1 # -*- coding: utf-8 -*- |
|
2 """ |
|
3 Copyright 2016, 2019 Volker Freudenthaler |
|
4 |
|
5 Licensed under the EUPL, Version 1.1 only (the "Licence"). |
|
6 |
|
7 You may not use this work except in compliance with the Licence. |
|
8 A copy of the licence is distributed with the code. Alternatively, you may obtain |
|
9 a copy of the Licence at: |
|
10 |
|
11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl |
|
12 |
|
13 Unless required by applicable law or agreed to in writing, software distributed |
|
14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS |
|
15 OF ANY KIND, either express or implied. See the Licence for the specific language governing |
|
16 permissions and limitations under the Licence. |
|
17 |
|
18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf |
|
19 With equations code from Appendix C |
|
20 Python 3.7, seaborn 0.9.0 |
|
21 |
|
22 Code description: |
|
23 |
|
24 From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR) |
|
25 because of the cross talk between the channles and systematic errors of a lidar system. |
|
26 http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors, |
|
27 with which the measured signals can be corrected. |
|
28 This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K). |
|
29 The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to |
|
30 uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the |
|
31 gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true" |
|
32 GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRcorr), |
|
33 which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue. |
|
34 A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal |
|
35 in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for |
|
36 "assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error |
|
37 calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol |
|
38 content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005). |
|
39 |
|
40 Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file. |
|
41 |
|
42 Ver. 0.9.8: - for details, see "Improvements_of_lidar_correction_ghk_ver.0.9.8_190124.pdf" |
|
43 - correct calculation of Eta for cleaned anaylsers considering the combined transmission Eta = (TaT* TiT)(1 + cos2RotaT * DaT * DiT) and (TaR * TiR)(1 + cos2RotaR * DaR * DiR) according to the papers supplement Eqs. (S.10.10.1) ff |
|
44 - ND-filters can be added for the calibration measurements in the transmitted (TCalT) and the reflected path (TCalR) in order to include their uncertainties in the error calculation. |
|
45 - includes the simulation of signal noise |
|
46 """ |
|
47 # Comment: The code might works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements. |
|
48 from __future__ import print_function |
|
49 # !/usr/bin/env python3 |
|
50 |
|
51 import os |
|
52 import sys |
|
53 |
|
54 import numpy as np |
|
55 |
|
56 # Comment: the seaborn library makes nicer plots, but the code works also without it. |
|
57 try: |
|
58 import seaborn as sns |
|
59 |
|
60 sns_loaded = True |
|
61 except ImportError: |
|
62 sns_loaded = False |
|
63 |
|
64 import matplotlib.pyplot as plt |
|
65 # from time import clock # python 2 |
|
66 from timeit import default_timer as clock |
|
67 |
|
68 # from matplotlib.backends.backend_pdf import PdfPages |
|
69 # pdffile = '{}.pdf'.format('path') |
|
70 # pp = PdfPages(pdffile) |
|
71 ## pp.savefig can be called multiple times to save to multiple pages |
|
72 # pp.savefig() |
|
73 # pp.close() |
|
74 |
|
75 from contextlib import contextmanager |
|
76 |
|
77 @contextmanager |
|
78 def redirect_stdout(new_target): |
|
79 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout |
|
80 try: |
|
81 yield new_target # run some code with the replaced stdout |
|
82 finally: |
|
83 sys.stdout.flush() |
|
84 sys.stdout = old_target # restore to the previous value |
|
85 |
|
86 ''' |
|
87 real_raw_input = vars(__builtins__).get('raw_input',input) |
|
88 ''' |
|
89 try: |
|
90 import __builtin__ |
|
91 |
|
92 input = getattr(__builtin__, 'raw_input') |
|
93 except (ImportError, AttributeError): |
|
94 pass |
|
95 |
|
96 from distutils.util import strtobool |
|
97 |
|
98 |
|
99 def user_yes_no_query(question): |
|
100 sys.stdout.write('%s [y/n]\n' % question) |
|
101 while True: |
|
102 try: |
|
103 return strtobool(input().lower()) |
|
104 except ValueError: |
|
105 sys.stdout.write('Please respond with \'y\' or \'n\'.\n') |
|
106 |
|
107 |
|
108 # if user_yes_no_query('want to exit?') == 1: sys.exit() |
|
109 |
|
110 abspath = os.path.abspath(__file__) |
|
111 dname = os.path.dirname(abspath) |
|
112 fname = os.path.basename(abspath) |
|
113 os.chdir(dname) |
|
114 |
|
115 # PrintToOutputFile = True |
|
116 |
|
117 sqr05 = 0.5 ** 0.5 |
|
118 |
|
119 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below |
|
120 # Do you want to calculate the errors? If not, just the GHK-parameters are determined. |
|
121 ScriptVersion = "0.9.8d" |
|
122 Error_Calc = True |
|
123 LID = "internal" |
|
124 EID = "internal" |
|
125 # --- IL Laser IL and +-Uncertainty |
|
126 DOLP, dDOLP, nDOLP = 0.995, 0.005, 1 # degree of linear polarization; default 1 |
|
127 RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0 |
|
128 # IL = 1e5 #photons in the laser beam, including detection efficiency of the telescope, atmodspheric and r^2 attenuation |
|
129 # --- ME Emitter and +-Uncertainty |
|
130 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation |
|
131 TiE = 1. # Unpolarized transmittance |
|
132 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees |
|
133 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees |
|
134 # --- MO Receiver Optics including telescope |
|
135 DiO, dDiO, nDiO = -0.055, 0.003, 1 |
|
136 TiO = 0.9 |
|
137 RetO, dRetO, nRetO = 0., 180.0, 2 |
|
138 RotO, dRotO, nRotO = 0., 0.1, 1 # gamma |
|
139 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty |
|
140 TP, dTP, nTP = 0.98, 0.02, 1 |
|
141 TS, dTS, nTS = 0.001, 0.001, 1 |
|
142 TiT = 0.5 * (TP + TS) |
|
143 DiT = (TP - TS) / (TP + TS) |
|
144 # PolFilter |
|
145 RetT, dRetT, nRetT = 0., 180., 0 |
|
146 ERaT, dERaT, nERaT = 0.001, 0.001, 1 |
|
147 RotaT, dRotaT, nRotaT = 0., 3., 1 |
|
148 DaT = (1 - ERaT) / (1 + ERaT) |
|
149 TaT = 0.5 * (1 + ERaT) |
|
150 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty |
|
151 RS_RP_depend_on_TS_TP = False |
|
152 if (RS_RP_depend_on_TS_TP): |
|
153 RP, dRP, nRP = 1 - TP, 0.00, 0 |
|
154 RS, dRS, nRS = 1 - TS, 0.00, 0 |
|
155 else: |
|
156 RP, dRP, nRP = 0.05, 0.01, 1 |
|
157 RS, dRS, nRS = 0.98, 0.01, 1 |
|
158 TiR = 0.5 * (RP + RS) |
|
159 DiR = (RP - RS) / (RP + RS) |
|
160 # PolFilter |
|
161 RetR, dRetR, nRetR = 0., 180., 0 |
|
162 ERaR, dERaR, nERaR = 0.001, 0.001, 1 |
|
163 RotaR, dRotaR, nRotaR = 90., 3., 1 |
|
164 DaR = (1 - ERaR) / (1 + ERaR) |
|
165 TaR = 0.5 * (1 + ERaR) |
|
166 |
|
167 # +++ Orientation of the PBS with respect to the reference plane (see Polarisation-orientation.png and Polarisation-orientation-2.png in /system_settings) |
|
168 # Y = +1: polarisation in reference plane is finally transmitted, |
|
169 # Y = -1: polarisation in reference plane is finally reflected. |
|
170 Y = 1. |
|
171 |
|
172 # Calibrator = type defined by matrix values |
|
173 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4 |
|
174 |
|
175 # --- Additional attenuation (transmission of the ND-filter) during the calibration |
|
176 TCalT, dTCalT, nTCalT = 1, 0, 0 # transmitting path; error calc not working yet |
|
177 TCalR, dTCalR, nTCalR = 1, 0, 0 # reflecting path; error calc not working yet |
|
178 |
|
179 # *** signal noise error calculation |
|
180 # --- number of photon counts in the signal summed up in the calibration range during the calibration measurements |
|
181 NCalT = 1e6 # default 1e6, assumed the same in +45° and -45° signals |
|
182 NCalR = 1e6 # default 1e6, assumed the same in +45° and -45° signals |
|
183 NILfac = 200 # duration of standard (0°) measurement relative to calibration measurements |
|
184 nNCal = 0 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
185 nNI = 0 # error nNI: one-sigma in steps to left and right for 0° signals |
|
186 IoutTp0, IoutTp, dIoutTp0 = 0.5, 0.5, 0 |
|
187 IoutTm0, IoutTm, dIoutTm0 = 0.5, 0.5, 0 |
|
188 IoutRp0, IoutRp, dIoutRp0 = 0.5, 0.5, 0 |
|
189 IoutRm0, IoutRm, dIoutRm0 = 0.5, 0.5, 0 |
|
190 It0, It, dIt0 = 1 , 1, 0 |
|
191 Ir0, Ir, dTr0 = 1 , 1, 0 |
|
192 CalcFrom0deg = True |
|
193 |
|
194 TypeC = 3 # linear polarizer calibrator |
|
195 # example with extinction ratio 0.001 |
|
196 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0 |
|
197 TiC = 0.5 # ideal 0.5 |
|
198 RetC, dRetC, nRetC = 0., 0., 0 |
|
199 RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon |
|
200 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator |
|
201 |
|
202 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements |
|
203 RotationErrorEpsilonForNormalMeasurements = True |
|
204 # BSR backscatter ratio |
|
205 # BSR, dBSR, nBSR = 10, 0.05, 1 |
|
206 BSR = np.zeros(5) |
|
207 BSR = [1.1, 2, 5, 10, 50] |
|
208 # theoretical molecular LDR LDRm |
|
209 LDRm, dLDRm, nLDRm = 0.004, 0.001, 1 |
|
210 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) |
|
211 LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1 |
|
212 LDRCal = LDRCal0 |
|
213 # measured LDRm will be corrected with calculated parameters |
|
214 LDRmeas = 0.015 |
|
215 # LDRtrue for simulation of measurement => LDRsim |
|
216 LDRtrue = 0.5 |
|
217 LDRtrue2 = 0.004 |
|
218 LDRunCorr = 1 |
|
219 # Initialize other values to 0 |
|
220 ER, nER, dER = 0.001, 0, 0.001 |
|
221 K = 0. |
|
222 Km = 0. |
|
223 Kp = 0. |
|
224 LDRcorr = 0. |
|
225 Eta = 0. |
|
226 Ir = 0. |
|
227 It = 0. |
|
228 h = 1. |
|
229 |
|
230 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS'] |
|
231 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer', |
|
232 'real HWP +-22.5°'] |
|
233 dY = ['reflected channel', '', 'transmitted channel'] |
|
234 bPlotEtax = False |
|
235 |
|
236 # end of initial definition of variables |
|
237 # ******************************************************************************************************************************* |
|
238 |
|
239 # --- Read actual lidar system parameters from optic_input.py (must be in the programs sub-directory 'system_settings') |
|
240 #InputFile = 'optic_input_example_lidar_2.py' |
|
241 #InputFile = 'optic_input_example_lidar_3.py' |
|
242 #InputFile = 'optic_input_example_lidar_4.py' |
|
243 #InputFile = 'optic_input_example_lidar_5.py' |
|
244 InputFile = 'optic_input_example_lidar.py' |
|
245 |
|
246 ''' |
|
247 print("From ", dname) |
|
248 print("Running ", fname) |
|
249 print("Reading input file ", InputFile, " for") |
|
250 ''' |
|
251 input_path = os.path.join('.', 'system_settings', InputFile) |
|
252 # this works with Python 2 and 3! |
|
253 exec (open(input_path).read(), globals()) |
|
254 # end of read actual system parameters |
|
255 |
|
256 |
|
257 # --- Manual Parameter Change --- |
|
258 # (use for quick parameter changes without changing the input file ) |
|
259 # DiO = 0. |
|
260 # LDRtrue = 0.45 |
|
261 # LDRtrue2 = 0.004 |
|
262 # Y = -1 |
|
263 # LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS |
|
264 ##TypeC = 6 Don't change the TypeC here |
|
265 # RotationErrorEpsilonForNormalMeasurements = True |
|
266 # LDRCal = 0.25 |
|
267 ## --- Errors |
|
268 DOLP0, dDOLP, nDOLP = DOLP, dDOLP, nDOLP |
|
269 RotL0, dRotL, nRotL = RotL, dRotL, nRotL |
|
270 |
|
271 DiE0, dDiE, nDiE = DiE, dDiE, nDiE |
|
272 RetE0, dRetE, nRetE = RetE, dRetE, nRetE |
|
273 RotE0, dRotE, nRotE = RotE, dRotE, nRotE |
|
274 |
|
275 DiO0, dDiO, nDiO = DiO, dDiO, nDiO |
|
276 RetO0, dRetO, nRetO = RetO, dRetO, nRetO |
|
277 RotO0, dRotO, nRotO = RotO, dRotO, nRotO |
|
278 |
|
279 DiC0, dDiC, nDiC = DiC, dDiC, nDiC |
|
280 RetC0, dRetC, nRetC = RetC, dRetC, nRetC |
|
281 RotC0, dRotC, nRotC = RotC, dRotC, nRotC |
|
282 |
|
283 TP0, dTP, nTP = TP, dTP, nTP |
|
284 TS0, dTS, nTS = TS, dTS, nTS |
|
285 RetT0, dRetT, nRetT = RetT, dRetT, nRetT |
|
286 |
|
287 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT |
|
288 RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT |
|
289 |
|
290 RP0, dRP, nRP = RP, dRP, nRP |
|
291 RS0, dRS, nRS = RS, dRS, nRS |
|
292 RetR0, dRetR, nRetR = RetR, dRetR, nRetR |
|
293 |
|
294 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR |
|
295 RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR |
|
296 |
|
297 LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal |
|
298 |
|
299 # BSR0, dBSR, nBSR = BSR, dBSR, nBSR |
|
300 LDRm0, dLDRm, nLDRm = LDRm, dLDRm, nLDRm |
|
301 # ---------- End of manual parameter change |
|
302 |
|
303 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0 |
|
304 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0 |
|
305 LDRCal = LDRCal0 |
|
306 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0, 0, 0, 0, 0, 0 |
|
307 TCalT0, TCalR0 = TCalT, TCalR |
|
308 |
|
309 TiT = 0.5 * (TP + TS) |
|
310 DiT = (TP - TS) / (TP + TS) |
|
311 ZiT = (1. - DiT ** 2) ** 0.5 |
|
312 TiR = 0.5 * (RP + RS) |
|
313 DiR = (RP - RS) / (RP + RS) |
|
314 ZiR = (1. - DiR ** 2) ** 0.5 |
|
315 |
|
316 C2aT = np.cos(np.deg2rad(2 * RotaT)) |
|
317 C2aR = np.cos(np.deg2rad(2 * RotaR)) |
|
318 ATPT = (1 + C2aT * DaT * DiT) |
|
319 ARPT = (1 + C2aR * DaR * DiR) |
|
320 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
321 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
322 Eta0 = TRa / TTa |
|
323 # --- this subroutine is for the calculation of the PLDR from LDR, BSR, and LDRm ----------------------------------------------------- |
|
324 def CalcPLDR(LDR, BSR, LDRm): |
|
325 PLDR = (BSR * (1. + LDRm) * LDR - LDRm * (1. + LDR)) / (BSR * (1. + LDRm) - (1. + LDR)) |
|
326 return (PLDR) |
|
327 # --- this subroutine is for the calculation with certain fixed parameters ----------------------------------------------------- |
|
328 def Calc(TCalT, TCalR, NCalT, NCalR, DOLP, RotL, RotE, RetE, DiE, RotO, RetO, DiO, |
|
329 RotC, RetC, DiC, TP, TS, RP, RS, |
|
330 ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal): |
|
331 # ---- Do the calculations of bra-ket vectors |
|
332 h = -1. if TypeC == 2 else 1 |
|
333 # from input file: assumed LDRCal for calibration measurements |
|
334 aCal = (1. - LDRCal) / (1 + LDRCal) |
|
335 # from input file: measured LDRm and true LDRtrue, LDRtrue2 => |
|
336 # ameas = (1.-LDRmeas)/(1+LDRmeas) |
|
337 atrue = (1. - LDRtrue) / (1 + LDRtrue) |
|
338 # atrue2 = (1.-LDRtrue2)/(1+LDRtrue2) |
|
339 |
|
340 # angles of emitter and laser and calibrator and receiver optics |
|
341 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
342 S2a = np.sin(2 * np.deg2rad(RotL)) |
|
343 C2a = np.cos(2 * np.deg2rad(RotL)) |
|
344 S2b = np.sin(2 * np.deg2rad(RotE)) |
|
345 C2b = np.cos(2 * np.deg2rad(RotE)) |
|
346 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) |
|
347 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) |
|
348 S2g = np.sin(np.deg2rad(2 * RotO)) |
|
349 C2g = np.cos(np.deg2rad(2 * RotO)) |
|
350 |
|
351 # Laser with Degree of linear polarization DOLP |
|
352 IinL = 1. |
|
353 QinL = DOLP |
|
354 UinL = 0. |
|
355 VinL = (1. - DOLP ** 2) ** 0.5 |
|
356 |
|
357 # Stokes Input Vector rotation Eq. E.4 |
|
358 A = C2a * QinL - S2a * UinL |
|
359 B = S2a * QinL + C2a * UinL |
|
360 # Stokes Input Vector rotation Eq. E.9 |
|
361 C = C2ab * QinL - S2ab * UinL |
|
362 D = S2ab * QinL + C2ab * UinL |
|
363 |
|
364 # emitter optics |
|
365 CosE = np.cos(np.deg2rad(RetE)) |
|
366 SinE = np.sin(np.deg2rad(RetE)) |
|
367 ZiE = (1. - DiE ** 2) ** 0.5 |
|
368 WiE = (1. - ZiE * CosE) |
|
369 |
|
370 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
371 # b = beta |
|
372 IinE = (IinL + DiE * C) |
|
373 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) |
|
374 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) |
|
375 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) |
|
376 |
|
377 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
378 IinF = IinE |
|
379 QinF = aCal * QinE |
|
380 UinF = -aCal * UinE |
|
381 VinF = (1. - 2. * aCal) * VinE |
|
382 |
|
383 # receiver optics |
|
384 CosO = np.cos(np.deg2rad(RetO)) |
|
385 SinO = np.sin(np.deg2rad(RetO)) |
|
386 ZiO = (1. - DiO ** 2) ** 0.5 |
|
387 WiO = (1. - ZiO * CosO) |
|
388 |
|
389 # calibrator |
|
390 CosC = np.cos(np.deg2rad(RetC)) |
|
391 SinC = np.sin(np.deg2rad(RetC)) |
|
392 ZiC = (1. - DiC ** 2) ** 0.5 |
|
393 WiC = (1. - ZiC * CosC) |
|
394 |
|
395 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
396 A = C2g * QinE - S2g * UinE |
|
397 B = S2g * QinE + C2g * UinE |
|
398 |
|
399 IinP = (IinE + DiO * aCal * A) |
|
400 QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE)) |
|
401 UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE)) |
|
402 VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1 - 2 * aCal) * VinE) |
|
403 |
|
404 # ------------------------- |
|
405 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
406 # F11sim = TiO*(IinE + DiO*atrue*A)/IinE |
|
407 # ------------------------- |
|
408 |
|
409 # analyser |
|
410 if (RS_RP_depend_on_TS_TP): |
|
411 RS = 1 - TS |
|
412 RP = 1 - TP |
|
413 |
|
414 TiT = 0.5 * (TP + TS) |
|
415 DiT = (TP - TS) / (TP + TS) |
|
416 ZiT = (1. - DiT ** 2) ** 0.5 |
|
417 TiR = 0.5 * (RP + RS) |
|
418 DiR = (RP - RS) / (RP + RS) |
|
419 ZiR = (1. - DiR ** 2) ** 0.5 |
|
420 CosT = np.cos(np.deg2rad(RetT)) |
|
421 SinT = np.sin(np.deg2rad(RetT)) |
|
422 CosR = np.cos(np.deg2rad(RetR)) |
|
423 SinR = np.sin(np.deg2rad(RetR)) |
|
424 |
|
425 DaT = (1 - ERaT) / (1 + ERaT) |
|
426 DaR = (1 - ERaR) / (1 + ERaR) |
|
427 TaT = 0.5 * (1 + ERaT) |
|
428 TaR = 0.5 * (1 + ERaR) |
|
429 |
|
430 S2aT = np.sin(np.deg2rad(h * 2 * RotaT)) |
|
431 C2aT = np.cos(np.deg2rad(2 * RotaT)) |
|
432 S2aR = np.sin(np.deg2rad(h * 2 * RotaR)) |
|
433 C2aR = np.cos(np.deg2rad(2 * RotaR)) |
|
434 |
|
435 # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter |
|
436 ATPT = (1 + C2aT * DaT * DiT) # unpolarized transmission correction |
|
437 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
438 ATP1 = 1 |
|
439 ATP2 = Y * (DiT + C2aT * DaT) / ATPT |
|
440 ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT |
|
441 ATP4 = S2aT * DaT * ZiT * SinT / ATPT |
|
442 ATP = np.array([ATP1, ATP2, ATP3, ATP4]) |
|
443 DTa = ATP2 * Y |
|
444 |
|
445 ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction |
|
446 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
447 ARP1 = 1 |
|
448 ARP2 = Y * (DiR + C2aR * DaR) / ARPT |
|
449 ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT |
|
450 ARP4 = S2aR * DaR * ZiR * SinR / ARPT |
|
451 ARP = np.array([ARP1, ARP2, ARP3, ARP4]) |
|
452 DRa = ARP2 * Y |
|
453 |
|
454 |
|
455 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
456 if LocC == 4: # Calibrator before the PBS |
|
457 # print("Calibrator location not implemented yet") |
|
458 |
|
459 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
460 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
461 S2e = np.sin(np.deg2rad(h * 2 * RotC)) |
|
462 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
463 # rotated AinP by epsilon Eq. C.3 |
|
464 ATP2e = C2e * ATP2 + S2e * ATP3 |
|
465 ATP3e = C2e * ATP3 - S2e * ATP2 |
|
466 ARP2e = C2e * ARP2 + S2e * ARP3 |
|
467 ARP3e = C2e * ARP3 - S2e * ARP2 |
|
468 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) |
|
469 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) |
|
470 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
471 A = C2g * QinE - S2g * UinE |
|
472 B = S2g * QinE + C2g * UinE |
|
473 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
474 Co = ZiO * SinO * VinE |
|
475 Ca = (WiO * B - 2 * ZiO * SinO * VinE) |
|
476 # C = Co + aCal*Ca |
|
477 # IinP = (IinE + DiO*aCal*A) |
|
478 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
479 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
480 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
481 IinPo = IinE |
|
482 QinPo = (C2g * DiO * IinE - S2g * Co) |
|
483 UinPo = (S2g * DiO * IinE + C2g * Co) |
|
484 VinPo = ZiO * CosO * VinE |
|
485 |
|
486 IinPa = DiO * A |
|
487 QinPa = QinE - S2g * Ca |
|
488 UinPa = -UinE + C2g * Ca |
|
489 VinPa = ZiO * (SinO * B - 2 * CosO * VinE) |
|
490 |
|
491 IinP = IinPo + aCal * IinPa |
|
492 QinP = QinPo + aCal * QinPa |
|
493 UinP = UinPo + aCal * UinPa |
|
494 VinP = VinPo + aCal * VinPa |
|
495 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
496 # QinPe = C2e*QinP + S2e*UinP |
|
497 # UinPe = C2e*UinP - S2e*QinP |
|
498 QinPoe = C2e * QinPo + S2e * UinPo |
|
499 UinPoe = C2e * UinPo - S2e * QinPo |
|
500 QinPae = C2e * QinPa + S2e * UinPa |
|
501 UinPae = C2e * UinPa - S2e * QinPa |
|
502 QinPe = C2e * QinP + S2e * UinP |
|
503 UinPe = C2e * UinP - S2e * QinP |
|
504 |
|
505 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
506 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
507 # parameters for calibration with aCal |
|
508 AT = ATP1 * IinP + h * ATP4 * VinP |
|
509 BT = ATP3e * QinP - h * ATP2e * UinP |
|
510 AR = ARP1 * IinP + h * ARP4 * VinP |
|
511 BR = ARP3e * QinP - h * ARP2e * UinP |
|
512 # Correction parameters for normal measurements; they are independent of LDR |
|
513 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
514 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
515 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
516 GT = np.dot(ATP, IS1) |
|
517 GR = np.dot(ARP, IS1) |
|
518 HT = np.dot(ATP, IS2) |
|
519 HR = np.dot(ARP, IS2) |
|
520 else: |
|
521 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
522 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
523 GT = np.dot(ATPe, IS1) |
|
524 GR = np.dot(ARPe, IS1) |
|
525 HT = np.dot(ATPe, IS2) |
|
526 HR = np.dot(ARPe, IS2) |
|
527 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
528 # parameters for calibration with aCal |
|
529 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) |
|
530 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
531 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) |
|
532 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
533 # Correction parameters for normal measurements; they are independent of LDR |
|
534 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
535 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
536 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
537 GT = np.dot(ATP, IS1) |
|
538 GR = np.dot(ARP, IS1) |
|
539 HT = np.dot(ATP, IS2) |
|
540 HR = np.dot(ARP, IS2) |
|
541 else: |
|
542 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
543 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
544 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
545 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
546 GT = np.dot(ATPe, IS1e) |
|
547 GR = np.dot(ARPe, IS1e) |
|
548 HT = np.dot(ATPe, IS2e) |
|
549 HR = np.dot(ARPe, IS2e) |
|
550 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
551 # parameters for calibration with aCal |
|
552 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
553 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) |
|
554 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( |
|
555 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
556 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
557 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) |
|
558 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( |
|
559 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
560 # Correction parameters for normal measurements; they are independent of LDR |
|
561 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
562 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
563 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
564 GT = np.dot(ATP, IS1) |
|
565 GR = np.dot(ARP, IS1) |
|
566 HT = np.dot(ATP, IS2) |
|
567 HR = np.dot(ARP, IS2) |
|
568 else: |
|
569 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
570 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
571 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
572 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
573 GT = np.dot(ATPe, IS1e) |
|
574 GR = np.dot(ARPe, IS1e) |
|
575 HT = np.dot(ATPe, IS2e) |
|
576 HR = np.dot(ARPe, IS2e) |
|
577 else: |
|
578 print("Calibrator not implemented yet") |
|
579 sys.exit() |
|
580 |
|
581 elif LocC == 3: # C before receiver optics Eq.57 |
|
582 |
|
583 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
584 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
585 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
586 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
587 |
|
588 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt) |
|
589 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
590 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
591 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
592 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
593 |
|
594 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
595 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
596 ATF2 = ATF[1] |
|
597 ATF3 = ATF[2] |
|
598 ARF2 = ARF[1] |
|
599 ARF3 = ARF[2] |
|
600 |
|
601 # rotated AinF by epsilon |
|
602 ATF1 = ATF[0] |
|
603 ATF4 = ATF[3] |
|
604 ATF2e = C2e * ATF[1] + S2e * ATF[2] |
|
605 ATF3e = C2e * ATF[2] - S2e * ATF[1] |
|
606 ARF1 = ARF[0] |
|
607 ARF4 = ARF[3] |
|
608 ARF2e = C2e * ARF[1] + S2e * ARF[2] |
|
609 ARF3e = C2e * ARF[2] - S2e * ARF[1] |
|
610 |
|
611 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) |
|
612 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) |
|
613 |
|
614 QinEe = C2e * QinE + S2e * UinE |
|
615 UinEe = C2e * UinE - S2e * QinE |
|
616 |
|
617 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
618 IinF = IinE |
|
619 QinF = aCal * QinE |
|
620 UinF = -aCal * UinE |
|
621 VinF = (1. - 2. * aCal) * VinE |
|
622 |
|
623 IinFo = IinE |
|
624 QinFo = 0. |
|
625 UinFo = 0. |
|
626 VinFo = VinE |
|
627 |
|
628 IinFa = 0. |
|
629 QinFa = QinE |
|
630 UinFa = -UinE |
|
631 VinFa = -2. * VinE |
|
632 |
|
633 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
634 QinFe = C2e * QinF + S2e * UinF |
|
635 UinFe = C2e * UinF - S2e * QinF |
|
636 QinFoe = C2e * QinFo + S2e * UinFo |
|
637 UinFoe = C2e * UinFo - S2e * QinFo |
|
638 QinFae = C2e * QinFa + S2e * UinFa |
|
639 UinFae = C2e * UinFa - S2e * QinFa |
|
640 |
|
641 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
642 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
643 # parameters for calibration with aCal |
|
644 AT = ATF1 * IinF + ATF4 * h * VinF |
|
645 BT = ATF3e * QinF - ATF2e * h * UinF |
|
646 AR = ARF1 * IinF + ARF4 * h * VinF |
|
647 BR = ARF3e * QinF - ARF2e * h * UinF |
|
648 # Correction parameters for normal measurements; they are independent of LDR |
|
649 if (not RotationErrorEpsilonForNormalMeasurements): |
|
650 GT = ATF1 * IinE + ATF4 * VinE |
|
651 GR = ARF1 * IinE + ARF4 * VinE |
|
652 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE |
|
653 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE |
|
654 else: |
|
655 GT = ATF1 * IinE + ATF4 * h * VinE |
|
656 GR = ARF1 * IinE + ARF4 * h * VinE |
|
657 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE |
|
658 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE |
|
659 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
660 # p = +45°, m = -45° |
|
661 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) |
|
662 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) |
|
663 AT = np.dot(ATFe, IF1e) |
|
664 AR = np.dot(ARFe, IF1e) |
|
665 BT = np.dot(ATFe, IF2e) |
|
666 BR = np.dot(ARFe, IF2e) |
|
667 |
|
668 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
669 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
670 IS1 = np.array([IinE, 0, 0, VinE]) |
|
671 IS2 = np.array([0, QinE, -UinE, -2 * VinE]) |
|
672 GT = np.dot(ATF, IS1) |
|
673 GR = np.dot(ARF, IS1) |
|
674 HT = np.dot(ATF, IS2) |
|
675 HR = np.dot(ARF, IS2) |
|
676 else: |
|
677 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
678 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
679 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
680 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
681 GT = np.dot(ATFe, IS1e) |
|
682 GR = np.dot(ARFe, IS1e) |
|
683 HT = np.dot(ATFe, IS2e) |
|
684 HR = np.dot(ARFe, IS2e) |
|
685 |
|
686 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
687 # parameters for calibration with aCal |
|
688 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe, |
|
689 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, |
|
690 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) |
|
691 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, |
|
692 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) |
|
693 AT = np.dot(ATFe, IF1e) |
|
694 AR = np.dot(ARFe, IF1e) |
|
695 BT = np.dot(ATFe, IF2e) |
|
696 BR = np.dot(ARFe, IF2e) |
|
697 |
|
698 # Correction parameters for normal measurements; they are independent of LDR |
|
699 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
700 # IS1 = np.array([IinE,0,0,VinE]) |
|
701 # IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
702 IS1 = np.array([IinFo, 0, 0, VinFo]) |
|
703 IS2 = np.array([0, QinFa, UinFa, VinFa]) |
|
704 GT = np.dot(ATF, IS1) |
|
705 GR = np.dot(ARF, IS1) |
|
706 HT = np.dot(ATF, IS2) |
|
707 HR = np.dot(ARF, IS2) |
|
708 else: |
|
709 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
710 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
711 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
712 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
713 # IS1e = np.array([IinFo,0,0,VinFo]) |
|
714 # IS2e = np.array([0,QinFae,UinFae,VinFa]) |
|
715 GT = np.dot(ATFe, IS1e) |
|
716 GR = np.dot(ARFe, IS1e) |
|
717 HT = np.dot(ATFe, IS2e) |
|
718 HR = np.dot(ARFe, IS2e) |
|
719 |
|
720 else: |
|
721 print('Calibrator not implemented yet') |
|
722 sys.exit() |
|
723 |
|
724 elif LocC == 2: # C behind emitter optics Eq.57 ------------------------------------------------------- |
|
725 # print("Calibrator location not implemented yet") |
|
726 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
727 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
728 |
|
729 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
730 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
731 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
732 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
733 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
734 |
|
735 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
736 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
737 ATF1 = ATF[0] |
|
738 ATF2 = ATF[1] |
|
739 ATF3 = ATF[2] |
|
740 ATF4 = ATF[3] |
|
741 ARF1 = ARF[0] |
|
742 ARF2 = ARF[1] |
|
743 ARF3 = ARF[2] |
|
744 ARF4 = ARF[3] |
|
745 |
|
746 # AS with C behind the emitter |
|
747 # terms without aCal |
|
748 ATE1o, ARE1o = ATF1, ARF1 |
|
749 ATE2o, ARE2o = 0., 0. |
|
750 ATE3o, ARE3o = 0., 0. |
|
751 ATE4o, ARE4o = ATF4, ARF4 |
|
752 # terms with aCal |
|
753 ATE1a, ARE1a = 0., 0. |
|
754 ATE2a, ARE2a = ATF2, ARF2 |
|
755 ATE3a, ARE3a = -ATF3, -ARF3 |
|
756 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4 |
|
757 # rotated AinEa by epsilon |
|
758 ATE2ae = C2e * ATF2 + S2e * ATF3 |
|
759 ATE3ae = -S2e * ATF2 - C2e * ATF3 |
|
760 ARE2ae = C2e * ARF2 + S2e * ARF3 |
|
761 ARE3ae = -S2e * ARF2 - C2e * ARF3 |
|
762 |
|
763 ATE1 = ATE1o |
|
764 ATE2e = aCal * ATE2ae |
|
765 ATE3e = aCal * ATE3ae |
|
766 ATE4 = (1 - 2 * aCal) * ATF4 |
|
767 ARE1 = ARE1o |
|
768 ARE2e = aCal * ARE2ae |
|
769 ARE3e = aCal * ARE3ae |
|
770 ARE4 = (1 - 2 * aCal) * ARF4 |
|
771 |
|
772 # rotated IinE |
|
773 QinEe = C2e * QinE + S2e * UinE |
|
774 UinEe = C2e * UinE - S2e * QinE |
|
775 |
|
776 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
777 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
778 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE |
|
779 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) |
|
780 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE |
|
781 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) |
|
782 |
|
783 # Correction parameters for normal measurements; they are independent of LDR |
|
784 if (not RotationErrorEpsilonForNormalMeasurements): |
|
785 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
786 GT = ATE1o * IinE + ATE4o * h * VinE |
|
787 GR = ARE1o * IinE + ARE4o * h * VinE |
|
788 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE |
|
789 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE |
|
790 else: |
|
791 GT = ATE1o * IinE + ATE4o * h * VinE |
|
792 GR = ARE1o * IinE + ARE4o * h * VinE |
|
793 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE |
|
794 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE |
|
795 |
|
796 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
797 # p = +45°, m = -45° |
|
798 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe |
|
799 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) |
|
800 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe |
|
801 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) |
|
802 |
|
803 # Correction parameters for normal measurements; they are independent of LDR |
|
804 if (not RotationErrorEpsilonForNormalMeasurements): |
|
805 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
806 GT = ATE1o * IinE + ATE4o * VinE |
|
807 GR = ARE1o * IinE + ARE4o * VinE |
|
808 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
809 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
810 else: |
|
811 D = IinE + DiC * QinEe |
|
812 A = DiC * IinE + QinEe |
|
813 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
814 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
815 GT = ATE1o * D + ATE4o * C |
|
816 GR = ARE1o * D + ARE4o * C |
|
817 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
818 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
819 |
|
820 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
821 # p = +22.5°, m = -22.5° |
|
822 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, |
|
823 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, |
|
824 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) |
|
825 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, |
|
826 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) |
|
827 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) |
|
828 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) |
|
829 AT = np.dot(ATEe, IE1e) |
|
830 AR = np.dot(AREe, IE1e) |
|
831 BT = np.dot(ATEe, IE2e) |
|
832 BR = np.dot(AREe, IE2e) |
|
833 |
|
834 # Correction parameters for normal measurements; they are independent of LDR |
|
835 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
836 GT = ATE1o * IinE + ATE4o * VinE |
|
837 GR = ARE1o * IinE + ARE4o * VinE |
|
838 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
839 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
840 else: |
|
841 D = IinE + DiC * QinEe |
|
842 A = DiC * IinE + QinEe |
|
843 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
844 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
845 GT = ATE1o * D + ATE4o * C |
|
846 GR = ARE1o * D + ARE4o * C |
|
847 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
848 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
849 |
|
850 else: |
|
851 print('Calibrator not implemented yet') |
|
852 sys.exit() |
|
853 |
|
854 else: |
|
855 print("Calibrator location not implemented yet") |
|
856 sys.exit() |
|
857 |
|
858 # Determination of the correction K of the calibration factor. |
|
859 IoutTp = TTa * TiC * TiO * TiE * (AT + BT) |
|
860 IoutTm = TTa * TiC * TiO * TiE * (AT - BT) |
|
861 IoutRp = TRa * TiC * TiO * TiE * (AR + BR) |
|
862 IoutRm = TRa * TiC * TiO * TiE * (AR - BR) |
|
863 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 |
|
864 Etapx = IoutRp / IoutTp |
|
865 Etamx = IoutRm / IoutTm |
|
866 Etax = (Etapx * Etamx) ** 0.5 |
|
867 |
|
868 Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84 => K = Eta* / Eta; equation corrected according to the papers supplement Eqs. (S.10.10.1) ff |
|
869 K = Etax / Eta |
|
870 |
|
871 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
872 # Eta_test_p = (IoutRp/IoutTp) |
|
873 # Eta_test_m = (IoutRm/IoutTm) |
|
874 # Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
875 |
|
876 # ----- random error calculation ---------- |
|
877 # noise must be calculated with the photon counts of measured signals; |
|
878 # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent |
|
879 # normalised noise errors |
|
880 if (CalcFrom0deg): |
|
881 dIoutTp = (NCalT * IoutTp) ** -0.5 |
|
882 dIoutTm = (NCalT * IoutTm) ** -0.5 |
|
883 dIoutRp = (NCalR * IoutRp) ** -0.5 |
|
884 dIoutRm = (NCalR * IoutRm) ** -0.5 |
|
885 else: |
|
886 dIoutTp = (NCalT ** -0.5) |
|
887 dIoutTm = (NCalT ** -0.5) |
|
888 dIoutRp = (NCalR ** -0.5) |
|
889 dIoutRm = (NCalR ** -0.5) |
|
890 # Forward simulated 0°-signals with LDRCal with atrue; from input file |
|
891 |
|
892 It = TTa * TiO * TiE * (GT + atrue * HT) |
|
893 Ir = TRa * TiO * TiE * (GR + atrue * HR) |
|
894 # relative standard deviation of standard signals with LDRmeas; assumed to be statisitcally independent |
|
895 if (CalcFrom0deg): |
|
896 dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) |
|
897 dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) |
|
898 else: |
|
899 dIt = ((NCalT * 2 * NILfac / TCalT ) ** -0.5) * It |
|
900 dIr = ((NCalR * 2 * NILfac / TCalR) ** -0.5) * Ir |
|
901 |
|
902 # ----- Forward simulated LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
903 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file |
|
904 # Corrected LDRsimCorr from forward simulated LDRsim (atrue) |
|
905 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT)) |
|
906 ''' |
|
907 if ((Y == -1.) and (abs(RotL0) < 45)) or ((Y == +1.) and (abs(RotL0) > 45)): |
|
908 LDRsimx = 1. / LDRsim / Etax |
|
909 else: |
|
910 LDRsimx = LDRsim / Etax |
|
911 ''' |
|
912 LDRsimx = LDRsim |
|
913 |
|
914 # The following is correct without doubt |
|
915 # LDRCorr = (LDRsim/(Etax/K)*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim/(Etax/K)*(GT-HT)) |
|
916 |
|
917 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent |
|
918 LDRCorr = (LDRsim / (Etax / K) * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / (Etax / K) * (GT - HT)) |
|
919 # here we could also use Eta instead of Etax / K => how to test whether Etax is correct? => comparison with MüllerMatrix simulation! |
|
920 # Without any correction: only measured It, Ir, EtaX are used |
|
921 LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) |
|
922 |
|
923 #LDRCorr = LDRsimx # for test only |
|
924 |
|
925 F11sim = 1 / (TiO * TiE) * ((HR * Eta * It - HT * Ir) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta |
|
926 |
|
927 return (IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, |
|
928 GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim, LDRunCorr) |
|
929 |
|
930 |
|
931 |
|
932 # ******************************************************************************************************************************* |
|
933 |
|
934 # --- CALC with assumed true parameters from the input file |
|
935 IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ |
|
936 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
937 Calc(TCalT, TCalR, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
938 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
939 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
940 Etax0 = K0 * Eta0 |
|
941 # --- Print parameters to console and output file |
|
942 with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-GHK.dat', 'w') as f: |
|
943 with redirect_stdout(f): |
|
944 print("From folder", dname) |
|
945 print("Running prog", fname) |
|
946 print("Version", ScriptVersion) |
|
947 print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID) |
|
948 print("for Lidar system: ", EID, ", ", LID) |
|
949 # --- Print iput information********************************* |
|
950 print(" --- Input parameters: value ±error / ±steps ----------------------") |
|
951 print("{0:5}{1:5} {2:6.4f}±{3:7.4f}/{4:2d}; {5:8} {6:8.4f}±{7:7.4f}/{8:2d}".format( |
|
952 "Laser: ", "DOLP =", DOLP0, dDOLP, nDOLP," Rotation alpha = ", RotL0, dRotL, nRotL)) |
|
953 print(" Diatt., Tunpol, Retard., Rotation (deg)") |
|
954 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
955 "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE)) |
|
956 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
957 "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO)) |
|
958 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( |
|
959 "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC)) |
|
960 print("{0:12}".format(" --- Pol.-filter ---")) |
|
961 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
962 "ERT, RotT :", ERaT0, dERaT, nERaT, RotaT0, dRotaT, nRotaT)) |
|
963 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
964 "ERR, RotR :", ERaR0, dERaR, nERaR, RotaR0, dRotaR, nRotaR)) |
|
965 print("{0:12}".format(" --- PBS ---")) |
|
966 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
967 "TP,TS :", TP0, dTP, nTP, TS0, dTS, nTS)) |
|
968 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
969 "RP,RS :", RP0, dRP, nRP, RS0, dRS, nRS)) |
|
970 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format( |
|
971 "DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y)) |
|
972 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---")) |
|
973 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format( |
|
974 "DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0)) |
|
975 print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format( |
|
976 "LDRCal during calibration in calibration range", LDRCal0, dLDRCal, nLDRCal)) |
|
977 print("{0:12}".format(" --- Additional ND filter attenuation (transmission) during the calibration ---")) |
|
978 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( |
|
979 "TCalT,TCalR :", TCalT0, dTCalT, nTCalT, TCalR0, dTCalR, nTCalR)) |
|
980 print() |
|
981 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements) |
|
982 print(Type[TypeC], Loc[LocC]) |
|
983 print("Parallel signal detected in", dY[int(Y + 1)]) |
|
984 print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP) |
|
985 # end of print actual system parameters |
|
986 # ****************************************************************************** |
|
987 |
|
988 # print() |
|
989 # print(" --- LDRCal during calibration | simulated and corrected LDRs -------------") |
|
990 # print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr")) |
|
991 # print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr)) |
|
992 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr")) |
|
993 # print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr)) |
|
994 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr")) |
|
995 # print(" --- LDRCal during calibration") |
|
996 |
|
997 # print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim)) |
|
998 print() |
|
999 |
|
1000 K0List = np.zeros(6) |
|
1001 LDRsimxList = np.zeros(6) |
|
1002 LDRCalList = 0.004, 0.02, 0.1, 0.2, 0.3, 0.45 |
|
1003 # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work. |
|
1004 # Still with assumed true parameters in input file |
|
1005 |
|
1006 facIt = NCalT / TCalT0 * NILfac |
|
1007 facIr = NCalR / TCalR0 * NILfac |
|
1008 print("IoutTp, IoutTm, IoutRp, IoutRm, It , Ir , dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr") |
|
1009 |
|
1010 for i, LDRCal in enumerate(LDRCalList): |
|
1011 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1012 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1013 Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1014 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1015 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) |
|
1016 K0List[i] = K0 |
|
1017 LDRsimxList[i] = LDRsimx |
|
1018 |
|
1019 # check error signals |
|
1020 # print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}" |
|
1021 # .format(IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1022 #print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1023 # end check error signals |
|
1024 print('===========================================================================================================') |
|
1025 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9},{7:9},{8:9},{9:9}".format( |
|
1026 " GR", " GT", " HR", " HT", " K(0.004)", " K(0.02)", " K(0.1)", " K(0.2)", " K(0.3)", " K(0.45)")) |
|
1027 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f},{7:9.5f},{8:9.5f},{9:9.5f}".format( |
|
1028 GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2], K0List[3], K0List[4], K0List[5])) |
|
1029 print('===========================================================================================================') |
|
1030 print() |
|
1031 print("Errors from neglecting GHK corrections and/or calibration:") |
|
1032 print("{0:>10},{1:>10},{2:>10},{3:>10},{4:>10},{5:>10}".format( |
|
1033 "LDRtrue", "LDRunCorr", "1/LDRunCorr", "LDRsimx", "1/LDRsimx", "LDRCorr")) |
|
1034 |
|
1035 #LDRtrueList = 0.004, 0.02, 0.2, 0.45 |
|
1036 aF11sim0 = np.zeros(5) |
|
1037 LDRrange = np.zeros(5) |
|
1038 LDRrange = [0.004, 0.02, 0.1, 0.3, 0.45] # list |
|
1039 |
|
1040 # The loop over LDRtrueList is only for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work. |
|
1041 # LDRsimx = LDRsim = Ir / It or 1/LDRsim |
|
1042 # Still with assumed true parameters in input file |
|
1043 for i, LDRtrue in enumerate(LDRrange): |
|
1044 #for LDRtrue in LDRrange: |
|
1045 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1046 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1047 Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1048 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1049 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1050 print("{0:10.5f},{1:10.5f},{2:10.5f},{3:10.5f},{4:10.5f},{5:10.5f}".format(LDRtrue, LDRunCorr, 1/LDRunCorr, LDRsimx, 1/LDRsimx, LDRCorr)) |
|
1051 aF11sim0[i] = F11sim0 |
|
1052 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals |
|
1053 print("LDRsimx = LDR of the nominal system directly from measured signals without calibration and GHK-corrections") |
|
1054 print("LDRunCorr = LDR of the nominal system directly from measured signals with calibration but without GHK-corrections; electronic amplifications = 1 assumed") |
|
1055 print("LDRCorr = LDR calibrated and GHK-corrected") |
|
1056 print() |
|
1057 print("Errors from signal noise:") |
|
1058 print("Signal counts: NCalT, NCalR, NILfac, nNCal, nNI = {0:10.0f},{1:10.0f},{2:3.0f},{3:2.0f},{4:2.0f}".format( |
|
1059 NCalT, NCalR, NILfac, nNCal, nNI)) |
|
1060 |
|
1061 '''# das muß wieder weg |
|
1062 print("IoutTp, IoutTm, IoutRp, IoutRm, It , Ir , dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr") |
|
1063 LDRCal = 0.01 |
|
1064 for i, LDRtrue in enumerate(LDRrange): |
|
1065 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1066 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1067 Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1068 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1069 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1070 print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format( |
|
1071 IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, |
|
1072 dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) |
|
1073 aF11sim0[i] = F11sim0 |
|
1074 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals |
|
1075 # bis hierher weg |
|
1076 ''' |
|
1077 |
|
1078 file = open('output_files\\' + LID + '-' + InputFile[0:-3] + '-GHK.dat', 'r') |
|
1079 print(file.read()) |
|
1080 file.close() |
|
1081 |
|
1082 ''' |
|
1083 if(PrintToOutputFile): |
|
1084 f = open('output_ver7.dat', 'w') |
|
1085 old_target = sys.stdout |
|
1086 sys.stdout = f |
|
1087 |
|
1088 print("something") |
|
1089 |
|
1090 if(PrintToOutputFile): |
|
1091 sys.stdout.flush() |
|
1092 f.close |
|
1093 sys.stdout = old_target |
|
1094 ''' |
|
1095 if (Error_Calc): |
|
1096 # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values |
|
1097 IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ |
|
1098 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ |
|
1099 Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1100 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1101 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) |
|
1102 Etax0 = K0 * Eta0 |
|
1103 # --- Start Error calculation with variable parameters ------------------------------------------------------------------ |
|
1104 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
1105 # error nNI: one-sigma in steps to left and right for 0° signals |
|
1106 |
|
1107 iN = -1 |
|
1108 N = ((nTCalT * 2 + 1) * (nTCalR * 2 + 1) * |
|
1109 (nNCal * 2 + 1) ** 4 * (nNI * 2 + 1) ** 2 * |
|
1110 (nDOLP * 2 + 1) * (nRotL * 2 + 1) * |
|
1111 (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) * |
|
1112 (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) * |
|
1113 (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) * |
|
1114 (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) * |
|
1115 (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1)) |
|
1116 print("number of system variations N = ", N, " ", end="") |
|
1117 |
|
1118 if N > 1e6: |
|
1119 if user_yes_no_query('Warning: processing ' + str( |
|
1120 N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
1121 if N > 5e6: |
|
1122 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format( |
|
1123 N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit() |
|
1124 |
|
1125 # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() |
|
1126 |
|
1127 # --- Arrays for plotting ------ |
|
1128 LDRmin = np.zeros(5) |
|
1129 LDRmax = np.zeros(5) |
|
1130 F11min = np.zeros(5) |
|
1131 F11max = np.zeros(5) |
|
1132 Etaxmin = np.zeros(5) |
|
1133 Etaxmax = np.zeros(5) |
|
1134 |
|
1135 # LDRrange = np.zeros(5) |
|
1136 # LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45 |
|
1137 # aLDRsimx = np.zeros(N) |
|
1138 # aLDRsimx2 = np.zeros(N) |
|
1139 # aLDRcorr = np.zeros(N) |
|
1140 # aLDRcorr2 = np.zeros(N) |
|
1141 aDOLP = np.zeros(N) |
|
1142 aERaT = np.zeros(N) |
|
1143 aERaR = np.zeros(N) |
|
1144 aRotaT = np.zeros(N) |
|
1145 aRotaR = np.zeros(N) |
|
1146 aRetT = np.zeros(N) |
|
1147 aRetR = np.zeros(N) |
|
1148 aTP = np.zeros(N) |
|
1149 aTS = np.zeros(N) |
|
1150 aRP = np.zeros(N) |
|
1151 aRS = np.zeros(N) |
|
1152 aDiE = np.zeros(N) |
|
1153 aDiO = np.zeros(N) |
|
1154 aDiC = np.zeros(N) |
|
1155 aRotC = np.zeros(N) |
|
1156 aRetC = np.zeros(N) |
|
1157 aRotL = np.zeros(N) |
|
1158 aRetE = np.zeros(N) |
|
1159 aRotE = np.zeros(N) |
|
1160 aRetO = np.zeros(N) |
|
1161 aRotO = np.zeros(N) |
|
1162 aLDRCal = np.zeros(N) |
|
1163 aNCalTp = np.zeros(N) |
|
1164 aNCalTm = np.zeros(N) |
|
1165 aNCalRp = np.zeros(N) |
|
1166 aNCalRm = np.zeros(N) |
|
1167 aNIt = np.zeros(N) |
|
1168 aNIr = np.zeros(N) |
|
1169 aTCalT = np.zeros(N) |
|
1170 aTCalR = np.zeros(N) |
|
1171 |
|
1172 # each np.zeros((LDRrange, N)) array has the same N-dependency |
|
1173 aLDRcorr = np.zeros((5, N)) |
|
1174 aF11corr = np.zeros((5, N)) |
|
1175 aPLDR = np.zeros((5, N)) |
|
1176 aEtax = np.zeros((5, N)) |
|
1177 |
|
1178 # np.zeros((GHKs, N)) |
|
1179 aGHK = np.zeros((5, N)) |
|
1180 |
|
1181 atime = clock() |
|
1182 dtime = clock() |
|
1183 |
|
1184 # --- Calc Error signals |
|
1185 # ---- Do the calculations of bra-ket vectors |
|
1186 h = -1. if TypeC == 2 else 1 |
|
1187 |
|
1188 ''' |
|
1189 # from input file: measured LDRm and true LDRtrue, LDRtrue2 => |
|
1190 ameas = (1. - LDRmeas) / (1 + LDRmeas) |
|
1191 atrue = (1. - LDRtrue) / (1 + LDRtrue) |
|
1192 atrue2 = (1. - LDRtrue2) / (1 + LDRtrue2) |
|
1193 ''' |
|
1194 |
|
1195 for iLDRCal in range(-nLDRCal, nLDRCal + 1): |
|
1196 # from input file: LDRCal for calibration measurements |
|
1197 LDRCal = LDRCal0 |
|
1198 if nLDRCal > 0: |
|
1199 LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal |
|
1200 # provides the intensities of the calibration measurements at various LDRCal for signal noise errors |
|
1201 # IoutTp, IoutTm, IoutRp, IoutRm, dIoutTp, dIoutTm, dIoutRp, dIoutRm |
|
1202 ''' |
|
1203 IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ |
|
1204 GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim, LDRunCorr = \ |
|
1205 Calc(TCalT, TCalR, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, |
|
1206 RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, |
|
1207 ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) |
|
1208 ''' |
|
1209 aCal = (1. - LDRCal) / (1 + LDRCal) |
|
1210 for iDOLP, iRotL, iRotE, iRetE, iDiE \ |
|
1211 in [(iDOLP, iRotL, iRotE, iRetE, iDiE) |
|
1212 for iDOLP in range(-nDOLP, nDOLP + 1) |
|
1213 for iRotL in range(-nRotL, nRotL + 1) |
|
1214 for iRotE in range(-nRotE, nRotE + 1) |
|
1215 for iRetE in range(-nRetE, nRetE + 1) |
|
1216 for iDiE in range(-nDiE, nDiE + 1)]: |
|
1217 |
|
1218 if nDOLP > 0: DOLP = DOLP0 + iDOLP * dDOLP / nDOLP |
|
1219 if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL |
|
1220 if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE |
|
1221 if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE |
|
1222 if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE |
|
1223 |
|
1224 # angles of emitter and laser and calibrator and receiver optics |
|
1225 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon |
|
1226 S2a = np.sin(2 * np.deg2rad(RotL)) |
|
1227 C2a = np.cos(2 * np.deg2rad(RotL)) |
|
1228 S2b = np.sin(2 * np.deg2rad(RotE)) |
|
1229 C2b = np.cos(2 * np.deg2rad(RotE)) |
|
1230 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) |
|
1231 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) |
|
1232 |
|
1233 # Laser with Degree of linear polarization DOLP |
|
1234 IinL = 1. |
|
1235 QinL = DOLP |
|
1236 UinL = 0. |
|
1237 VinL = (1. - DOLP ** 2) ** 0.5 |
|
1238 |
|
1239 # Stokes Input Vector rotation Eq. E.4 |
|
1240 A = C2a * QinL - S2a * UinL |
|
1241 B = S2a * QinL + C2a * UinL |
|
1242 # Stokes Input Vector rotation Eq. E.9 |
|
1243 C = C2ab * QinL - S2ab * UinL |
|
1244 D = S2ab * QinL + C2ab * UinL |
|
1245 |
|
1246 # emitter optics |
|
1247 CosE = np.cos(np.deg2rad(RetE)) |
|
1248 SinE = np.sin(np.deg2rad(RetE)) |
|
1249 ZiE = (1. - DiE ** 2) ** 0.5 |
|
1250 WiE = (1. - ZiE * CosE) |
|
1251 |
|
1252 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 |
|
1253 # b = beta |
|
1254 IinE = (IinL + DiE * C) |
|
1255 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) |
|
1256 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) |
|
1257 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) |
|
1258 |
|
1259 # ------------------------- |
|
1260 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue |
|
1261 # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE |
|
1262 # ------------------------- |
|
1263 |
|
1264 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \ |
|
1265 in [ |
|
1266 (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR) |
|
1267 for iRotO in range(-nRotO, nRotO + 1) |
|
1268 for iRetO in range(-nRetO, nRetO + 1) |
|
1269 for iDiO in range(-nDiO, nDiO + 1) |
|
1270 for iRotC in range(-nRotC, nRotC + 1) |
|
1271 for iRetC in range(-nRetC, nRetC + 1) |
|
1272 for iDiC in range(-nDiC, nDiC + 1) |
|
1273 for iTP in range(-nTP, nTP + 1) |
|
1274 for iTS in range(-nTS, nTS + 1) |
|
1275 for iRP in range(-nRP, nRP + 1) |
|
1276 for iRS in range(-nRS, nRS + 1) |
|
1277 for iERaT in range(-nERaT, nERaT + 1) |
|
1278 for iRotaT in range(-nRotaT, nRotaT + 1) |
|
1279 for iRetT in range(-nRetT, nRetT + 1) |
|
1280 for iERaR in range(-nERaR, nERaR + 1) |
|
1281 for iRotaR in range(-nRotaR, nRotaR + 1) |
|
1282 for iRetR in range(-nRetR, nRetR + 1)]: |
|
1283 |
|
1284 if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO |
|
1285 if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO |
|
1286 if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO |
|
1287 if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC |
|
1288 if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC |
|
1289 if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC |
|
1290 if nTP > 0: TP = TP0 + iTP * dTP / nTP |
|
1291 if nTS > 0: TS = TS0 + iTS * dTS / nTS |
|
1292 if nRP > 0: RP = RP0 + iRP * dRP / nRP |
|
1293 if nRS > 0: RS = RS0 + iRS * dRS / nRS |
|
1294 if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT |
|
1295 if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT |
|
1296 if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT |
|
1297 if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR |
|
1298 if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR |
|
1299 if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR |
|
1300 |
|
1301 # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN)) |
|
1302 |
|
1303 # receiver optics |
|
1304 CosO = np.cos(np.deg2rad(RetO)) |
|
1305 SinO = np.sin(np.deg2rad(RetO)) |
|
1306 ZiO = (1. - DiO ** 2) ** 0.5 |
|
1307 WiO = (1. - ZiO * CosO) |
|
1308 S2g = np.sin(np.deg2rad(2 * RotO)) |
|
1309 C2g = np.cos(np.deg2rad(2 * RotO)) |
|
1310 # calibrator |
|
1311 CosC = np.cos(np.deg2rad(RetC)) |
|
1312 SinC = np.sin(np.deg2rad(RetC)) |
|
1313 ZiC = (1. - DiC ** 2) ** 0.5 |
|
1314 WiC = (1. - ZiC * CosC) |
|
1315 |
|
1316 # analyser |
|
1317 # For POLLY_XTs |
|
1318 if (RS_RP_depend_on_TS_TP): |
|
1319 RS = 1 - TS |
|
1320 RP = 1 - TP |
|
1321 TiT = 0.5 * (TP + TS) |
|
1322 DiT = (TP - TS) / (TP + TS) |
|
1323 ZiT = (1. - DiT ** 2) ** 0.5 |
|
1324 TiR = 0.5 * (RP + RS) |
|
1325 DiR = (RP - RS) / (RP + RS) |
|
1326 ZiR = (1. - DiR ** 2) ** 0.5 |
|
1327 CosT = np.cos(np.deg2rad(RetT)) |
|
1328 SinT = np.sin(np.deg2rad(RetT)) |
|
1329 CosR = np.cos(np.deg2rad(RetR)) |
|
1330 SinR = np.sin(np.deg2rad(RetR)) |
|
1331 |
|
1332 # cleaning pol-filter |
|
1333 DaT = (1 - ERaT) / (1 + ERaT) |
|
1334 DaR = (1 - ERaR) / (1 + ERaR) |
|
1335 TaT = 0.5 * (1 + ERaT) |
|
1336 TaR = 0.5 * (1 + ERaR) |
|
1337 |
|
1338 S2aT = np.sin(np.deg2rad(h * 2 * RotaT)) |
|
1339 C2aT = np.cos(np.deg2rad(2 * RotaT)) |
|
1340 S2aR = np.sin(np.deg2rad(h * 2 * RotaR)) |
|
1341 C2aR = np.cos(np.deg2rad(2 * RotaR)) |
|
1342 |
|
1343 # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter |
|
1344 ATPT = (1 + C2aT * DaT * DiT) # unpolarized transmission correction |
|
1345 TTa = TiT * TaT * ATPT # unpolarized transmission |
|
1346 ATP1 = 1 |
|
1347 ATP2 = Y * (DiT + C2aT * DaT) / ATPT |
|
1348 ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT |
|
1349 ATP4 = S2aT * DaT * ZiT * SinT / ATPT |
|
1350 ATP = np.array([ATP1, ATP2, ATP3, ATP4]) |
|
1351 DTa = ATP2 * Y |
|
1352 |
|
1353 ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction |
|
1354 TRa = TiR * TaR * ARPT # unpolarized transmission |
|
1355 ARP1 = 1 |
|
1356 ARP2 = Y * (DiR + C2aR * DaR) / ARPT |
|
1357 ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT |
|
1358 ARP4 = S2aR * DaR * ZiR * SinR / ARPT |
|
1359 ARP = np.array([ARP1, ARP2, ARP3, ARP4]) |
|
1360 DRa = ARP2 * Y |
|
1361 |
|
1362 # ---- Calculate signals and correction parameters for diffeent locations and calibrators |
|
1363 if LocC == 4: # Calibrator before the PBS |
|
1364 # print("Calibrator location not implemented yet") |
|
1365 |
|
1366 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) |
|
1367 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) |
|
1368 S2e = np.sin(np.deg2rad(h * 2 * RotC)) |
|
1369 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1370 # rotated AinP by epsilon Eq. C.3 |
|
1371 ATP2e = C2e * ATP2 + S2e * ATP3 |
|
1372 ATP3e = C2e * ATP3 - S2e * ATP2 |
|
1373 ARP2e = C2e * ARP2 + S2e * ARP3 |
|
1374 ARP3e = C2e * ARP3 - S2e * ARP2 |
|
1375 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) |
|
1376 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) |
|
1377 # Stokes Input Vector before the polarising beam splitter Eq. E.31 |
|
1378 A = C2g * QinE - S2g * UinE |
|
1379 B = S2g * QinE + C2g * UinE |
|
1380 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) |
|
1381 Co = ZiO * SinO * VinE |
|
1382 Ca = (WiO * B - 2 * ZiO * SinO * VinE) |
|
1383 # C = Co + aCal*Ca |
|
1384 # IinP = (IinE + DiO*aCal*A) |
|
1385 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) |
|
1386 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) |
|
1387 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) |
|
1388 IinPo = IinE |
|
1389 QinPo = (C2g * DiO * IinE - S2g * Co) |
|
1390 UinPo = (S2g * DiO * IinE + C2g * Co) |
|
1391 VinPo = ZiO * CosO * VinE |
|
1392 |
|
1393 IinPa = DiO * A |
|
1394 QinPa = QinE - S2g * Ca |
|
1395 UinPa = -UinE + C2g * Ca |
|
1396 VinPa = ZiO * (SinO * B - 2 * CosO * VinE) |
|
1397 |
|
1398 IinP = IinPo + aCal * IinPa |
|
1399 QinP = QinPo + aCal * QinPa |
|
1400 UinP = UinPo + aCal * UinPa |
|
1401 VinP = VinPo + aCal * VinPa |
|
1402 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 |
|
1403 # QinPe = C2e*QinP + S2e*UinP |
|
1404 # UinPe = C2e*UinP - S2e*QinP |
|
1405 QinPoe = C2e * QinPo + S2e * UinPo |
|
1406 UinPoe = C2e * UinPo - S2e * QinPo |
|
1407 QinPae = C2e * QinPa + S2e * UinPa |
|
1408 UinPae = C2e * UinPa - S2e * QinPa |
|
1409 QinPe = C2e * QinP + S2e * UinP |
|
1410 UinPe = C2e * UinP - S2e * QinP |
|
1411 |
|
1412 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1413 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1414 # parameters for calibration with aCal |
|
1415 AT = ATP1 * IinP + h * ATP4 * VinP |
|
1416 BT = ATP3e * QinP - h * ATP2e * UinP |
|
1417 AR = ARP1 * IinP + h * ARP4 * VinP |
|
1418 BR = ARP3e * QinP - h * ARP2e * UinP |
|
1419 # Correction parameters for normal measurements; they are independent of LDR |
|
1420 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1421 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1422 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1423 GT = np.dot(ATP, IS1) |
|
1424 GR = np.dot(ARP, IS1) |
|
1425 HT = np.dot(ATP, IS2) |
|
1426 HR = np.dot(ARP, IS2) |
|
1427 else: |
|
1428 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1429 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1430 GT = np.dot(ATPe, IS1) |
|
1431 GR = np.dot(ARPe, IS1) |
|
1432 HT = np.dot(ATPe, IS2) |
|
1433 HR = np.dot(ARPe, IS2) |
|
1434 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1435 # parameters for calibration with aCal |
|
1436 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) |
|
1437 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
1438 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) |
|
1439 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
1440 # Correction parameters for normal measurements; they are independent of LDR |
|
1441 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1442 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1443 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1444 GT = np.dot(ATP, IS1) |
|
1445 GR = np.dot(ARP, IS1) |
|
1446 HT = np.dot(ATP, IS2) |
|
1447 HR = np.dot(ARP, IS2) |
|
1448 else: |
|
1449 IS1e = np.array( |
|
1450 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
1451 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
1452 IS2e = np.array( |
|
1453 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
1454 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
1455 GT = np.dot(ATPe, IS1e) |
|
1456 GR = np.dot(ARPe, IS1e) |
|
1457 HT = np.dot(ATPe, IS2e) |
|
1458 HR = np.dot(ARPe, IS2e) |
|
1459 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1460 # parameters for calibration with aCal |
|
1461 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
1462 ATP2e * QinPe + ATP3e * UinPe) + ZiC * ( |
|
1463 sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) |
|
1464 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( |
|
1465 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) |
|
1466 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * ( |
|
1467 ARP2e * QinPe + ARP3e * UinPe) + ZiC * ( |
|
1468 sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) |
|
1469 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( |
|
1470 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) |
|
1471 # Correction parameters for normal measurements; they are independent of LDR |
|
1472 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1473 IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) |
|
1474 IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) |
|
1475 GT = np.dot(ATP, IS1) |
|
1476 GR = np.dot(ARP, IS1) |
|
1477 HT = np.dot(ATP, IS2) |
|
1478 HR = np.dot(ARP, IS2) |
|
1479 else: |
|
1480 IS1e = np.array( |
|
1481 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), |
|
1482 -ZiC * (SinC * UinPoe - CosC * VinPo)]) |
|
1483 IS2e = np.array( |
|
1484 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), |
|
1485 -ZiC * (SinC * UinPae - CosC * VinPa)]) |
|
1486 GT = np.dot(ATPe, IS1e) |
|
1487 GR = np.dot(ARPe, IS1e) |
|
1488 HT = np.dot(ATPe, IS2e) |
|
1489 HR = np.dot(ARPe, IS2e) |
|
1490 else: |
|
1491 print("Calibrator not implemented yet") |
|
1492 sys.exit() |
|
1493 |
|
1494 elif LocC == 3: # C before receiver optics Eq.57 |
|
1495 |
|
1496 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) |
|
1497 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) |
|
1498 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
1499 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1500 |
|
1501 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1502 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
1503 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
1504 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
1505 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
1506 |
|
1507 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
1508 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
1509 ATF1 = ATF[0] |
|
1510 ATF2 = ATF[1] |
|
1511 ATF3 = ATF[2] |
|
1512 ATF4 = ATF[3] |
|
1513 ARF1 = ARF[0] |
|
1514 ARF2 = ARF[1] |
|
1515 ARF3 = ARF[2] |
|
1516 ARF4 = ARF[3] |
|
1517 |
|
1518 # rotated AinF by epsilon |
|
1519 ATF2e = C2e * ATF[1] + S2e * ATF[2] |
|
1520 ATF3e = C2e * ATF[2] - S2e * ATF[1] |
|
1521 ARF2e = C2e * ARF[1] + S2e * ARF[2] |
|
1522 ARF3e = C2e * ARF[2] - S2e * ARF[1] |
|
1523 |
|
1524 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) |
|
1525 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) |
|
1526 |
|
1527 QinEe = C2e * QinE + S2e * UinE |
|
1528 UinEe = C2e * UinE - S2e * QinE |
|
1529 |
|
1530 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1531 IinF = IinE |
|
1532 QinF = aCal * QinE |
|
1533 UinF = -aCal * UinE |
|
1534 VinF = (1. - 2. * aCal) * VinE |
|
1535 |
|
1536 IinFo = IinE |
|
1537 QinFo = 0. |
|
1538 UinFo = 0. |
|
1539 VinFo = VinE |
|
1540 |
|
1541 IinFa = 0. |
|
1542 QinFa = QinE |
|
1543 UinFa = -UinE |
|
1544 VinFa = -2. * VinE |
|
1545 |
|
1546 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 |
|
1547 QinFe = C2e * QinF + S2e * UinF |
|
1548 UinFe = C2e * UinF - S2e * QinF |
|
1549 QinFoe = C2e * QinFo + S2e * UinFo |
|
1550 UinFoe = C2e * UinFo - S2e * QinFo |
|
1551 QinFae = C2e * QinFa + S2e * UinFa |
|
1552 UinFae = C2e * UinFa - S2e * QinFa |
|
1553 |
|
1554 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1555 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 |
|
1556 AT = ATF1 * IinF + ATF4 * h * VinF |
|
1557 BT = ATF3e * QinF - ATF2e * h * UinF |
|
1558 AR = ARF1 * IinF + ARF4 * h * VinF |
|
1559 BR = ARF3e * QinF - ARF2e * h * UinF |
|
1560 |
|
1561 # Correction parameters for normal measurements; they are independent of LDR |
|
1562 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1563 GT = ATF1 * IinE + ATF4 * VinE |
|
1564 GR = ARF1 * IinE + ARF4 * VinE |
|
1565 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE |
|
1566 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE |
|
1567 else: |
|
1568 GT = ATF1 * IinE + ATF4 * h * VinE |
|
1569 GR = ARF1 * IinE + ARF4 * h * VinE |
|
1570 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE |
|
1571 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE |
|
1572 |
|
1573 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 |
|
1574 # p = +45°, m = -45° |
|
1575 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) |
|
1576 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) |
|
1577 |
|
1578 AT = np.dot(ATFe, IF1e) |
|
1579 AR = np.dot(ARFe, IF1e) |
|
1580 BT = np.dot(ATFe, IF2e) |
|
1581 BR = np.dot(ARFe, IF2e) |
|
1582 |
|
1583 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 |
|
1584 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1585 IS1 = np.array([IinE, 0, 0, VinE]) |
|
1586 IS2 = np.array([0, QinE, -UinE, -2 * VinE]) |
|
1587 |
|
1588 GT = np.dot(ATF, IS1) |
|
1589 GR = np.dot(ARF, IS1) |
|
1590 HT = np.dot(ATF, IS2) |
|
1591 HR = np.dot(ARF, IS2) |
|
1592 else: |
|
1593 IS1e = np.array( |
|
1594 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
1595 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
1596 IS2e = np.array( |
|
1597 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
1598 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
1599 GT = np.dot(ATFe, IS1e) |
|
1600 GR = np.dot(ARFe, IS1e) |
|
1601 HT = np.dot(ATFe, IS2e) |
|
1602 HR = np.dot(ARFe, IS2e) |
|
1603 |
|
1604 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1605 # p = +22.5°, m = -22.5° |
|
1606 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe, |
|
1607 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, |
|
1608 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) |
|
1609 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, |
|
1610 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) |
|
1611 |
|
1612 AT = np.dot(ATFe, IF1e) |
|
1613 AR = np.dot(ARFe, IF1e) |
|
1614 BT = np.dot(ATFe, IF2e) |
|
1615 BR = np.dot(ARFe, IF2e) |
|
1616 |
|
1617 # Correction parameters for normal measurements; they are independent of LDR |
|
1618 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1619 # IS1 = np.array([IinE,0,0,VinE]) |
|
1620 # IS2 = np.array([0,QinE,-UinE,-2*VinE]) |
|
1621 IS1 = np.array([IinFo, 0, 0, VinFo]) |
|
1622 IS2 = np.array([0, QinFa, UinFa, VinFa]) |
|
1623 GT = np.dot(ATF, IS1) |
|
1624 GR = np.dot(ARF, IS1) |
|
1625 HT = np.dot(ATF, IS2) |
|
1626 HR = np.dot(ARF, IS2) |
|
1627 else: |
|
1628 # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE]) |
|
1629 # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)]) |
|
1630 IS1e = np.array( |
|
1631 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), |
|
1632 -ZiC * (SinC * UinFoe - CosC * VinFo)]) |
|
1633 IS2e = np.array( |
|
1634 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), |
|
1635 -ZiC * (SinC * UinFae - CosC * VinFa)]) |
|
1636 GT = np.dot(ATFe, IS1e) |
|
1637 GR = np.dot(ARFe, IS1e) |
|
1638 HT = np.dot(ATFe, IS2e) |
|
1639 HR = np.dot(ARFe, IS2e) |
|
1640 |
|
1641 |
|
1642 else: |
|
1643 print('Calibrator not implemented yet') |
|
1644 sys.exit() |
|
1645 |
|
1646 elif LocC == 2: # C behind emitter optics Eq.57 |
|
1647 # print("Calibrator location not implemented yet") |
|
1648 S2e = np.sin(np.deg2rad(2 * RotC)) |
|
1649 C2e = np.cos(np.deg2rad(2 * RotC)) |
|
1650 |
|
1651 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) |
|
1652 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) |
|
1653 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) |
|
1654 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) |
|
1655 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) |
|
1656 |
|
1657 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) |
|
1658 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) |
|
1659 ATF1 = ATF[0] |
|
1660 ATF2 = ATF[1] |
|
1661 ATF3 = ATF[2] |
|
1662 ATF4 = ATF[3] |
|
1663 ARF1 = ARF[0] |
|
1664 ARF2 = ARF[1] |
|
1665 ARF3 = ARF[2] |
|
1666 ARF4 = ARF[3] |
|
1667 |
|
1668 # AS with C behind the emitter -------------------------------------------- |
|
1669 # terms without aCal |
|
1670 ATE1o, ARE1o = ATF1, ARF1 |
|
1671 ATE2o, ARE2o = 0., 0. |
|
1672 ATE3o, ARE3o = 0., 0. |
|
1673 ATE4o, ARE4o = ATF4, ARF4 |
|
1674 # terms with aCal |
|
1675 ATE1a, ARE1a = 0., 0. |
|
1676 ATE2a, ARE2a = ATF2, ARF2 |
|
1677 ATE3a, ARE3a = -ATF3, -ARF3 |
|
1678 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4 |
|
1679 # rotated AinEa by epsilon |
|
1680 ATE2ae = C2e * ATF2 + S2e * ATF3 |
|
1681 ATE3ae = -S2e * ATF2 - C2e * ATF3 |
|
1682 ARE2ae = C2e * ARF2 + S2e * ARF3 |
|
1683 ARE3ae = -S2e * ARF2 - C2e * ARF3 |
|
1684 |
|
1685 ATE1 = ATE1o |
|
1686 ATE2e = aCal * ATE2ae |
|
1687 ATE3e = aCal * ATE3ae |
|
1688 ATE4 = (1 - 2 * aCal) * ATF4 |
|
1689 ARE1 = ARE1o |
|
1690 ARE2e = aCal * ARE2ae |
|
1691 ARE3e = aCal * ARE3ae |
|
1692 ARE4 = (1 - 2 * aCal) * ARF4 |
|
1693 |
|
1694 # rotated IinE |
|
1695 QinEe = C2e * QinE + S2e * UinE |
|
1696 UinEe = C2e * UinE - S2e * QinE |
|
1697 |
|
1698 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal |
|
1699 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 |
|
1700 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE |
|
1701 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) |
|
1702 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE |
|
1703 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) |
|
1704 |
|
1705 # Correction parameters for normal measurements; they are independent of LDR |
|
1706 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1707 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1708 GT = ATE1o * IinE + ATE4o * h * VinE |
|
1709 GR = ARE1o * IinE + ARE4o * h * VinE |
|
1710 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE |
|
1711 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE |
|
1712 else: |
|
1713 GT = ATE1o * IinE + ATE4o * h * VinE |
|
1714 GR = ARE1o * IinE + ARE4o * h * VinE |
|
1715 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE |
|
1716 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE |
|
1717 |
|
1718 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 |
|
1719 # p = +45°, m = -45° |
|
1720 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe |
|
1721 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) |
|
1722 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe |
|
1723 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) |
|
1724 |
|
1725 # Correction parameters for normal measurements; they are independent of LDR |
|
1726 if (not RotationErrorEpsilonForNormalMeasurements): |
|
1727 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) |
|
1728 GT = ATE1o * IinE + ATE4o * VinE |
|
1729 GR = ARE1o * IinE + ARE4o * VinE |
|
1730 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
1731 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
1732 else: |
|
1733 D = IinE + DiC * QinEe |
|
1734 A = DiC * IinE + QinEe |
|
1735 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
1736 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
1737 GT = ATE1o * D + ATE4o * C |
|
1738 GR = ARE1o * D + ARE4o * C |
|
1739 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
1740 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
1741 |
|
1742 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt |
|
1743 # p = +22.5°, m = -22.5° |
|
1744 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, |
|
1745 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, |
|
1746 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) |
|
1747 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, |
|
1748 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) |
|
1749 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) |
|
1750 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) |
|
1751 AT = np.dot(ATEe, IE1e) |
|
1752 AR = np.dot(AREe, IE1e) |
|
1753 BT = np.dot(ATEe, IE2e) |
|
1754 BR = np.dot(AREe, IE2e) |
|
1755 |
|
1756 # Correction parameters for normal measurements; they are independent of LDR |
|
1757 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out |
|
1758 GT = ATE1o * IinE + ATE4o * VinE |
|
1759 GR = ARE1o * IinE + ARE4o * VinE |
|
1760 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE |
|
1761 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE |
|
1762 else: |
|
1763 D = IinE + DiC * QinEe |
|
1764 A = DiC * IinE + QinEe |
|
1765 B = ZiC * (CosC * UinEe + SinC * VinE) |
|
1766 C = -ZiC * (SinC * UinEe - CosC * VinE) |
|
1767 GT = ATE1o * D + ATE4o * C |
|
1768 GR = ARE1o * D + ARE4o * C |
|
1769 HT = ATE2a * A + ATE3a * B + ATE4a * C |
|
1770 HR = ARE2a * A + ARE3a * B + ARE4a * C |
|
1771 else: |
|
1772 print('Calibrator not implemented yet') |
|
1773 sys.exit() |
|
1774 |
|
1775 for iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr \ |
|
1776 in [ |
|
1777 (iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr) |
|
1778 for iTCalT in range(-nTCalT, nTCalT + 1) # Etax |
|
1779 for iTCalR in range(-nTCalR, nTCalR + 1) # Etax |
|
1780 for iNCalTp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1781 for iNCalTm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1782 for iNCalRp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1783 for iNCalRm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax |
|
1784 for iNIt in range(-nNI, nNI + 1) |
|
1785 for iNIr in range(-nNI, nNI + 1)]: |
|
1786 |
|
1787 # Calibration signals with aCal => Determination of the correction K of the real calibration factor |
|
1788 IoutTp = TTa * TiC * TiO * TiE * (AT + BT) |
|
1789 IoutTm = TTa * TiC * TiO * TiE * (AT - BT) |
|
1790 IoutRp = TRa * TiC * TiO * TiE * (AR + BR) |
|
1791 IoutRm = TRa * TiC * TiO * TiE * (AR - BR) |
|
1792 |
|
1793 if nTCalT > 0: TCalT = TCalT0 + iTCalT * dTCalT / nTCalT |
|
1794 if nTCalR > 0: TCalR = TCalR0 + iTCalR * dTCalR / nTCalR |
|
1795 # signal noise errors |
|
1796 # ----- random error calculation ---------- |
|
1797 # noise must be calculated from/with the actually measured signals; influence of TCalT, TCalR errors on nouse are not considered ? |
|
1798 # actually measured signals are in input file and don't change |
|
1799 # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent |
|
1800 # error nNCal: one-sigma in steps to left and right for calibration signals |
|
1801 if nNCal > 0: |
|
1802 if (CalcFrom0deg): |
|
1803 dIoutTp = (NCalT * IoutTp) ** -0.5 |
|
1804 dIoutTm = (NCalT * IoutTm) ** -0.5 |
|
1805 dIoutRp = (NCalR * IoutRp) ** -0.5 |
|
1806 dIoutRm = (NCalR * IoutRm) ** -0.5 |
|
1807 else: |
|
1808 dIoutTp = dIoutTp0 * (IoutTp / IoutTp0) |
|
1809 dIoutTm = dIoutTm0 * (IoutTm / IoutTm0) |
|
1810 dIoutRp = dIoutRp0 * (IoutRp / IoutRp0) |
|
1811 dIoutRm = dIoutRm0 * (IoutRm / IoutRm0) |
|
1812 # print(iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr, IoutTp, dIoutTp) |
|
1813 IoutTp = IoutTp * (1 + iNCalTp * dIoutTp / nNCal) |
|
1814 IoutTm = IoutTm * (1 + iNCalTm * dIoutTm / nNCal) |
|
1815 IoutRp = IoutRp * (1 + iNCalRp * dIoutRp / nNCal) |
|
1816 IoutRm = IoutRm * (1 + iNCalRm * dIoutRm / nNCal) |
|
1817 |
|
1818 IoutTp = IoutTp * TCalT / TCalT0 |
|
1819 IoutTm = IoutTm * TCalT / TCalT0 |
|
1820 IoutRp = IoutRp * TCalR / TCalR0 |
|
1821 IoutRm = IoutRm * TCalR / TCalR0 |
|
1822 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 for true and assumed true systems |
|
1823 # calibration factor |
|
1824 Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84; corrected according to the papers supplement Eqs. (S.10.10.1) ff |
|
1825 # possibly real calibration factor |
|
1826 Etapx = IoutRp / IoutTp |
|
1827 Etamx = IoutRm / IoutTm |
|
1828 Etax = (Etapx * Etamx) ** 0.5 |
|
1829 K = Etax / Eta |
|
1830 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km)) |
|
1831 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km)) |
|
1832 |
|
1833 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet |
|
1834 # Eta_test_p = (IoutRp/IoutTp) |
|
1835 # Eta_test_m = (IoutRm/IoutTm) |
|
1836 # Eta_test = (Eta_test_p*Eta_test_m)**0.5 |
|
1837 ''' |
|
1838 for iIt, iIr \ |
|
1839 in [(iIt, iIr) |
|
1840 for iIt in range(-nNI, nNI + 1) |
|
1841 for iIr in range(-nNI, nNI + 1)]: |
|
1842 ''' |
|
1843 |
|
1844 iN = iN + 1 |
|
1845 if (iN == 10001): |
|
1846 ctime = clock() |
|
1847 print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="") |
|
1848 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") |
|
1849 ctime = clock() |
|
1850 if ((ctime - dtime) > 10): |
|
1851 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") |
|
1852 dtime = ctime |
|
1853 |
|
1854 # *** loop for different real LDRs ********************************************************************** |
|
1855 iLDR = -1 |
|
1856 for LDRTrue in LDRrange: |
|
1857 iLDR = iLDR + 1 |
|
1858 atrue = (1 - LDRTrue) / (1 + LDRTrue) |
|
1859 # ----- Forward simulated signals and LDRsim with atrue; from input file; not considering TiC. |
|
1860 It = TTa * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT) |
|
1861 Ir = TRa * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR) |
|
1862 # # signal noise errors; standard deviation of signals; assumed to be statisitcally independent |
|
1863 # because the signals depend on LDRtrue, the errors dIt and dIr must be calculated for each LDRtrue |
|
1864 if (CalcFrom0deg): |
|
1865 dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) |
|
1866 dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) |
|
1867 else: |
|
1868 dIt = ((NCalT * 2 * NILfac / TCalT ) ** -0.5) * It |
|
1869 dIr = ((NCalR * 2 * NILfac / TCalR) ** -0.5) * Ir |
|
1870 # error nNI: one-sigma in steps to left and right for 0° signals |
|
1871 if nNI > 0: |
|
1872 It = It * (1 + iNIt * dIt / nNI) |
|
1873 Ir = Ir * (1 + iNIr * dIr / nNI) |
|
1874 |
|
1875 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file |
|
1876 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file |
|
1877 |
|
1878 # ----- Backward correction |
|
1879 # Corrected LDRCorr with assumed true G0,H0,K0,Eta0 from forward simulated (real) LDRsim(atrue) |
|
1880 LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim / (Etax / K0) * (GT0 - HT0)) |
|
1881 |
|
1882 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent |
|
1883 # LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) |
|
1884 # Without any correction |
|
1885 LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) |
|
1886 |
|
1887 |
|
1888 ''' |
|
1889 # -- F11corr from It and Ir and calibration EtaX |
|
1890 Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1" |
|
1891 F11corr = 1 / (TiO * TiE) * ( |
|
1892 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. |
|
1893 ''' |
|
1894 # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue) |
|
1895 Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1" |
|
1896 F11corr = 1 / (TiO * TiE) * ( |
|
1897 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. |
|
1898 |
|
1899 # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)" |
|
1900 # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64) |
|
1901 |
|
1902 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs) |
|
1903 # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1" |
|
1904 # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0)) |
|
1905 # ! see below line 1673ff |
|
1906 |
|
1907 aF11corr[iLDR, iN] = F11corr |
|
1908 aLDRcorr[iLDR, iN] = LDRCorr # LDRCorr # LDRsim # for test only |
|
1909 # aPLDR[iLDR, iN] = CalcPLDR(LDRCorr, BSR[iLDR], LDRm0) |
|
1910 aEtax[iLDR, iN] = Etax |
|
1911 |
|
1912 aGHK[0, iN] = GR |
|
1913 aGHK[1, iN] = GT |
|
1914 aGHK[2, iN] = HR |
|
1915 aGHK[3, iN] = HT |
|
1916 aGHK[4, iN] = K |
|
1917 |
|
1918 aLDRCal[iN] = iLDRCal |
|
1919 aDOLP[iN] = iDOLP |
|
1920 aERaT[iN] = iERaT |
|
1921 aERaR[iN] = iERaR |
|
1922 aRotaT[iN] = iRotaT |
|
1923 aRotaR[iN] = iRotaR |
|
1924 aRetT[iN] = iRetT |
|
1925 aRetR[iN] = iRetR |
|
1926 |
|
1927 aRotL[iN] = iRotL |
|
1928 aRotE[iN] = iRotE |
|
1929 aRetE[iN] = iRetE |
|
1930 aRotO[iN] = iRotO |
|
1931 aRetO[iN] = iRetO |
|
1932 aRotC[iN] = iRotC |
|
1933 aRetC[iN] = iRetC |
|
1934 aDiO[iN] = iDiO |
|
1935 aDiE[iN] = iDiE |
|
1936 aDiC[iN] = iDiC |
|
1937 aTP[iN] = iTP |
|
1938 aTS[iN] = iTS |
|
1939 aRP[iN] = iRP |
|
1940 aRS[iN] = iRS |
|
1941 aTCalT[iN] = iTCalT |
|
1942 aTCalR[iN] = iTCalR |
|
1943 |
|
1944 aNCalTp[iN] = iNCalTp # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
1945 aNCalTm[iN] = iNCalTm # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
1946 aNCalRp[iN] = iNCalRp # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
1947 aNCalRm[iN] = iNCalRm # IoutTp, IoutTm, IoutRp, IoutRm => Etax |
|
1948 aNIt[iN] = iNIt # It, Tr |
|
1949 aNIr[iN] = iNIr # It, Tr |
|
1950 |
|
1951 # --- END loop |
|
1952 btime = clock() |
|
1953 # print("\r done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ..."), # , end="\r"); |
|
1954 print(" done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ...") |
|
1955 # --- Plot ----------------------------------------------------------------- |
|
1956 print("Errors from GHK correction uncertainties:") |
|
1957 if (sns_loaded): |
|
1958 sns.set_style("whitegrid") |
|
1959 sns.set_palette("bright6", 6) |
|
1960 # for older seaborn versions: |
|
1961 # sns.set_palette("bright", 6) |
|
1962 |
|
1963 ''' |
|
1964 fig2 = plt.figure() |
|
1965 plt.plot(aLDRcorr[2,:],'b.') |
|
1966 plt.plot(aLDRcorr[3,:],'r.') |
|
1967 plt.plot(aLDRcorr[4,:],'g.') |
|
1968 #plt.plot(aLDRcorr[6,:],'c.') |
|
1969 plt.show |
|
1970 ''' |
|
1971 |
|
1972 # Plot LDR |
|
1973 def PlotSubHist(aVar, aX, X0, daX, iaX, naX): |
|
1974 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
1975 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
1976 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
1977 iLDR = -1 |
|
1978 for LDRTrue in LDRrange: |
|
1979 iLDR = iLDR + 1 |
|
1980 LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) |
|
1981 LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) |
|
1982 Rmin = LDRmin[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
1983 Rmax = LDRmax[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
1984 |
|
1985 # plt.subplot(5,2,iLDR+1) |
|
1986 plt.subplot(1, 5, iLDR + 1) |
|
1987 (n, bins, patches) = plt.hist(aLDRcorr[iLDR, :], |
|
1988 bins=100, log=False, |
|
1989 range=[Rmin, Rmax], |
|
1990 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
1991 |
|
1992 for iaX in range(-naX, naX + 1): |
|
1993 plt.hist(aLDRcorr[iLDR, aX == iaX], |
|
1994 range=[Rmin, Rmax], |
|
1995 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
1996 label=str(round(X0 + iaX * daX / naX, 5))) |
|
1997 |
|
1998 if (iLDR == 2): |
|
1999 leg = plt.legend() |
|
2000 leg.get_frame().set_alpha(0.1) |
|
2001 |
|
2002 |
|
2003 plt.tick_params(axis='both', labelsize=9) |
|
2004 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2005 |
|
2006 # plt.title(LID + ' ' + aVar, fontsize=18) |
|
2007 # plt.ylabel('frequency', fontsize=10) |
|
2008 # plt.xlabel('LDRcorr', fontsize=10) |
|
2009 # fig.tight_layout() |
|
2010 fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
2011 # plt.show() |
|
2012 # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
2013 # plt.close |
|
2014 return |
|
2015 |
|
2016 # Plot Etax |
|
2017 def PlotEtax(aVar, aX, X0, daX, iaX, naX): |
|
2018 # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot |
|
2019 # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2020 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2021 iLDR = -1 |
|
2022 for LDRTrue in LDRrange: |
|
2023 iLDR = iLDR + 1 |
|
2024 Etaxmin[iLDR] = np.amin(aEtax[iLDR, :]) |
|
2025 Etaxmax[iLDR] = np.amax(aEtax[iLDR, :]) |
|
2026 Rmin = Etaxmin[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2027 Rmax = Etaxmax[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2028 |
|
2029 # plt.subplot(5,2,iLDR+1) |
|
2030 plt.subplot(1, 5, iLDR + 1) |
|
2031 (n, bins, patches) = plt.hist(aEtax[iLDR, :], |
|
2032 bins=100, log=False, |
|
2033 range=[Rmin, Rmax], |
|
2034 alpha=0.5, density=False, color='0.5', histtype='stepfilled') |
|
2035 for iaX in range(-naX, naX + 1): |
|
2036 plt.hist(aEtax[iLDR, aX == iaX], |
|
2037 range=[Rmin, Rmax], |
|
2038 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', |
|
2039 label=str(round(X0 + iaX * daX / naX, 5))) |
|
2040 if (iLDR == 2): |
|
2041 leg = plt.legend() |
|
2042 leg.get_frame().set_alpha(0.1) |
|
2043 plt.tick_params(axis='both', labelsize=9) |
|
2044 plt.plot([Etax0, Etax0], [0, np.max(n)], 'r-', lw=2) |
|
2045 fig.suptitle('Etax - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
2046 return |
|
2047 |
|
2048 if (nDOLP > 0): PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2049 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2050 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2051 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2052 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2053 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2054 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2055 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2056 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2057 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2058 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2059 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP) |
|
2060 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS) |
|
2061 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP) |
|
2062 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS) |
|
2063 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2064 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2065 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2066 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2067 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2068 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2069 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2070 if (nTCalT > 0): PlotSubHist("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2071 if (nTCalR > 0): PlotSubHist("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2072 if (nNCal > 0): PlotSubHist("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2073 if (nNCal > 0): PlotSubHist("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2074 if (nNCal > 0): PlotSubHist("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2075 if (nNCal > 0): PlotSubHist("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2076 if (nNI > 0): PlotSubHist("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2077 if (nNI > 0): PlotSubHist("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2078 plt.show() |
|
2079 plt.close |
|
2080 |
|
2081 ''' |
|
2082 # --- Plot F11 histograms |
|
2083 print() |
|
2084 print(" ############################################################################## ") |
|
2085 print(Text1) |
|
2086 print() |
|
2087 |
|
2088 iLDR = 5 |
|
2089 for LDRTrue in LDRrange: |
|
2090 iLDR = iLDR - 1 |
|
2091 #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0 |
|
2092 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0 |
|
2093 # Plot F11 |
|
2094 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX): |
|
2095 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) |
|
2096 iLDR = -1 |
|
2097 for LDRTrue in LDRrange: |
|
2098 iLDR = iLDR + 1 |
|
2099 |
|
2100 #F11min[iLDR] = np.min(aF11corr[iLDR,:]) |
|
2101 #F11max[iLDR] = np.max(aF11corr[iLDR,:]) |
|
2102 #Rmin = F11min[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 |
|
2103 #Rmax = F11max[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 |
|
2104 |
|
2105 #Rmin = 0.8 |
|
2106 #Rmax = 1.2 |
|
2107 |
|
2108 #plt.subplot(5,2,iLDR+1) |
|
2109 plt.subplot(1,5,iLDR+1) |
|
2110 (n, bins, patches) = plt.hist(aF11corr[iLDR,:], |
|
2111 bins=100, log=False, |
|
2112 alpha=0.5, density=False, color = '0.5', histtype='stepfilled') |
|
2113 |
|
2114 for iaX in range(-naX,naX+1): |
|
2115 plt.hist(aF11corr[iLDR,aX == iaX], |
|
2116 bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) |
|
2117 |
|
2118 if (iLDR == 2): plt.legend() |
|
2119 |
|
2120 plt.tick_params(axis='both', labelsize=9) |
|
2121 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2122 |
|
2123 #plt.title(LID + ' ' + aVar, fontsize=18) |
|
2124 #plt.ylabel('frequency', fontsize=10) |
|
2125 #plt.xlabel('LDRcorr', fontsize=10) |
|
2126 #fig.tight_layout() |
|
2127 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) |
|
2128 #plt.show() |
|
2129 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) |
|
2130 #plt.close |
|
2131 return |
|
2132 |
|
2133 if (nDOLP > 0): PlotSubHistF11("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2134 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2135 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2136 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2137 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2138 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2139 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2140 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2141 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2142 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2143 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2144 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP) |
|
2145 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS) |
|
2146 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP) |
|
2147 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS) |
|
2148 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2149 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2150 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2151 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2152 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2153 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2154 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2155 if (nTCalT > 0): PlotSubHistF11("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2156 if (nTCalR > 0): PlotSubHistF11("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2157 if (nNCal > 0): PlotSubHistF11("CalNoise", aNCal, 0, 1/nNCal, iNCal, nNCal) |
|
2158 if (nNI > 0): PlotSubHistF11("SigNoise", aNI, 0, 1/nNI, iNI, nNI) |
|
2159 |
|
2160 |
|
2161 plt.show() |
|
2162 plt.close |
|
2163 |
|
2164 ''' |
|
2165 ''' |
|
2166 # only histogram |
|
2167 #print("******************* " + aVar + " *******************") |
|
2168 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10)) |
|
2169 iLDR = -1 |
|
2170 for LDRTrue in LDRrange: |
|
2171 iLDR = iLDR + 1 |
|
2172 LDRmin[iLDR] = np.min(aLDRcorr[iLDR,:]) |
|
2173 LDRmax[iLDR] = np.max(aLDRcorr[iLDR,:]) |
|
2174 Rmin = np.min(aLDRcorr[iLDR,:]) * 0.999 |
|
2175 Rmax = np.max(aLDRcorr[iLDR,:]) * 1.001 |
|
2176 plt.subplot(5,2,iLDR+1) |
|
2177 (n, bins, patches) = plt.hist(aLDRcorr[iLDR,:], |
|
2178 range=[Rmin, Rmax], |
|
2179 bins=200, log=False, alpha=0.2, density=False, color = '0.5', histtype='stepfilled') |
|
2180 plt.tick_params(axis='both', labelsize=9) |
|
2181 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) |
|
2182 plt.show() |
|
2183 plt.close |
|
2184 # --- End of Plot F11 histograms |
|
2185 ''' |
|
2186 |
|
2187 # --- Plot LDRmin, LDRmax |
|
2188 iLDR = -1 |
|
2189 for LDRTrue in LDRrange: |
|
2190 iLDR = iLDR + 1 |
|
2191 LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) |
|
2192 LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) |
|
2193 |
|
2194 fig2 = plt.figure() |
|
2195 LDRrangeA = np.array(LDRrange) |
|
2196 if((np.amax(LDRmax - LDRrangeA)-np.amin(LDRmin - LDRrangeA)) < 0.001): |
|
2197 plt.ylim(-0.001,0.001) |
|
2198 plt.plot(LDRrangeA, LDRmax - LDRrangeA, linewidth=2.0, color='b') |
|
2199 plt.plot(LDRrangeA, LDRmin - LDRrangeA, linewidth=2.0, color='g') |
|
2200 |
|
2201 plt.xlabel('LDRtrue', fontsize=18) |
|
2202 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14) |
|
2203 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18) |
|
2204 # plt.ylimit(-0.07, 0.07) |
|
2205 plt.show() |
|
2206 plt.close |
|
2207 |
|
2208 # --- Save LDRmin, LDRmax to file |
|
2209 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python |
|
2210 with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'w') as f: |
|
2211 with redirect_stdout(f): |
|
2212 print(LID) |
|
2213 print("LDRtrue, LDRmin, LDRmax") |
|
2214 for i in range(len(LDRrangeA)): |
|
2215 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrangeA[i], LDRmin[i], LDRmax[i])) |
|
2216 |
|
2217 |
|
2218 if (bPlotEtax): |
|
2219 if (nDOLP > 0): PlotEtax("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) |
|
2220 if (nRotL > 0): PlotEtax("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) |
|
2221 if (nRetE > 0): PlotEtax("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) |
|
2222 if (nRotE > 0): PlotEtax("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) |
|
2223 if (nDiE > 0): PlotEtax("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) |
|
2224 if (nRetO > 0): PlotEtax("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) |
|
2225 if (nRotO > 0): PlotEtax("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) |
|
2226 if (nDiO > 0): PlotEtax("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) |
|
2227 if (nDiC > 0): PlotEtax("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) |
|
2228 if (nRotC > 0): PlotEtax("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) |
|
2229 if (nRetC > 0): PlotEtax("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) |
|
2230 if (nTP > 0): PlotEtax("TP", aTP, TP0, dTP, iTP, nTP) |
|
2231 if (nTS > 0): PlotEtax("TS", aTS, TS0, dTS, iTS, nTS) |
|
2232 if (nRP > 0): PlotEtax("RP", aRP, RP0, dRP, iRP, nRP) |
|
2233 if (nRS > 0): PlotEtax("RS", aRS, RS0, dRS, iRS, nRS) |
|
2234 if (nRetT > 0): PlotEtax("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) |
|
2235 if (nRetR > 0): PlotEtax("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) |
|
2236 if (nERaT > 0): PlotEtax("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) |
|
2237 if (nERaR > 0): PlotEtax("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) |
|
2238 if (nRotaT > 0): PlotEtax("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) |
|
2239 if (nRotaR > 0): PlotEtax("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) |
|
2240 if (nLDRCal > 0): PlotEtax("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) |
|
2241 if (nTCalT > 0): PlotEtax("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) |
|
2242 if (nTCalR > 0): PlotEtax("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) |
|
2243 if (nNCal > 0): PlotEtax("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) |
|
2244 if (nNCal > 0): PlotEtax("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) |
|
2245 if (nNCal > 0): PlotEtax("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) |
|
2246 if (nNCal > 0): PlotEtax("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) |
|
2247 if (nNI > 0): PlotEtax("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) |
|
2248 if (nNI > 0): PlotEtax("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) |
|
2249 plt.show() |
|
2250 plt.close |
|
2251 |
|
2252 #Etaxmin = np.amin(aEtax[1, :]) |
|
2253 Etaxmin = np.amin(aEtax[1, :]) |
|
2254 Etaxmax = np.amax(aEtax[1, :]) |
|
2255 Etaxstd = np.std(aEtax[1, :]) |
|
2256 Etaxmean = np.mean(aEtax[1, :]) |
|
2257 Etaxmedian = np.mean(aEtax[1, :]) |
|
2258 |
|
2259 print("Etax: mean±std, median, max-mean, mean-min") |
|
2260 print("{0:7.4f}±{1:7.4f},{2:7.4f},+{3:7.4f},-{4:7.4f}".format(Etaxmean, Etaxstd, Etaxmedian, Etaxmax-Etaxmean, Etaxmean-Etaxmin, )) |
|
2261 |
|
2262 ''' |
|
2263 # --- Plot K over LDRCal |
|
2264 fig3 = plt.figure() |
|
2265 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aGHK[4,:], linewidth=2.0, color='b') |
|
2266 |
|
2267 plt.xlabel('LDRCal', fontsize=18) |
|
2268 plt.ylabel('K', fontsize=14) |
|
2269 plt.title(LID, fontsize=18) |
|
2270 plt.show() |
|
2271 plt.close |
|
2272 ''' |
|
2273 |
|
2274 # Additional plot routines ======> |
|
2275 ''' |
|
2276 #****************************************************************************** |
|
2277 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel) |
|
2278 LDRa = np.arange(1.,100.)*0.005 |
|
2279 LDRCorra = np.arange(1.,100.) |
|
2280 if Y == - 1.: LDRa = 1./LDRa |
|
2281 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT)) |
|
2282 if Y == - 1.: LDRa = 1./LDRa |
|
2283 # |
|
2284 #fig = plt.figure() |
|
2285 plt.plot(LDRa,LDRCorra-LDRa) |
|
2286 plt.plot([0.,0.5],[0.,0.5]) |
|
2287 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16) |
|
2288 plt.xlabel('LDR', fontsize=18) |
|
2289 plt.ylabel('LDRCorr - LDR', fontsize=16) |
|
2290 #plt.savefig('test.png') |
|
2291 # |
|
2292 ''' |
|
2293 ''' |
|
2294 #****************************************************************************** |
|
2295 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue |
|
2296 LDRa = np.arange(1.,100.)*0.005 |
|
2297 LDRsima = np.arange(1.,100.) |
|
2298 |
|
2299 atruea = (1.-LDRa)/(1+LDRa) |
|
2300 Ita = TiT*TiO*IinL*(GT+atruea*HT) |
|
2301 Ira = TiR*TiO*IinL*(GR+atruea*HR) |
|
2302 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file |
|
2303 if Y == -1.: LDRsima = 1./LDRsima |
|
2304 # |
|
2305 #fig = plt.figure() |
|
2306 plt.plot(LDRa,LDRsima) |
|
2307 plt.plot([0.,0.5],[0.,0.5]) |
|
2308 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10) |
|
2309 plt.xlabel('LDRtrue', fontsize=18) |
|
2310 plt.ylabel('LDRsim', fontsize=16) |
|
2311 #plt.savefig('test.png') |
|
2312 # |
|
2313 ''' |
|