Mon, 14 Nov 2016 16:27:26 +0200
Empty lines for testing.
# This Python script will be executed from within the main lidar_correction_ghk.py # Probably it will be better in the future to let the main script rather read a conguration file, # which might improve the portability of the code within an executable. # Due to problems I had with some two letter variables, most variables are now with at least # three letters mixed small and capital. # Header to identify the lidar system # Values of DO, DT, and DR etc. from fit to lamp calibrations in Leipzig (LampCalib_2_invers_c_D0=0.opj) EID = "oh" # Earlinet station ID LID = "POLLY_XT_RALPH LampCalib_2_invers_c_DO=0.opj ver8c-7" # Additional lidar ID (short descriptive text) # firet fit intern (FITLN1) => DO = 0, DT fixed -0.9998, eta and DR fitted, # => internal calib with LinPol before the receiver print(" Lidar system :", EID, ", ", LID) # --- IL Laser IL and +-Uncertainty bL = 1. #degree of linear polarization; default 1 RotL, dRotL, nRotL = 90, 1., 0 #alpha; rotation of laser polarization in degrees; default 0 # --- ME Emitter and +-Uncertainty DiE, dDiE, nDiE = 0., 0.1, 0 # Diattenuation TiE = 1. # Unpolarized transmittance RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees RotE, dRotE, nRotE = 0., 1.0, 0 # beta: Rotation of optical element in degrees # --- MO Receiver Optics including telescope DiO, dDiO, nDiO = 0.0, 0.0022, 0 TiO = 1.0 RetO, dRetO, nRetO = 0., 180.0, 0 RotO, dRotO, nRotO = 0., 0.5, 0 #gamma # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty # --- Pol.Filter ERaT, dERaT, nERaT = 0.0001, 0.0001, 1 # Extinction ratio RotaT, dRotaT, nRotaT = 90., 2., 0 # Rotation of the pol.-filter in degrees DaT = (1-ERaT)/(1+ERaT) TaT = 0.5*(1+ERaT) # --- PBS combined with Pol.Filter TP, dTP, nTP = 0.512175, 0.0024, 1 TS, dTS, nTS = 1-TP, 0.02, 0 TiT = 0.5 * (TP + TS) DiT = (TP-TS)/(TP+TS) RetT, dRetT, nRetT = 0., 180., 0 # Retardance in degrees # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty # --- Pol.Filter ERaR, dERaR, nERaR = 1, 0.003, 0 RotaR, dRotaR, nRotaR = 0., 2., 0 DaR = (1-ERaR)/(1+ERaR) TaR = 0.5*(1+ERaR) # --- PBS 50/50 RP, dRP, nRP = 1-TP, 0.02, 0 RS, dRS, nRS = 1-TS, 0.00, 0 RetR, dRetR, nRetR = 0., 180., 0 TiR = 0.5 * (RP + RS) DiR = (RP-RS)/(RP+RS) # --- Parallel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1 Y = -1. # --- Calibrator Location LocC = 3 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS # --- Calibrator Type used; defined by matrix values below TypeC = 3 #Type of calibrator: 1 = mechanical rotator; 2 = hwp rotator (fixed retardation); 3 = linear polarizer; 4 = qwp; 5 = circular polarizer; 6 = real HWP calibration +-22.5° # --- MC Calibrator if TypeC == 1: #mechanical rotator DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 0., 0., 0 RotC, dRotC, nRotC = 0., 0.1, 1 #constant calibrator offset epsilon # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 1 calibrator elif TypeC == 2: # HWP rotator DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 180., 0., 0 #NOTE: use here twice the HWP-rotation-angle RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 2 calibrator elif TypeC == 3: # linear polarizer calibrator DiC, dDiC, nDiC = 0.9998, 0.0001, 1 # ideal 1.0 TiC = 0.505 # ideal 0.5 RetC, dRetC, nRetC = 0., 0., 0 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator elif TypeC == 4: # QWP calibrator DiC, dDiC, nDiC = 0.0, 0., 0 # ideal 1.0 TiC = 1.0 # ideal 0.5 RetC, dRetC, nRetC = 90., 0., 0 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon RotationErrorEpsilonForNormalMeasurements = False # is False for TypeC == 4 calibrator elif TypeC == 6: # real half-wave plate calibration at +-22.5° => rotated_diattenuator_X22x5deg.odt DiC, dDiC, nDiC = 0., 0., 0 TiC = 1. RetC, dRetC, nRetC = 180., 0., 0 #Note: use real HWP angles here RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator offset epsilon -1.15 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 6 calibrator else: print ('calibrator not implemented yet') sys.exit() # --- LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) LDRCal,dLDRCal,nLDRCal= 0.006, 0.02, 1 # ==================================================== # NOTE: there is no need to change anything below. # --- LDRtrue for simulation of measurement => LDRsim LDRtrue = 0.4 LDRtrue2 = 0.004 # --- measured LDRm will be corrected with calculated parameters GHK LDRmeas = 0.3 # --- this is just for correct transfer of the variables to the main file RotL0, dRotL, nRotL = RotL, dRotL, nRotL # Emitter DiE0, dDiE, nDiE = DiE, dDiE, nDiE RetE0, dRetE, nRetE = RetE, dRetE, nRetE RotE0, dRotE, nRotE = RotE, dRotE, nRotE # Receiver DiO0, dDiO, nDiO = DiO, dDiO, nDiO RetO0, dRetO, nRetO = RetO, dRetO, nRetO RotO0, dRotO, nRotO = RotO, dRotO, nRotO # Calibrator DiC0, dDiC, nDiC = DiC, dDiC, nDiC RetC0, dRetC, nRetC = RetC, dRetC, nRetC RotC0, dRotC, nRotC = RotC, dRotC, nRotC # PBS TP0, dTP, nTP = TP, dTP, nTP TS0, dTS, nTS = TS, dTS, nTS RetT0, dRetT, nRetT = RetT, dRetT, nRetT ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT RP0, dRP, nRP = RP, dRP, nRP RS0, dRS, nRS = RS, dRS, nRS RetR0, dRetR, nRetR = RetR, dRetR, nRetR ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal