, X0, daX, iaX, naX): |
|
1624 |
|
1625 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
1626 iLDR = -1 |
|
1627 for LDRTrue in LDRrange: |
|
1628 iLDR = iLDR + 1 |
|
1629 |
|
1630 LDRmin[iLDR] = np.min(aA[iLDR,:]) |
|
1631 LDRmax[iLDR] = np.max(aA[iLDR,:]) |
|
1632 Rmin = LDRmin[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995 |
|
1633 Rmax = LDRmax[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005 |
|
1634 |
|
1635 #plt.subplot(5,2,iLDR+1) |
|
1636 plt.subplot(1,5,iLDR+1) |
|
1637 (n, bins, patches) = plt.hist(aA[iLDR,:], |
|
1638 bins=100, log=False, |
|
1639 range=[Rmin, Rmax], |
|
1640 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled') |
|
1641 |
|
1642 for iaX in range(-naX,naX+1): |
|
1643 plt.hist(aA[iLDR,aX == iaX], |
|
1644 range=[Rmin, Rmax], |
|
1645 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) |
|
1646 |
|
1647 if (iLDR == 2): plt.legend() |
|
1648 |
|
1649 plt.tick_params(axis='both', labelsize=9) |
|
1650 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
1651 |
|
1652 #plt.title(LID + ' ' + aVar, fontsize=18) |
|
1653 #plt.ylabel('frequency', fontsize=10) |
|
1654 #plt.xlabel('LDRcorr', fontsize=10) |
|
1655 #fig.tight_layout() |
|
1656 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
1657 #plt.show() |
|
1658 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
1659 #plt.close |
|
1660 return |
|
1661 |
|
1662 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
1663 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
1664 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
1665 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
1666 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
1667 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
1668 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
1669 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
1670 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
1671 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
1672 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP) |
|
1673 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS) |
|
1674 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP) |
|
1675 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS) |
|
1676 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
1677 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
1678 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
1679 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
1680 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
1681 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
1682 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
1683 |
|
1684 plt.show() |
|
1685 plt.close |
|
1686 |
|
1687 print() |
|
1688 #print("IT(LDRtrue) devided by IT(LDRtrue = 0.004)") |
|
1689 print(Text1) |
|
1690 print() |
|
1691 |
|
1692 iLDR = 5 |
|
1693 for LDRTrue in LDRrange: |
|
1694 iLDR = iLDR - 1 |
|
1695 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0 |
|
1696 |
|
1697 # Plot F11 |
|
1698 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX): |
|
1699 |
|
1700 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
1701 iLDR = -1 |
|
1702 for LDRTrue in LDRrange: |
|
1703 iLDR = iLDR + 1 |
|
1704 |
|
1705 ''' |
|
1706 F11min[iLDR] = np.min(aF11corr[iLDR,:]) |
|
1707 F11max[iLDR] = np.max(aF11corr[iLDR,:]) |
|
1708 Rmin = F11min[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995 |
|
1709 Rmax = F11max[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005 |
|
1710 ''' |
|
1711 #Rmin = 0.8 |
|
1712 #Rmax = 1.2 |
|
1713 |
|
1714 #plt.subplot(5,2,iLDR+1) |
|
1715 plt.subplot(1,5,iLDR+1) |
|
1716 (n, bins, patches) = plt.hist(aF11corr[iLDR,:], |
|
1717 bins=100, log=False, |
|
1718 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled') |
|
1719 |
|
1720 for iaX in range(-naX,naX+1): |
|
1721 plt.hist(aF11corr[iLDR,aX == iaX], |
|
1722 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) |
|
1723 |
|
1724 if (iLDR == 2): plt.legend() |
|
1725 |
|
1726 plt.tick_params(axis='both', labelsize=9) |
|
1727 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
1728 |
|
1729 #plt.title(LID + ' ' + aVar, fontsize=18) |
|
1730 #plt.ylabel('frequency', fontsize=10) |
|
1731 #plt.xlabel('LDRcorr', fontsize=10) |
|
1732 #fig.tight_layout() |
|
1733 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
1734 #plt.show() |
|
1735 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
1736 #plt.close |
|
1737 return |
|
1738 |
|
1739 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
1740 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
1741 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
1742 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
1743 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
1744 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
1745 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
1746 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
1747 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
1748 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
1749 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP) |
|
1750 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS) |
|
1751 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP) |
|
1752 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS) |
|
1753 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
1754 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
1755 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
1756 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
1757 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
1758 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
1759 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
1760 |
|
1761 plt.show() |
|
1762 plt.close |
|
1763 ''' |
|
1764 # only histogram |
|
1765 #print("******************* " + aVar + " *******************") |
|
1766 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10)) |
|
1767 iLDR = -1 |
|
1768 for LDRTrue in LDRrange: |
|
1769 iLDR = iLDR + 1 |
|
1770 LDRmin[iLDR] = np.min(aA[iLDR,:]) |
|
1771 LDRmax[iLDR] = np.max(aA[iLDR,:]) |
|
1772 Rmin = np.min(aA[iLDR,:]) * 0.999 |
|
1773 Rmax = np.max(aA[iLDR,:]) * 1.001 |
|
1774 plt.subplot(5,2,iLDR+1) |
|
1775 (n, bins, patches) = plt.hist(aA[iLDR,:], |
|
1776 range=[Rmin, Rmax], |
|
1777 bins=200, log=False, alpha=0.2, normed=False, color = '0.5', histtype='stepfilled') |
|
1778 plt.tick_params(axis='both', labelsize=9) |
|
1779 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
1780 plt.show() |
|
1781 plt.close |
|
1782 ''' |
|
1783 |
|
1784 # --- Plot LDRmin, LDRmax |
|
1785 fig2 = plt.figure() |
|
1786 plt.plot(LDRrange,LDRmax-LDRrange, linewidth=2.0, color='b') |
|
1787 plt.plot(LDRrange,LDRmin-LDRrange, linewidth=2.0, color='g') |
|
1788 |
|
1789 plt.xlabel('LDRtrue', fontsize=18) |
|
1790 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14) |
|
1791 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18) |
|
1792 #plt.ylimit(-0.07, 0.07) |
|
1793 plt.show() |
|
1794 plt.close |
|
1795 |
|
1796 # --- Save LDRmin, LDRmax to file |
|
1797 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python |
|
1798 with open('LDR_min_max_ver7_' + LID + '.dat', 'w') as f: |
|
1799 with redirect_stdout(f): |
|
1800 print(LID) |
|
1801 print("LDRtrue, LDRmin, LDRmax") |
|
1802 for i in range(len(LDRrange)): |
|
1803 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrange[i], LDRmin[i], LDRmax[i])) |
|
1804 |
|
1805 ''' |
|
1806 # --- Plot K over LDRCal |
|
1807 fig3 = plt.figure() |
|
1808 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aX[4,:], linewidth=2.0, color='b') |
|
1809 |
|
1810 plt.xlabel('LDRCal', fontsize=18) |
|
1811 plt.ylabel('K', fontsize=14) |
|
1812 plt.title(LID, fontsize=18) |
|
1813 plt.show() |
|
1814 plt.close |
|
1815 ''' |
|
1816 |
|
1817 # Additional plot routines ======> |
|
1818 ''' |
|
1819 #****************************************************************************** |
|
1820 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel) |
|
1821 LDRa = np.arange(1.,100.)*0.005 |
|
1822 LDRCorra = np.arange(1.,100.) |
|
1823 if Y == - 1.: LDRa = 1./LDRa |
|
1824 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT)) |
|
1825 if Y == - 1.: LDRa = 1./LDRa |
|
1826 # |
|
1827 #fig = plt.figure() |
|
1828 plt.plot(LDRa,LDRCorra-LDRa) |
|
1829 plt.plot([0.,0.5],[0.,0.5]) |
|
1830 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16) |
|
1831 plt.xlabel('LDR', fontsize=18) |
|
1832 plt.ylabel('LDRCorr - LDR', fontsize=16) |
|
1833 #plt.savefig('test.png') |
|
1834 # |
|
1835 ''' |
|
1836 ''' |
|
1837 #****************************************************************************** |
|
1838 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue |
|
1839 LDRa = np.arange(1.,100.)*0.005 |
|
1840 LDRsima = np.arange(1.,100.) |
|
1841 |
|
1842 atruea = (1.-LDRa)/(1+LDRa) |
|
1843 Ita = TiT*TiO*IinL*(GT+atruea*HT) |
|
1844 Ira = TiR*TiO*IinL*(GR+atruea*HR) |
|
1845 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file |
|
1846 if Y == -1.: LDRsima = 1./LDRsima |
|
1847 # |
|
1848 #fig = plt.figure() |
|
1849 plt.plot(LDRa,LDRsima) |
|
1850 plt.plot([0.,0.5],[0.,0.5]) |
|
1851 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10) |
|
1852 plt.xlabel('LDRtrue', fontsize=18) |
|
1853 plt.ylabel('LDRsim', fontsize=16) |
|
1854 #plt.savefig('test.png') |
|
1855 # |
|
1856 ''' |