Tue, 15 Nov 2016 16:21:06 +0100
update
# This Python script will be executed from within the main lidar_correction_ghk.py # Probably it will be better in the future to let the main script rather read a conguration file, # which might improve the portability of the code within an executable. # Due to problems I had with some two letter variables, most variables are now with at least # three letters mixed small and capital. # Do you want to calculate the errors? If not, just the GHK-parameters are determined. Error_Calc = True # Header to identify the lidar system # EID = "xx" # Earlinet station ID LID = "example lidar" # Additional lidar ID (short descriptive text) print(" Lidar system :", EID, ", ", LID) # +++ IL Laser and +-Uncertainty bL = 1. #degree of linear polarization; default 1 RotL, dRotL, nRotL = 0., 2., 1 #alpha; rotation of laser polarization in degrees; default 0 # +++ ME Emitter optics and +-Uncertainty; default = no emitter optics DiE, dDiE, nDiE = 0.0, 0.1, 0 # Diattenuation TiE = 1.0 # Unpolarized transmittance RetE, dRetE, nRetE = 0., 180., 0 # Retardance in degrees RotE, dRotE, nRotE = 0., 1.0, 0 # beta: Rotation of optical element in degrees # +++ MO Receiver optics including telescope DiO, dDiO, nDiO = 0.0, 0.1, 1 TiO = 1.0 RetO, dRetO, nRetO = 0., 180., 0 RotO, dRotO, nRotO = 0., 0.5, 0 #gamma: Rotation of optical element in degrees # +++++ PBS MT Transmitting path defined with TS, TP, PolFilter extinction ratio ERaT, and +-Uncertainty # --- Polarizing beam splitter transmitting path TP, dTP, nTP = 0.95, 0.01, 1 TS, dTS, nTS = 0.02, 0.01, 1 RetT, dRetT, nRetT = 0.0, 180., 0 # Retardance in degrees # --- Pol.Filter behind transmitted path of PBS ERaT, dERaT, nERaT = 0.001, 0.001, 1 # Extinction ratio RotaT, dRotaT, nRotaT = 0., 1., 1 # Rotation of the Pol.-filter in degrees; usually 0° because TP >> TS, but for PollyXTs it can also be 90° # -- TiT = 0.5 * (TP + TS) DiT = (TP-TS)/(TP+TS) DaT = (1-ERaT)/(1+ERaT) TaT = 0.5*(1+ERaT) # +++++ PBS MR Reflecting path defined with RS, RP, PolFilter extinction ratio ERaR and +-Uncertainty # ---- for PBS without absorption the change of RS and RP must depend on the change of TP and TS. Hence the values and uncertainties are not independent. RS_RP_depend_on_TS_TP = False # --- Polarizing beam splitter reflecting path if(RS_RP_depend_on_TS_TP): RP, dRP, nRP = 1-TP, 0.00, 0 # do not change this RS, dRS, nRS = 1-TS, 0.00, 0 # do not change this else: RP, dRP, nRP = 0.05, 0.01, 1 # change this if RS_RP_depend_on_TS_TP = False RS, dRS, nRS = 0.98, 0.01, 1 # change this if RS_RP_depend_on_TS_TP = False RetR, dRetR, nRetR = 0.0, 180., 0 # --- Pol.Filter behind reflected path of PBS ERaR, dERaR, nERaR = 0.001, 0.001, 1 # Extinction ratio RotaR, dRotaR, nRotaR = 90., 1., 1 # Rotation of the Pol.-filter in degrees; usually 90° because RS >> RP, but for PollyXTs it can also be 0° # -- TiR = 0.5 * (RP + RS) DiR = (RP-RS)/(RP+RS) DaR = (1-ERaR)/(1+ERaR) TaR = 0.5*(1+ERaR) # +++ Parallel signal detected in the transmitted channel => Y = +1, or in the reflected channel => Y = -1 Y = +1. # +++ Calibrator Location LocC = 3 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS # --- Calibrator Type used; defined by matrix values below TypeC = 3 #Type of calibrator: 1 = mechanical rotator; 2 = hwp rotator (fixed retardation); 3 = linear polarizer; 4 = qwp; 5 = circular polarizer; 6 = real HWP calibration +-22.5° # --- MC Calibrator parameters if TypeC == 1: #mechanical rotator DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 0., 0., 0 RotC, dRotC, nRotC = 0., 0.1, 1 #constant calibrator offset epsilon # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 1 calibrator elif TypeC == 2: # HWP rotator DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 180., 0., 0 #NOTE: use here twice the HWP-rotation-angle RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 2 calibrator elif TypeC == 3: # linear polarizer calibrator. Diattenuation DiC = (1-ERC)/(1+ERC); ERC = extinction ratio of calibrator DiC, dDiC, nDiC = 0.9998, 0.0001, 1 # ideal 1.0 TiC = 0.4 # ideal 0.5 RetC, dRetC, nRetC = 0., 0., 0 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator elif TypeC == 4: # QWP calibrator DiC, dDiC, nDiC = 0.0, 0., 0 # ideal 1.0 TiC = 1.0 # ideal 0.5 RetC, dRetC, nRetC = 90., 0., 0 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = False # is False for TypeC == 4 calibrator elif TypeC == 6: # real half-wave plate calibration at +-22.5° => rotated_diattenuator_X22x5deg.odt DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 180., 0., 0 #Note: use real HWP angles here RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 6 calibrator else: print ('calibrator not implemented yet') sys.exit() # --- LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements in calibration range with almost clean air (first guess) LDRCal,dLDRCal,nLDRCal= 0.009, 0.005, 1 # spans the interference filter influence # ==================================================== # NOTE: there is no need to change anything below. # --- LDRtrue for simulation of measurement => LDRsim LDRtrue = 0.4 LDRtrue2 = 0.004 # --- measured LDRm will be corrected with calculated parameters GHK LDRmeas = 0.3 # --- this is just for correct transfer of the variables to the main file RotL0, dRotL, nRotL = RotL, dRotL, nRotL # Emitter DiE0, dDiE, nDiE = DiE, dDiE, nDiE RetE0, dRetE, nRetE = RetE, dRetE, nRetE RotE0, dRotE, nRotE = RotE, dRotE, nRotE # Receiver DiO0, dDiO, nDiO = DiO, dDiO, nDiO RetO0, dRetO, nRetO = RetO, dRetO, nRetO RotO0, dRotO, nRotO = RotO, dRotO, nRotO # Calibrator DiC0, dDiC, nDiC = DiC, dDiC, nDiC RetC0, dRetC, nRetC = RetC, dRetC, nRetC RotC0, dRotC, nRotC = RotC, dRotC, nRotC # PBS TP0, dTP, nTP = TP, dTP, nTP TS0, dTS, nTS = TS, dTS, nTS RetT0, dRetT, nRetT = RetT, dRetT, nRetT ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT RP0, dRP, nRP = RP, dRP, nRP RS0, dRS, nRS = RS, dRS, nRS RetR0, dRetR, nRetR = RetR, dRetR, nRetR ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal