Thu, 29 Mar 2012 16:34:10 +0200
Removing old files
binietoglou@0 | 1 | The SCC netCDF file format |
binietoglou@0 | 2 | ========================== |
binietoglou@0 | 3 | |
binietoglou@0 | 4 | Rationale |
binietoglou@0 | 5 | --------- |
binietoglou@0 | 6 | |
binietoglou@0 | 7 | The Single Calculus Chain (SCC) is composed by two different modules: |
binietoglou@0 | 8 | |
binietoglou@0 | 9 | - pre-processing module ( scc\_preprocessing) |
binietoglou@0 | 10 | |
binietoglou@0 | 11 | - optical processing module ( ELDA) |
binietoglou@0 | 12 | |
binietoglou@0 | 13 | To perfom aerosol optical retrievals the SCC needs not only the raw |
binietoglou@0 | 14 | lidar data but also a certain number of parameters to use in both |
binietoglou@0 | 15 | pre-processing and optical processing stages. The SCC gets these |
binietoglou@0 | 16 | parameters looking at two different locations: |
binietoglou@0 | 17 | |
binietoglou@0 | 18 | - Single Calculus Chain relational database (SCC\_DB) |
binietoglou@0 | 19 | |
binietoglou@0 | 20 | - Input files |
binietoglou@0 | 21 | |
binietoglou@0 | 22 | There are some paramenters that can be found only in the input files |
binietoglou@0 | 23 | (those ones changing from measurement to measurement), others that can |
binietoglou@0 | 24 | be found only in the SCC\_DB and other ones that can be found in both |
binietoglou@0 | 25 | these locations. In the last case, if a particular parameter is needed, |
binietoglou@0 | 26 | the SCC will search first in the input files and then in SCC\_DB. If the |
binietoglou@0 | 27 | parameter is found in the input files the SCC will keep it without |
binietoglou@0 | 28 | looking into SCC\_DB. |
binietoglou@0 | 29 | |
binietoglou@0 | 30 | The input files have to be submitted to the SCC in NetCDF format. At the |
binietoglou@0 | 31 | present the SCC can handle four different types of input files: |
binietoglou@0 | 32 | |
binietoglou@0 | 33 | 1. Raw Lidar Data |
binietoglou@0 | 34 | 2. Sounding Data |
binietoglou@0 | 35 | 3. Overlap |
binietoglou@0 | 36 | 4. Lidar Ratio |
binietoglou@0 | 37 | |
binietoglou@0 | 38 | |
binietoglou@0 | 39 | As already mentioned, the Raw Lidar Data file contains not only the |
binietoglou@0 | 40 | raw lidar data but also other parameters to use to perform the |
binietoglou@0 | 41 | pre-processing and optical processing. The Sounding Data file |
binietoglou@0 | 42 | contains the data coming from a correlative radiosounding and it is used |
binietoglou@0 | 43 | by the SCC for molecular density calculation. The Overlap file |
binietoglou@0 | 44 | contains the measured overlap function. The Lidar Ratio file contains |
binietoglou@0 | 45 | a lidar ratio profile to use in elastic backscatter retrievals. The |
binietoglou@0 | 46 | Raw Lidar Data file is of course mandatory and the Sounding Data, |
binietoglou@0 | 47 | Overlap and Lidar Ratio files are optional. If Sounding Data file |
binietoglou@0 | 48 | is not submitted by the user, the molecular density will be calculated |
binietoglou@0 | 49 | by the SCC using the “US Standard Atmosphere 1976”. If the Overlap |
binietoglou@0 | 50 | file is not submitted by the user, the SCC will get the full overlap |
binietoglou@0 | 51 | height from SCC\_DB and it will produce optical results starting from |
binietoglou@0 | 52 | this height. If Lidar Ratio file is not submitted by the user, the |
binietoglou@0 | 53 | SCC will consider a fixed value for lidar ratio got from SCC\_DB. |
binietoglou@0 | 54 | |
binietoglou@0 | 55 | The user can decide to submit all these files or any number of them (of |
binietoglou@0 | 56 | course the file Raw Lidar Data is mandatory). For example the user |
binietoglou@0 | 57 | can submit together with the Raw Lidar Data file only the Sounding |
binietoglou@0 | 58 | Data file or only the Overlap file. |
binietoglou@0 | 59 | |
binietoglou@0 | 60 | This document provides a detailed explanation about the structure of the |
binietoglou@0 | 61 | NetCDF input files to use for SCC data submission. All Earlinet groups |
binietoglou@0 | 62 | should read it carefully because they have to produce such kind of input |
binietoglou@0 | 63 | files if they want to use the SCC for their standard lidar retrievals. |
binietoglou@0 | 64 | Every comments or suggestions regarding this document can be sent to |
binietoglou@0 | 65 | Giuseppe D’Amico by e-mail at ``damico@imaa.cnr.it`` |
binietoglou@0 | 66 | |
binietoglou@0 | 67 | This document is available for downloading at ``www.earlinetasos.org`` |
binietoglou@0 | 68 | |
binietoglou@0 | 69 | In table tab:rawdata is reported a list of dimensions, variables and |
binietoglou@0 | 70 | global attributes that can be used in the NetCDF Raw Lidar Data input |
binietoglou@0 | 71 | file. For each of them it is indicated: |
binietoglou@0 | 72 | |
binietoglou@0 | 73 | - The name. For the multidimensional variables also the corresponding |
binietoglou@0 | 74 | dimensions are reported |
binietoglou@0 | 75 | |
binietoglou@0 | 76 | - A description explaining the meaning |
binietoglou@0 | 77 | |
binietoglou@0 | 78 | - The type |
binietoglou@0 | 79 | |
binietoglou@0 | 80 | - If it is mandatory or optional |
binietoglou@0 | 81 | |
binietoglou@0 | 82 | As already mentioned, the SCC can get some parameters looking first in |
binietoglou@0 | 83 | the Raw Lidar Data input file and then into SCC\_DB. This means that |
binietoglou@0 | 84 | to use the parameters stored in SCC\_DB the optional variables or |
binietoglou@0 | 85 | optional global attributes must not appear within Raw Lidar Data |
binietoglou@0 | 86 | file. This is the suggested and recommended way to use the SCC. Please |
binietoglou@0 | 87 | include optional parameters in the Raw Lidar Data only as an |
binietoglou@0 | 88 | exception. |
binietoglou@0 | 89 | |
binietoglou@0 | 90 | In table tab:sounding, tab:overlap and tab:lr are reported all the |
binietoglou@0 | 91 | information about the structure of Sounding Data, Overlap and |
binietoglou@0 | 92 | Lidar Ratio input files respectively. |
binietoglou@0 | 93 | |
binietoglou@0 | 94 | Example |
binietoglou@0 | 95 | ------- |
binietoglou@0 | 96 | |
binietoglou@0 | 97 | Let’s now consider an example of Raw Lidar Data input file. Suppose |
binietoglou@0 | 98 | we want to generate NetCDF input file corresponding to a measurement |
binietoglou@0 | 99 | with the following properties: |
binietoglou@0 | 100 | |
binietoglou@0 | 101 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 102 | | Start Date | :math:`30^{th}` January 2009 | |
binietoglou@0 | 103 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 104 | | Start Time UT | 00:00:01 | |
binietoglou@0 | 105 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 106 | | Stop Time UT | 00:05:01 | |
binietoglou@0 | 107 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 108 | | Station Name | Dummy station | |
binietoglou@0 | 109 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 110 | | Earlinet call-sign | cc | |
binietoglou@0 | 111 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 112 | | Pointing angle | 5 degrees with respect to the zenith | |
binietoglou@0 | 113 | +----------------------+-------------------------------------------+ |
binietoglou@0 | 114 | |
binietoglou@0 | 115 | Moreover suppose that this measurement is composed by the following |
binietoglou@0 | 116 | lidar channels: |
binietoglou@0 | 117 | |
binietoglou@0 | 118 | 1. 1064 lidar channel |
binietoglou@0 | 119 | |
binietoglou@0 | 120 | +------------------------------+-------------------------------+ |
binietoglou@0 | 121 | | Emission wavelength=1064nm | Detection wavelength=1064nm | |
binietoglou@0 | 122 | +------------------------------+-------------------------------+ |
binietoglou@0 | 123 | | Time resolution=30s | Number of laser shots=1500 | |
binietoglou@0 | 124 | +------------------------------+-------------------------------+ |
binietoglou@0 | 125 | | Number of bins=3000 | Detection mode=analog | |
binietoglou@0 | 126 | +------------------------------+-------------------------------+ |
binietoglou@0 | 127 | | Range resolution=7.5m | Polarization state=total | |
binietoglou@0 | 128 | +------------------------------+-------------------------------+ |
binietoglou@0 | 129 | |
binietoglou@0 | 130 | 2. 532 cross lidar channel |
binietoglou@0 | 131 | |
binietoglou@0 | 132 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 133 | | Emission wavelength=532nm | Detection wavelength=532nm | |
binietoglou@0 | 134 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 135 | | Time resolution=60s | Number of laser shots=3000 | |
binietoglou@0 | 136 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 137 | | Number of bins=5000 | Detection mode=photoncounting | |
binietoglou@0 | 138 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 139 | | Range resolution=15m | Polarization state=cross | |
binietoglou@0 | 140 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 141 | |
binietoglou@0 | 142 | 3. 532 parallel lidar channel |
binietoglou@0 | 143 | |
binietoglou@0 | 144 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 145 | | Emission wavelength=532nm | Detection wavelength=532nm | |
binietoglou@0 | 146 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 147 | | Time resolution=60s | Number of laser shots=3000 | |
binietoglou@0 | 148 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 149 | | Number of bins=5000 | Detection mode=photoncounting | |
binietoglou@0 | 150 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 151 | | Range resolution=15m | Polarization state=parallel | |
binietoglou@0 | 152 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 153 | |
binietoglou@0 | 154 | 4. 607 :math:`N_2` vibrational Raman channel |
binietoglou@0 | 155 | |
binietoglou@0 | 156 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 157 | | Emission wavelength=532nm | Detection wavelength=607nm | |
binietoglou@0 | 158 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 159 | | Time resolution=60s | Number of laser shots=3000 | |
binietoglou@0 | 160 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 161 | | Number of bins=5000 | Detection mode=photoncounting | |
binietoglou@0 | 162 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 163 | | Range resolution=15m | |
binietoglou@0 | 164 | +-----------------------------+---------------------------------+ |
binietoglou@0 | 165 | |
binietoglou@0 | 166 | Finally let’s assume we have also performed dark measurements before the |
binietoglou@0 | 167 | lidar measurements from the 23:50:01 UT up to 23:53:01 UT of |
binietoglou@0 | 168 | 29:math:`^\mathrmth` January 2009. |
binietoglou@0 | 169 | |
binietoglou@0 | 170 | Dimensions |
binietoglou@0 | 171 | ~~~~~~~~~~ |
binietoglou@0 | 172 | |
binietoglou@0 | 173 | Looking at table tab:rawdata we have to fix the following dimensions: |
binietoglou@0 | 174 | |
binietoglou@0 | 175 | :: |
binietoglou@0 | 176 | |
binietoglou@0 | 177 | points |
binietoglou@0 | 178 | channels |
binietoglou@0 | 179 | time |
binietoglou@0 | 180 | nb_of_time_scales |
binietoglou@0 | 181 | scan_angles |
binietoglou@0 | 182 | time_bck |
binietoglou@0 | 183 | |
binietoglou@0 | 184 | The dimension ``time`` is unlimited so we don’t have to fix it. |
binietoglou@0 | 185 | |
binietoglou@0 | 186 | We have 4 lidar channels so: |
binietoglou@0 | 187 | |
binietoglou@0 | 188 | :: |
binietoglou@0 | 189 | |
binietoglou@0 | 190 | channels=4 |
binietoglou@0 | 191 | |
binietoglou@0 | 192 | Regarding the dimension ``points`` we have only one channel with a |
binietoglou@0 | 193 | number of vertical bins equal to 3000 (the 1064nm) and all other |
binietoglou@0 | 194 | channels with 5000 vertical bins. In cases like this the dimension |
binietoglou@0 | 195 | ``points`` has to be fixed to the maximum number of vertical bins so: |
binietoglou@0 | 196 | |
binietoglou@0 | 197 | :: |
binietoglou@0 | 198 | |
binietoglou@0 | 199 | points=5000 |
binietoglou@0 | 200 | |
binietoglou@0 | 201 | Moreover only one channel (1064nm) is acquired with a time resolution of |
binietoglou@0 | 202 | 30 seconds, all the other channels have a time resolution of 60 seconds. |
binietoglou@0 | 203 | This means that we have to define two different time scales. We have to |
binietoglou@0 | 204 | set: |
binietoglou@0 | 205 | |
binietoglou@0 | 206 | :: |
binietoglou@0 | 207 | |
binietoglou@0 | 208 | nb_of_time_scales=2 |
binietoglou@0 | 209 | |
binietoglou@0 | 210 | The measurement is performed only at one scan angle (5 degrees with |
binietoglou@0 | 211 | respect to the zenith) so: |
binietoglou@0 | 212 | |
binietoglou@0 | 213 | :: |
binietoglou@0 | 214 | |
binietoglou@0 | 215 | scan_angles=1 |
binietoglou@0 | 216 | |
binietoglou@0 | 217 | We have 3 minutes of dark measurements and two different time scales one |
binietoglou@0 | 218 | with 60 seconds time resolution and the other one with 30 seconds time |
binietoglou@0 | 219 | resolution. So we will have 3 different dark profiles for the channels |
binietoglou@0 | 220 | acquired with the first time scale and 6 for the lidar channels acquired |
binietoglou@0 | 221 | with the second time scale. We have to fix the dimension ``time_bck`` as |
binietoglou@0 | 222 | the maximum between these values: |
binietoglou@0 | 223 | |
binietoglou@0 | 224 | :: |
binietoglou@0 | 225 | |
binietoglou@0 | 226 | time_bck=6 |
binietoglou@0 | 227 | |
binietoglou@0 | 228 | Variables |
binietoglou@0 | 229 | ~~~~~~~~~ |
binietoglou@0 | 230 | |
binietoglou@0 | 231 | In this section it will be explained how to fill all the possible |
binietoglou@0 | 232 | variables either mandatory or optional of Raw Lidar Data input file. |
binietoglou@0 | 233 | |
binietoglou@0 | 234 | Raw_Data_Start_Time(time, nb_of_time_scales) |
binietoglou@0 | 235 | This 2 dimensional mandatory array has to contain the acquisition |
binietoglou@0 | 236 | start time (in seconds from the time given by the global attribute |
binietoglou@0 | 237 | ``RawData_Start_Time_UT``) of each lidar profile. In this example we |
binietoglou@0 | 238 | have two different time scales: one is characterized by steps of 30 |
binietoglou@0 | 239 | seconds (the 1064nm is acquired with this time scale) the other by |
binietoglou@0 | 240 | steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the |
binietoglou@0 | 241 | measurement start time is 00:00:01 UT and the measurement stop time |
binietoglou@0 | 242 | is 00:05:01 UT. In this case we have to define: |
binietoglou@0 | 243 | |
binietoglou@0 | 244 | :: |
binietoglou@0 | 245 | |
binietoglou@0 | 246 | Raw_Data_Start_Time = |
binietoglou@0 | 247 | 0, 0, |
binietoglou@0 | 248 | 60, 30, |
binietoglou@0 | 249 | 120, 60, |
binietoglou@0 | 250 | 180, 90, |
binietoglou@0 | 251 | 240, 120, |
binietoglou@0 | 252 | _, 150, |
binietoglou@0 | 253 | _, 180, |
binietoglou@0 | 254 | _, 210, |
binietoglou@0 | 255 | _, 240, |
binietoglou@0 | 256 | _, 270 ; |
binietoglou@0 | 257 | |
binietoglou@0 | 258 | The order used to fill this array defines the correspondence between |
binietoglou@0 | 259 | the different time scales and the time scale index. In this example |
binietoglou@0 | 260 | we have a time scale index of 0 for the time scale with steps of 60 |
binietoglou@0 | 261 | seconds and a time scale index of 1 for the other one. |
binietoglou@0 | 262 | |
binietoglou@0 | 263 | Raw_Data_Stop_Time(time, nb_of_time_scales) |
binietoglou@0 | 264 | The same as previous item but for the data acquisition stop time. |
binietoglou@0 | 265 | Following a similar procedure we have to define: |
binietoglou@0 | 266 | |
binietoglou@0 | 267 | :: |
binietoglou@0 | 268 | |
binietoglou@0 | 269 | Raw_Data_Stop_Time = |
binietoglou@0 | 270 | 60, 30, |
binietoglou@0 | 271 | 120, 60, |
binietoglou@0 | 272 | 180, 90, |
binietoglou@0 | 273 | 240, 120, |
binietoglou@0 | 274 | 300, 150, |
binietoglou@0 | 275 | _, 180, |
binietoglou@0 | 276 | _, 210, |
binietoglou@0 | 277 | _, 240, |
binietoglou@0 | 278 | _, 270, |
binietoglou@0 | 279 | _, 300 ; |
binietoglou@0 | 280 | |
binietoglou@0 | 281 | Raw_Lidar_Data(time, channels, points) |
binietoglou@0 | 282 | This 3 dimensional mandatory array has to be filled with the |
binietoglou@0 | 283 | time-series of raw lidar data. The photoncounting profiles have to |
binietoglou@0 | 284 | submitted in counts (so as integers) while the analog ones in mV. The |
binietoglou@0 | 285 | order the user chooses to fill this array defines the correspondence |
binietoglou@0 | 286 | between channel index and lidar data. |
binietoglou@0 | 287 | |
binietoglou@0 | 288 | For example if we fill this array in such way that: |
binietoglou@0 | 289 | |
binietoglou@0 | 290 | +-------------------------------------+------------------------------------------------------------+ |
binietoglou@0 | 291 | | Raw_Lidar_Data(time,0,points | :math:`\rightarrow` is the time-series of 1064 nm | |
binietoglou@0 | 292 | +-------------------------------------+------------------------------------------------------------+ |
binietoglou@0 | 293 | | Raw_Lidar_Data(time,1,points | :math:`\rightarrow` is the time-series of 532 cross | |
binietoglou@0 | 294 | +-------------------------------------+------------------------------------------------------------+ |
binietoglou@0 | 295 | | Raw_Lidar_Data(time,2,points | :math:`\rightarrow` is the time-series of 532 parallel | |
binietoglou@0 | 296 | +-------------------------------------+------------------------------------------------------------+ |
binietoglou@0 | 297 | | Raw_Lidar_Data(time,3,points | :math:`\rightarrow` is the time-series of 607 nm | |
binietoglou@0 | 298 | +-------------------------------------+------------------------------------------------------------+ |
binietoglou@0 | 299 | |
binietoglou@0 | 300 | from now on the channel index 0 is associated to the 1064 channel, |
binietoglou@0 | 301 | 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm. |
binietoglou@0 | 302 | |
binietoglou@0 | 303 | Raw_Bck_Start_Time(time_bck, nb_of_time_scales) |
binietoglou@0 | 304 | This 2 dimensional optional array has to contain the acquisition |
binietoglou@0 | 305 | start time (in seconds from the time given by the global attribute |
binietoglou@0 | 306 | ``RawBck_Start_Time_UT``) of each dark measurements profile. |
binietoglou@0 | 307 | Following the same procedure used for the variable |
binietoglou@0 | 308 | ``Raw_Data_Start_Time`` we have to define: |
binietoglou@0 | 309 | |
binietoglou@0 | 310 | :: |
binietoglou@0 | 311 | |
binietoglou@0 | 312 | Raw_Bck_Start_Time = |
binietoglou@0 | 313 | 0, 0, |
binietoglou@0 | 314 | 60, 30, |
binietoglou@0 | 315 | 120, 60, |
binietoglou@0 | 316 | _, 90, |
binietoglou@0 | 317 | _, 120, |
binietoglou@0 | 318 | _, 150; |
binietoglou@0 | 319 | |
binietoglou@0 | 320 | Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) |
binietoglou@0 | 321 | The same as previous item but for the dark acquisition stop time. |
binietoglou@0 | 322 | Following a similar procedure we have to define: |
binietoglou@0 | 323 | |
binietoglou@0 | 324 | :: |
binietoglou@0 | 325 | |
binietoglou@0 | 326 | Raw_Bck_Stop_Time = |
binietoglou@0 | 327 | 60, 30, |
binietoglou@0 | 328 | 120, 60, |
binietoglou@0 | 329 | 180, 90, |
binietoglou@0 | 330 | _, 120, |
binietoglou@0 | 331 | _, 150, |
binietoglou@0 | 332 | _, 180 ; |
binietoglou@0 | 333 | |
binietoglou@0 | 334 | |
binietoglou@0 | 335 | Background_Profile(time_bck, channels, points) |
binietoglou@0 | 336 | This 3 dimensional optional array has to be filled with the |
binietoglou@0 | 337 | time-series of the dark measurements data. The photoncounting |
binietoglou@0 | 338 | profiles have to submitted in counts (so as integers) while the |
binietoglou@0 | 339 | analog ones in mV. The user has to fill this array following the same |
binietoglou@0 | 340 | order used in filling the array ``Raw_Lidar_Data``: |
binietoglou@0 | 341 | |
binietoglou@0 | 342 | +---------------------------------------------+----------------------------------------------------------+ |
binietoglou@0 | 343 | | Background_Profile(time_bck,0,points | :math:`\rightarrow` dark time-series at 1064 nm | |
binietoglou@0 | 344 | +---------------------------------------------+----------------------------------------------------------+ |
binietoglou@0 | 345 | | Background_Profile(time_bck,1,points | :math:`\rightarrow` dark time-series at 532 cross | |
binietoglou@0 | 346 | +---------------------------------------------+----------------------------------------------------------+ |
binietoglou@0 | 347 | | Background_Profile(time_bck,2,points | :math:`\rightarrow` dark time-series at 532 parallel | |
binietoglou@0 | 348 | +---------------------------------------------+----------------------------------------------------------+ |
binietoglou@0 | 349 | | Background_Profile(time_bck,3,points | :math:`\rightarrow` dark time-series at 607 nm | |
binietoglou@0 | 350 | +---------------------------------------------+----------------------------------------------------------+ |
binietoglou@0 | 351 | |
binietoglou@0 | 352 | |
binietoglou@0 | 353 | channel_ID(channels) |
binietoglou@0 | 354 | This mandatory array provides the link between the channel index |
binietoglou@0 | 355 | within the Raw Lidar Data input file and the channel ID in |
binietoglou@0 | 356 | SCC\_DB. To fill this variable the user has to know which channel IDs |
binietoglou@0 | 357 | in SCC\_DB correspond to his lidar channels. For this purpose the |
binietoglou@0 | 358 | SCC, in its final version will provide to the user a special tool to |
binietoglou@0 | 359 | get these channel IDs through a Web interface. At the moment this |
binietoglou@0 | 360 | interface is not yet available and these channel IDs will be |
binietoglou@0 | 361 | communicated directly to the user by the NA5 people. |
binietoglou@0 | 362 | |
binietoglou@0 | 363 | Anyway to continue the example let’s suppose that the four lidar |
binietoglou@0 | 364 | channels taken into account are mapped into SCC\_DB with the |
binietoglou@0 | 365 | following channel IDs: |
binietoglou@0 | 366 | |
binietoglou@0 | 367 | +----------------+--------------------------------------+ |
binietoglou@0 | 368 | | 1064 nm | :math:`\rightarrow` channel ID=7 | |
binietoglou@0 | 369 | +----------------+--------------------------------------+ |
binietoglou@0 | 370 | | 532 cross | :math:`\rightarrow` channel ID=5 | |
binietoglou@0 | 371 | +----------------+--------------------------------------+ |
binietoglou@0 | 372 | | 532 parallel | :math:`\rightarrow` channel ID=6 | |
binietoglou@0 | 373 | +----------------+--------------------------------------+ |
binietoglou@0 | 374 | | 607 nm | :math:`\rightarrow` channel ID=8 | |
binietoglou@0 | 375 | +----------------+--------------------------------------+ |
binietoglou@0 | 376 | |
binietoglou@0 | 377 | In this case we have to define: |
binietoglou@0 | 378 | |
binietoglou@0 | 379 | :: |
binietoglou@0 | 380 | |
binietoglou@0 | 381 | channel_ID = 7, 5, 6, 8 ; |
binietoglou@0 | 382 | |
binietoglou@0 | 383 | id_timescale(channels) |
binietoglou@0 | 384 | This mandatory array is introduced to determine which time scale is |
binietoglou@0 | 385 | used for the acquisition of each lidar channel. In particular this |
binietoglou@0 | 386 | array defines the link between the channel index and the time scale |
binietoglou@0 | 387 | index. In our example we have two different time scales. Filling the |
binietoglou@0 | 388 | arrays ``Raw_Data_Start_Time`` and ``Raw_Data_Stop_Time`` we have |
binietoglou@0 | 389 | defined a time scale index of 0 for the time scale with steps of 60 |
binietoglou@0 | 390 | seconds and a time scale index of 1 for the other one with steps of |
binietoglou@0 | 391 | 30 seconds. In this way this array has to be set as: |
binietoglou@0 | 392 | |
binietoglou@0 | 393 | :: |
binietoglou@0 | 394 | |
binietoglou@0 | 395 | id_timescale = 1, 0, 0, 0 ; |
binietoglou@0 | 396 | |
binietoglou@0 | 397 | Laser_Pointing_Angle(scan_angles |
binietoglou@0 | 398 | This mandatory array contains all the scan angles used in the |
binietoglou@0 | 399 | measurement. In our example we have only one scan angle of 5 degrees |
binietoglou@0 | 400 | with respect to the zenith, so we have to define: |
binietoglou@0 | 401 | |
binietoglou@0 | 402 | :: |
binietoglou@0 | 403 | |
binietoglou@0 | 404 | Laser_Pointing_Angle = 5 ; |
binietoglou@0 | 405 | |
binietoglou@0 | 406 | Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) |
binietoglou@0 | 407 | This mandatory array is introduced to determine which scan angle is |
binietoglou@0 | 408 | used for the acquisition of each lidar profile. In particular this |
binietoglou@0 | 409 | array defines the link between the time and time scales indexes and |
binietoglou@0 | 410 | the scan angle index. In our example we have a single scan angle that |
binietoglou@0 | 411 | has to correspond to the scan angle index 0. So this array has to be |
binietoglou@0 | 412 | defined as: |
binietoglou@0 | 413 | |
binietoglou@0 | 414 | :: |
binietoglou@0 | 415 | |
binietoglou@0 | 416 | Laser_Pointing_Angle_of_Profiles = |
binietoglou@0 | 417 | 0, 0, |
binietoglou@0 | 418 | 0, 0, |
binietoglou@0 | 419 | 0, 0, |
binietoglou@0 | 420 | 0, 0, |
binietoglou@0 | 421 | 0, 0, |
binietoglou@0 | 422 | _, 0, |
binietoglou@0 | 423 | _, 0, |
binietoglou@0 | 424 | _, 0, |
binietoglou@0 | 425 | _, 0, |
binietoglou@0 | 426 | _, 0 ; |
binietoglou@0 | 427 | |
binietoglou@0 | 428 | Laser_Shots(time, channels) |
binietoglou@0 | 429 | This mandatory array stores the laser shots accumulated at each time |
binietoglou@0 | 430 | for each channel. In our example the number of laser shots |
binietoglou@0 | 431 | accumulated is 1500 for the 1064nm channels and 3000 for all the |
binietoglou@0 | 432 | other channels. Moreover the laser shots do not change with the time. |
binietoglou@0 | 433 | So we have to define this array as: |
binietoglou@0 | 434 | |
binietoglou@0 | 435 | :: |
binietoglou@0 | 436 | |
binietoglou@0 | 437 | Laser_Shots = |
binietoglou@0 | 438 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 439 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 440 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 441 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 442 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 443 | 1500, _, _, _, |
binietoglou@0 | 444 | 1500, _, _, _, |
binietoglou@0 | 445 | 1500, _, _, _, |
binietoglou@0 | 446 | 1500, _, _, _, |
binietoglou@0 | 447 | 1500, _, _, _ ; |
binietoglou@0 | 448 | |
binietoglou@0 | 449 | Emitted_Wavelength(channels) |
binietoglou@0 | 450 | This optional array defines the link between the channel index and |
binietoglou@0 | 451 | the emission wavelength for each lidar channel. The wavelength has to |
binietoglou@0 | 452 | be expressed in nm. This information can be also taken from SCC\_DB. |
binietoglou@0 | 453 | In our example we have: |
binietoglou@0 | 454 | |
binietoglou@0 | 455 | :: |
binietoglou@0 | 456 | |
binietoglou@0 | 457 | Emitted_Wavelength = 1064, 532, 532, 532 ; |
binietoglou@0 | 458 | |
binietoglou@0 | 459 | Detected_Wavelength(channels) |
binietoglou@0 | 460 | This optional array defines the link between the channel index and |
binietoglou@0 | 461 | the detected wavelength for each lidar channel. Here detected |
binietoglou@0 | 462 | wavelength means the value of center of interferential filter |
binietoglou@0 | 463 | expressed in nm. This information can be also taken from SCC\_DB. In |
binietoglou@0 | 464 | our example we have: |
binietoglou@0 | 465 | |
binietoglou@0 | 466 | :: |
binietoglou@0 | 467 | |
binietoglou@0 | 468 | Detected_Wavelength = 1064, 532, 532, 607 ; |
binietoglou@0 | 469 | |
binietoglou@0 | 470 | Raw_Data_Range_Resolution(channels) |
binietoglou@0 | 471 | This optional array defines the link between the channel index and |
binietoglou@0 | 472 | the raw range resolution for each channel. If the scan angle is |
binietoglou@0 | 473 | different from zero this quantity is different from the vertical |
binietoglou@0 | 474 | resolution. More precisely if :math:`\alpha` is the scan angle used |
binietoglou@0 | 475 | and :math:`\Delta z` is the range resolution the vertical |
binietoglou@0 | 476 | resolution is calculated as :math:`\Delta |
binietoglou@0 | 477 | z'=\Delta z \cos\alpha`. This array has to be filled with |
binietoglou@0 | 478 | :math:`\Delta z` and not with :math:`\Delta z'`. The unit is |
binietoglou@0 | 479 | meters. This information can be also taken from SCC\_DB. In our |
binietoglou@0 | 480 | example we have: |
binietoglou@0 | 481 | |
binietoglou@0 | 482 | :: |
binietoglou@0 | 483 | |
binietoglou@0 | 484 | Raw_Data_Range_Resolution = 7.5, 15.0, 15.0, 15.0 ; |
binietoglou@0 | 485 | |
binietoglou@0 | 486 | ID_Range(channels) |
binietoglou@0 | 487 | This optional array defines if a particular channel is configured as |
binietoglou@0 | 488 | high, low or ultranear range channel. In particular a value 0 |
binietoglou@0 | 489 | indicates a low range channel, a value 1 a high range channel and a |
binietoglou@0 | 490 | value of 2 an ultranear range channel. If for a particular channel |
binietoglou@0 | 491 | you don’t separate between high and low range channel, please set the |
binietoglou@0 | 492 | corresponding value to 1. This information can be also taken from |
binietoglou@0 | 493 | SCC\_DB. In our case we have to set: |
binietoglou@0 | 494 | |
binietoglou@0 | 495 | :: |
binietoglou@0 | 496 | |
binietoglou@0 | 497 | ID_Range = 1, 1, 1, 1 ; |
binietoglou@0 | 498 | |
binietoglou@0 | 499 | Scattering_Mechanism(channels) |
binietoglou@0 | 500 | This optional array defines the scattering mechanism involved in |
binietoglou@0 | 501 | each lidar channel. In particular the following values are adopted: |
binietoglou@0 | 502 | |
binietoglou@0 | 503 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 504 | | 0 | :math:`\rightarrow` Total elastic backscatter | |
binietoglou@0 | 505 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 506 | | 1 | :math:`\rightarrow` :math:`N_2` vibrational Raman backscatter | |
binietoglou@0 | 507 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 508 | | 2 | :math:`\rightarrow` Cross polarization elastic backscatter | |
binietoglou@0 | 509 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 510 | | 3 | :math:`\rightarrow` Parallel polarization elastic backscatter | |
binietoglou@0 | 511 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 512 | | 4 | :math:`\rightarrow` :math:`H_2O` vibrational Raman backscatter | |
binietoglou@0 | 513 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 514 | | 5 | :math:`\rightarrow` Rotational Raman Stokes line close to elastic line | |
binietoglou@0 | 515 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 516 | | 6 | :math:`\rightarrow` Rotational Raman Stokes line far from elastic line | |
binietoglou@0 | 517 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 518 | | 7 | :math:`\rightarrow` Rotational Raman anti-Stokes line close to elastic line | |
binietoglou@0 | 519 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 520 | | 8 | :math:`\rightarrow` Rotational Raman anti-Stokes line far from elastic line | |
binietoglou@0 | 521 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 522 | | 9 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines close to elastic line | |
binietoglou@0 | 523 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 524 | | 10 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines far from elastic line | |
binietoglou@0 | 525 | +------+---------------------------------------------------------------------------------------------+ |
binietoglou@0 | 526 | |
binietoglou@0 | 527 | This information can be also taken from SCC\_DB. In our example we have: |
binietoglou@0 | 528 | |
binietoglou@0 | 529 | :: |
binietoglou@0 | 530 | |
binietoglou@0 | 531 | Scattering_Mechanism = 0, 2, 3, 1 ; |
binietoglou@0 | 532 | |
binietoglou@0 | 533 | Acquisition_Mode(channels) |
binietoglou@0 | 534 | This optional array defines the acquisition mode (analog or |
binietoglou@0 | 535 | photoncounting) involved in each lidar channel. In particular a value |
binietoglou@0 | 536 | of 0 means analog mode and 1 photoncounting mode. This information |
binietoglou@0 | 537 | can be also taken from SCC\_DB. In our example we have: |
binietoglou@0 | 538 | |
binietoglou@0 | 539 | :: |
binietoglou@0 | 540 | |
binietoglou@0 | 541 | Acquisition_Mode = 0, 1, 1, 1 ; |
binietoglou@0 | 542 | |
binietoglou@0 | 543 | Laser_Repetition_Rate(channels) |
binietoglou@0 | 544 | This optional array defines the repetition rate in Hz used to |
binietoglou@0 | 545 | acquire each lidar channel. This information can be also taken from |
binietoglou@0 | 546 | SCC\_DB. In our example we are supposing we have only one laser with |
binietoglou@0 | 547 | a repetition rate of 50 Hz so we have to set: |
binietoglou@0 | 548 | |
binietoglou@0 | 549 | :: |
binietoglou@0 | 550 | |
binietoglou@0 | 551 | Laser_Repetition_Rate = 50, 50, 50, 50 ; |
binietoglou@0 | 552 | |
binietoglou@0 | 553 | Dead_Time(channels) |
binietoglou@0 | 554 | This optional array defines the dead time in ns associated to each |
binietoglou@0 | 555 | lidar channel. The SCC will use the values given by this array to |
binietoglou@0 | 556 | correct the photoncounting signals for dead time. Of course for |
binietoglou@0 | 557 | analog signals no dead time correction will be applied (for analog |
binietoglou@0 | 558 | channels the corresponding dead time values have to be set to |
binietoglou@0 | 559 | undefined value). This information can be also taken from SCC\_DB. In |
binietoglou@0 | 560 | our example the 1064 nm channel is acquired in analog mode so the |
binietoglou@0 | 561 | corresponding dead time value has to be undefined. If we suppose a |
binietoglou@0 | 562 | dead time of 10 ns for all other channels we have to set: |
binietoglou@0 | 563 | |
binietoglou@0 | 564 | :: |
binietoglou@0 | 565 | |
binietoglou@0 | 566 | Dead_Time = _, 10, 10, 10 ; |
binietoglou@0 | 567 | |
binietoglou@0 | 568 | Dead_Time_Corr_Type(channels |
binietoglou@0 | 569 | This optional array defines which kind of dead time correction has |
binietoglou@0 | 570 | to be applied on each photoncounting channel. The SCC will correct |
binietoglou@0 | 571 | the data supposing a not-paralyzable channel if a value of 0 is found |
binietoglou@0 | 572 | while a paralyzable channel is supposed if a value of 1 is found. Of |
binietoglou@0 | 573 | course for analog signals no dead time correction will be applied and |
binietoglou@0 | 574 | so the corresponding values have to be set to undefined value. This |
binietoglou@0 | 575 | information can be also taken from SCC\_DB. In our example the 1064 |
binietoglou@0 | 576 | nm channel is acquired in analog mode so the corresponding has to be |
binietoglou@0 | 577 | undefined. If we want to consider all the photoncounting signals as |
binietoglou@0 | 578 | not-paralyzable ones: we have to set: |
binietoglou@0 | 579 | |
binietoglou@0 | 580 | :: |
binietoglou@0 | 581 | |
binietoglou@0 | 582 | Dead_Time_Corr_Type = _, 0, 0, 0 ; |
binietoglou@0 | 583 | |
binietoglou@0 | 584 | Trigger_Delay(channels) |
binietoglou@0 | 585 | This optional array defines the delay (in ns) of the middle of the |
binietoglou@0 | 586 | first rangebin with respect to the output laser pulse for each lidar |
binietoglou@0 | 587 | channel. The SCC will use the values given by this array to correct |
binietoglou@0 | 588 | for trigger delay. This information can be also taken from SCC\_DB. |
binietoglou@0 | 589 | Let’s suppose that in our example all the photoncounting channels are |
binietoglou@0 | 590 | not affected by this delay and only the analog channel at 1064nm is |
binietoglou@0 | 591 | acquired with a delay of 50ns. In this case we have to set: |
binietoglou@0 | 592 | |
binietoglou@0 | 593 | :: |
binietoglou@0 | 594 | |
binietoglou@0 | 595 | Trigger_Delay = 50, 0, 0, 0 ; |
binietoglou@0 | 596 | |
binietoglou@0 | 597 | Background_Mode(channels |
binietoglou@0 | 598 | This optional array defines how the atmospheric background has to be |
binietoglou@0 | 599 | subtracted from the lidar channel. Two options are available for the |
binietoglou@0 | 600 | calculation of atmospheric background: |
binietoglou@0 | 601 | |
binietoglou@0 | 602 | #. Average in the far field of lidar channel. In this case the value |
binietoglou@0 | 603 | of this variable has to be 1 |
binietoglou@0 | 604 | |
binietoglou@0 | 605 | #. Average within pre-trigger bins. In this case the value of this |
binietoglou@0 | 606 | variable has to be 0 |
binietoglou@0 | 607 | |
binietoglou@0 | 608 | This information can be also taken from SCC\_DB. Let’s suppose in our |
binietoglou@0 | 609 | example we use the pre-trigger for the 1064nm channel and the far |
binietoglou@0 | 610 | field for all other channels. In this case we have to set: |
binietoglou@0 | 611 | |
binietoglou@0 | 612 | :: |
binietoglou@0 | 613 | |
binietoglou@0 | 614 | Background_Mode = 0, 1, 1, 1 ; |
binietoglou@0 | 615 | |
binietoglou@0 | 616 | Background_Low(channels) |
binietoglou@0 | 617 | This mandatory array defines the minimum altitude (in meters) to |
binietoglou@0 | 618 | consider in calculating the atmospheric background for each channel. |
binietoglou@0 | 619 | In case pre-trigger mode is used the corresponding value has to be |
binietoglou@0 | 620 | set to the rangebin to be used as lower limit (within pre-trigger |
binietoglou@0 | 621 | region) for background calculation. In our example, if we want to |
binietoglou@0 | 622 | calculate the background between 30000 and 50000 meters for all |
binietoglou@0 | 623 | photoncounting channels and we want to use the first 500 pre-trigger |
binietoglou@0 | 624 | bins for the background calculation for the 1064nm channel we have to |
binietoglou@0 | 625 | set: |
binietoglou@0 | 626 | |
binietoglou@0 | 627 | :: |
binietoglou@0 | 628 | |
binietoglou@0 | 629 | Background_Low= 0, 30000, 30000, 30000 ; |
binietoglou@0 | 630 | |
binietoglou@0 | 631 | Background_High(channels) |
binietoglou@0 | 632 | This mandatory array defines the maximum altitude (in meters) to |
binietoglou@0 | 633 | consider in calculating the atmospheric background for each channel. |
binietoglou@0 | 634 | In case pre-trigger mode is used the corresponding value has to be |
binietoglou@0 | 635 | set to the rangebin to be used as upper limit (within pre-trigger |
binietoglou@0 | 636 | region) for background calculation. In our example, if we want to |
binietoglou@0 | 637 | calculate the background between 30000 and 50000 meters for all |
binietoglou@0 | 638 | photoncounting channels and we want to use the first 500 pre-trigger |
binietoglou@0 | 639 | bins for the background calculation for the 1064nm channel we have to |
binietoglou@0 | 640 | set: |
binietoglou@0 | 641 | |
binietoglou@0 | 642 | :: |
binietoglou@0 | 643 | |
binietoglou@0 | 644 | Background_High = 500, 50000, 50000, 50000 ; |
binietoglou@0 | 645 | |
binietoglou@0 | 646 | Molecular_Calc |
binietoglou@0 | 647 | This mandatory variable defines the way used by SCC to calculate the |
binietoglou@0 | 648 | molecular density profile. At the moment two options are available: |
binietoglou@0 | 649 | |
binietoglou@0 | 650 | #. US Standard Atmosphere 1976. In this case the value of this |
binietoglou@0 | 651 | variable has to be 0 |
binietoglou@0 | 652 | |
binietoglou@0 | 653 | #. Radiosounding. In this case the value of this variable has to be 1 |
binietoglou@0 | 654 | |
binietoglou@0 | 655 | If we decide to use the option 1. we have to provide also the |
binietoglou@0 | 656 | measured pressure and temperature at lidar station level. Indeed if |
binietoglou@0 | 657 | we decide to use the option 2. a radiosounding file has to be |
binietoglou@0 | 658 | submitted separately in NetCDF format (the structure of this file is |
binietoglou@0 | 659 | summarized in table tab:sounding). Let’s suppose we want to use the |
binietoglou@0 | 660 | option 1. so: |
binietoglou@0 | 661 | |
binietoglou@0 | 662 | :: |
binietoglou@0 | 663 | |
binietoglou@0 | 664 | Molecular_Calc = 0 ; |
binietoglou@0 | 665 | |
binietoglou@0 | 666 | Pressure_at_Lidar_Station |
binietoglou@0 | 667 | Because we have chosen the US Standard Atmosphere for calculation of |
binietoglou@0 | 668 | the molecular density profile we have to give the pressure in hPa at |
binietoglou@0 | 669 | lidar station level: |
binietoglou@0 | 670 | |
binietoglou@0 | 671 | :: |
binietoglou@0 | 672 | |
binietoglou@0 | 673 | Pressure_at_Lidar_Station = 1010 ; |
binietoglou@0 | 674 | |
binietoglou@0 | 675 | Temperature_at_Lidar_Station |
binietoglou@0 | 676 | Because we have chosen the US Standard Atmosphere for calculation of |
binietoglou@0 | 677 | the molecular density profile we have to give the temperature in C at |
binietoglou@0 | 678 | lidar station level: |
binietoglou@0 | 679 | |
binietoglou@0 | 680 | :: |
binietoglou@0 | 681 | |
binietoglou@0 | 682 | Temperature_at_Lidar_Station = 19.8 ; |
binietoglou@0 | 683 | |
binietoglou@0 | 684 | Depolarization_Factor(channels) |
binietoglou@0 | 685 | This array is required only for lidar systems that use the two |
binietoglou@0 | 686 | depolarization channels for the backscatter retrieval. It represents |
binietoglou@0 | 687 | the factor :math:`f` to calculate the total backscatter signal |
binietoglou@0 | 688 | :math:`S_t` combining its cross :math:`S_c` and parallel |
binietoglou@0 | 689 | :math:`S_p` components: :math:`S_t=S_p+fS_c`. This factor is |
binietoglou@0 | 690 | mandatory only for systems acquiring :math:`S_c` and :math:`S_p` |
binietoglou@0 | 691 | and not :math:`S_t`. For systems acquiring :math:`S_c`, |
binietoglou@0 | 692 | :math:`S_p` and :math:`S_t` this factor is optional and it will |
binietoglou@0 | 693 | be used only for depolarizaton ratio calculation. Moreover only the |
binietoglou@0 | 694 | values of the array corresponding to cross polarization channels will |
binietoglou@0 | 695 | be considered; all other values will be not taken into account and |
binietoglou@0 | 696 | should be set to undefined value. In our example for the wavelength |
binietoglou@0 | 697 | 532nm we have only the cross and the parallel components and not the |
binietoglou@0 | 698 | total one. So we have to give the value of this factor only in |
binietoglou@0 | 699 | correspondence of the 532nm cross polarization channel that |
binietoglou@0 | 700 | corresponds to the channel index 1. Suppose that this factor is 0.88. |
binietoglou@0 | 701 | Moreover, because we don’t have any other depolarization channels we |
binietoglou@0 | 702 | have also to set all other values of the array to undefined value. |
binietoglou@0 | 703 | |
binietoglou@0 | 704 | :: |
binietoglou@0 | 705 | |
binietoglou@0 | 706 | Depolarization_Factor = _,0.88,_,_ ; |
binietoglou@0 | 707 | |
binietoglou@0 | 708 | LR_Input(channels) |
binietoglou@0 | 709 | This array is required only for lidar channels for which elastic |
binietoglou@0 | 710 | backscatter retrieval has to be performed. It defines the lidar ratio |
binietoglou@0 | 711 | to be used within this retrieval. Two options are available: |
binietoglou@0 | 712 | |
binietoglou@0 | 713 | #. The user can submit a lidar ratio profile. In this case the value |
binietoglou@0 | 714 | of this variable has to be 0. |
binietoglou@0 | 715 | |
binietoglou@0 | 716 | #. A fixed value of lidar ratio can be used. In this case the value |
binietoglou@0 | 717 | of this variable has to be 1. |
binietoglou@0 | 718 | |
binietoglou@0 | 719 | If we decide to use the option 1. a lidar ratio file has to be |
binietoglou@0 | 720 | submitted separately in NetCDF format (the structure of this file is |
binietoglou@0 | 721 | summarized in table tab:lr). If we decide to use the option 2. the |
binietoglou@0 | 722 | fixed value of lidar ratio will be taken from SCC\_DB. In our example |
binietoglou@0 | 723 | we have to give a value of this array only for the 1064nm lidar |
binietoglou@0 | 724 | channel because for the 532nm we will be able to retrieve a Raman |
binietoglou@0 | 725 | backscatter coefficient. In case we want to use the fixed value |
binietoglou@0 | 726 | stored in SCC\_DB we have to set: |
binietoglou@0 | 727 | |
binietoglou@0 | 728 | :: |
binietoglou@0 | 729 | |
binietoglou@0 | 730 | LR_Input = 1,_,_,_ ; |
binietoglou@0 | 731 | |
binietoglou@0 | 732 | DAQ_Range(channels) |
binietoglou@0 | 733 | This array is required only if one or more lidar signals are |
binietoglou@0 | 734 | acquired in analog mode. It gives the analog scale in mV used to |
binietoglou@0 | 735 | acquire the analog signals. In our example we have only the 1064nm |
binietoglou@0 | 736 | channel acquired in analog mode. If we have used a 100mV analog scale |
binietoglou@0 | 737 | to acquire this channel we have to set: |
binietoglou@0 | 738 | |
binietoglou@0 | 739 | :: |
binietoglou@0 | 740 | |
binietoglou@0 | 741 | DAQ_Range = 100,_,_,_ ; |
binietoglou@0 | 742 | |
binietoglou@0 | 743 | Global attributes |
binietoglou@0 | 744 | ~~~~~~~~~~~~~~~~~ |
binietoglou@0 | 745 | |
binietoglou@0 | 746 | Measurement_ID |
binietoglou@0 | 747 | This mandatory global attribute defines the measurement ID |
binietoglou@0 | 748 | corresponding to the actual lidar measurement. It is a string |
binietoglou@0 | 749 | composed by 12 characters. The first 8 characters give the start date |
binietoglou@0 | 750 | of measurement in the format YYYYMMDD. The next 2 characters give the |
binietoglou@0 | 751 | Earlinet call-sign of the station. The last 2 characters are used to |
binietoglou@0 | 752 | distinguish between different time-series within the same date. In |
binietoglou@0 | 753 | our example we have to set: |
binietoglou@0 | 754 | |
binietoglou@0 | 755 | :: |
binietoglou@0 | 756 | |
binietoglou@0 | 757 | Measurement_ID= "20090130cc00" ; |
binietoglou@0 | 758 | |
binietoglou@0 | 759 | RawData_Start_Date |
binietoglou@0 | 760 | This mandatory global attribute defines the start date of lidar |
binietoglou@0 | 761 | measurements in the format YYYYMMDD. In our case we have: |
binietoglou@0 | 762 | |
binietoglou@0 | 763 | :: |
binietoglou@0 | 764 | |
binietoglou@0 | 765 | RawData_Start_Date = "20090130" ; |
binietoglou@0 | 766 | |
binietoglou@0 | 767 | RawData_Start_Time_UT |
binietoglou@0 | 768 | This mandatory global attribute defines the UT start time of lidar |
binietoglou@0 | 769 | measurements in the format HHMMSS. In our case we have: |
binietoglou@0 | 770 | |
binietoglou@0 | 771 | :: |
binietoglou@0 | 772 | |
binietoglou@0 | 773 | RawData_Start_Time_UT = "000001" ; |
binietoglou@0 | 774 | |
binietoglou@0 | 775 | RawData_Stop_Time_UT`` |
binietoglou@0 | 776 | This mandatory global attribute defines the UT stop time of lidar |
binietoglou@0 | 777 | measurements in the format HHMMSS. In our case we have: |
binietoglou@0 | 778 | |
binietoglou@0 | 779 | :: |
binietoglou@0 | 780 | |
binietoglou@0 | 781 | RawData_Stop_Time_UT = "000501" ; |
binietoglou@0 | 782 | |
binietoglou@0 | 783 | RawBck_Start_Date |
binietoglou@0 | 784 | This optional global attribute defines the start date of dark |
binietoglou@0 | 785 | measurements in the format YYYYMMDD. In our case we have: |
binietoglou@0 | 786 | |
binietoglou@0 | 787 | :: |
binietoglou@0 | 788 | |
binietoglou@0 | 789 | RawBck_Start_Date = "20090129" ; |
binietoglou@0 | 790 | |
binietoglou@0 | 791 | RawBck_Start_Time_UT |
binietoglou@0 | 792 | This optional global attribute defines the UT start time of dark |
binietoglou@0 | 793 | measurements in the format HHMMSS. In our case we have: |
binietoglou@0 | 794 | |
binietoglou@0 | 795 | :: |
binietoglou@0 | 796 | |
binietoglou@0 | 797 | RawBck_Start_Time_UT = "235001" ; |
binietoglou@0 | 798 | |
binietoglou@0 | 799 | RawBck_Stop_Time_UT |
binietoglou@0 | 800 | This optional global attribute defines the UT stop time of dark |
binietoglou@0 | 801 | measurements in the format HHMMSS. In our case we have: |
binietoglou@0 | 802 | |
binietoglou@0 | 803 | :: |
binietoglou@0 | 804 | |
binietoglou@0 | 805 | RawBck_Stop_Time_UT = "235301" ; |
binietoglou@0 | 806 | |
binietoglou@0 | 807 | Example of file (CDL format) |
binietoglou@0 | 808 | ---------------------------- |
binietoglou@0 | 809 | |
binietoglou@0 | 810 | To summarize we have the following NetCDF Raw Lidar Data file (in CDL |
binietoglou@0 | 811 | format): |
binietoglou@0 | 812 | |
binietoglou@0 | 813 | :: |
binietoglou@0 | 814 | |
binietoglou@0 | 815 | dimensions: |
binietoglou@0 | 816 | points = 5000 ; |
binietoglou@0 | 817 | channels = 4 ; |
binietoglou@0 | 818 | time = UNLIMITED ; // (10 currently) |
binietoglou@0 | 819 | nb_of_time_scales = 2 ; |
binietoglou@0 | 820 | scan_angles = 1 ; |
binietoglou@0 | 821 | time_bck = 6 ; |
binietoglou@0 | 822 | variables: |
binietoglou@0 | 823 | int channel_ID(channels) ; |
binietoglou@0 | 824 | int Laser_Repetition_Rate(channels) ; |
binietoglou@0 | 825 | double Laser_Pointing_Angle(scan_angles) ; |
binietoglou@0 | 826 | int ID_Range(channels) ; |
binietoglou@0 | 827 | int Scattering_Mechanism(channels) ; |
binietoglou@0 | 828 | double Emitted_Wavelength(channels) ; |
binietoglou@0 | 829 | double Detected_Wavelength(channels) ; |
binietoglou@0 | 830 | double Raw_Data_Range_Resolution(channels) ; |
binietoglou@0 | 831 | int Background_Mode(channels) ; |
binietoglou@0 | 832 | double Background_Low(channels) ; |
binietoglou@0 | 833 | double Background_High(channels) ; |
binietoglou@0 | 834 | int Molecular_Calc ; |
binietoglou@0 | 835 | double Pressure_at_Lidar_Station ; |
binietoglou@0 | 836 | double Temperature_at_Lidar_Station ; |
binietoglou@0 | 837 | int id_timescale(channels) ; |
binietoglou@0 | 838 | double Dead_Time(channels) ; |
binietoglou@0 | 839 | int Dead_Time_Corr_Type(channels) ; |
binietoglou@0 | 840 | int Acquisition_Mode(channels) ; |
binietoglou@0 | 841 | double Trigger_Delay(channels) ; |
binietoglou@0 | 842 | int LR_Input(channels) ; |
binietoglou@0 | 843 | int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
binietoglou@0 | 844 | int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
binietoglou@0 | 845 | int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
binietoglou@0 | 846 | int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
binietoglou@0 | 847 | int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
binietoglou@0 | 848 | int Laser_Shots(time, channels) ; |
binietoglou@0 | 849 | double Raw_Lidar_Data(time, channels, points) ; |
binietoglou@0 | 850 | double Background_Profile(time_bck, channels, points) ; |
binietoglou@0 | 851 | double DAQ_Range(channels) ; |
binietoglou@0 | 852 | |
binietoglou@0 | 853 | // global attributes: |
binietoglou@0 | 854 | :Measurement_ID = "20090130cc00" ; |
binietoglou@0 | 855 | :RawData_Start_Date = "20090130" ; |
binietoglou@0 | 856 | :RawData_Start_Time_UT = "000001" ; |
binietoglou@0 | 857 | :RawData_Stop_Time_UT = "000501" ; |
binietoglou@0 | 858 | :RawBck_Start_Date = "20090129" ; |
binietoglou@0 | 859 | :RawBck_Start_Time_UT = "235001" ; |
binietoglou@0 | 860 | :RawBck_Stop_Time_UT = "235301" ; |
binietoglou@0 | 861 | |
binietoglou@0 | 862 | data: |
binietoglou@0 | 863 | |
binietoglou@0 | 864 | channel_ID = 7, 5, 6, 8 ; |
binietoglou@0 | 865 | |
binietoglou@0 | 866 | Laser_Repetition_Rate = 50, 50, 50, 50 ; |
binietoglou@0 | 867 | |
binietoglou@0 | 868 | Laser_Pointing_Angle = 5 ; |
binietoglou@0 | 869 | |
binietoglou@0 | 870 | ID_Range = 1, 1, 1, 1 ; |
binietoglou@0 | 871 | |
binietoglou@0 | 872 | Scattering_Mechanism = 0, 2, 3, 1 ; |
binietoglou@0 | 873 | |
binietoglou@0 | 874 | Emitted_Wavelength = 1064, 532, 532, 532 ; |
binietoglou@0 | 875 | |
binietoglou@0 | 876 | Detected_Wavelength = 1064, 532, 532, 607 ; |
binietoglou@0 | 877 | |
binietoglou@0 | 878 | Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ; |
binietoglou@0 | 879 | |
binietoglou@0 | 880 | Background_Mode = 0, 1, 1, 1 ; |
binietoglou@0 | 881 | |
binietoglou@0 | 882 | Background_Low = 0, 30000, 30000, 30000 ; |
binietoglou@0 | 883 | |
binietoglou@0 | 884 | Background_High = 500, 50000, 50000, 50000 ; |
binietoglou@0 | 885 | |
binietoglou@0 | 886 | Molecular_Calc = 0 ; |
binietoglou@0 | 887 | |
binietoglou@0 | 888 | Pressure_at_Lidar_Station = 1010 ; |
binietoglou@0 | 889 | |
binietoglou@0 | 890 | Temperature_at_Lidar_Station = 19.8 ; |
binietoglou@0 | 891 | |
binietoglou@0 | 892 | id_timescale = 1, 0, 0, 0 ; |
binietoglou@0 | 893 | |
binietoglou@0 | 894 | Dead_Time = _, 10, 10, 10 ; |
binietoglou@0 | 895 | |
binietoglou@0 | 896 | Dead_Time_Corr_Type = _, 0, 0, 0 ; |
binietoglou@0 | 897 | |
binietoglou@0 | 898 | Acquisition_Mode = 0, 1, 1, 1 ; |
binietoglou@0 | 899 | |
binietoglou@0 | 900 | Trigger_Delay = 50, 0, 0, 0 ; |
binietoglou@0 | 901 | |
binietoglou@0 | 902 | LR_Input = 1,_,_,_ ; |
binietoglou@0 | 903 | |
binietoglou@0 | 904 | DAQ_Range = 100,_,_,_ ; |
binietoglou@0 | 905 | |
binietoglou@0 | 906 | Laser_Pointing_Angle_of_Profiles = |
binietoglou@0 | 907 | 0, 0, |
binietoglou@0 | 908 | 0, 0, |
binietoglou@0 | 909 | 0, 0, |
binietoglou@0 | 910 | 0, 0, |
binietoglou@0 | 911 | 0, 0, |
binietoglou@0 | 912 | _, 0, |
binietoglou@0 | 913 | _, 0, |
binietoglou@0 | 914 | _, 0, |
binietoglou@0 | 915 | _, 0, |
binietoglou@0 | 916 | _, 0 ; |
binietoglou@0 | 917 | |
binietoglou@0 | 918 | |
binietoglou@0 | 919 | Raw_Data_Start_Time = |
binietoglou@0 | 920 | 0, 0, |
binietoglou@0 | 921 | 60, 30, |
binietoglou@0 | 922 | 120, 60, |
binietoglou@0 | 923 | 180, 90, |
binietoglou@0 | 924 | 240, 120, |
binietoglou@0 | 925 | _, 150, |
binietoglou@0 | 926 | _, 180, |
binietoglou@0 | 927 | _, 210, |
binietoglou@0 | 928 | _, 240, |
binietoglou@0 | 929 | _, 270 ; |
binietoglou@0 | 930 | |
binietoglou@0 | 931 | Raw_Data_Stop_Time = |
binietoglou@0 | 932 | 60, 30, |
binietoglou@0 | 933 | 120, 60, |
binietoglou@0 | 934 | 180, 90, |
binietoglou@0 | 935 | 240, 120, |
binietoglou@0 | 936 | 300, 150, |
binietoglou@0 | 937 | _, 180, |
binietoglou@0 | 938 | _, 210, |
binietoglou@0 | 939 | _, 240, |
binietoglou@0 | 940 | _, 270, |
binietoglou@0 | 941 | _, 300 ; |
binietoglou@0 | 942 | |
binietoglou@0 | 943 | |
binietoglou@0 | 944 | Raw_Bck_Start_Time = |
binietoglou@0 | 945 | 0, 0, |
binietoglou@0 | 946 | 60, 30, |
binietoglou@0 | 947 | 120, 60, |
binietoglou@0 | 948 | _, 90, |
binietoglou@0 | 949 | _, 120, |
binietoglou@0 | 950 | _, 150; |
binietoglou@0 | 951 | |
binietoglou@0 | 952 | |
binietoglou@0 | 953 | Raw_Bck_Stop_Time = |
binietoglou@0 | 954 | 60, 30, |
binietoglou@0 | 955 | 120, 60, |
binietoglou@0 | 956 | 180, 90, |
binietoglou@0 | 957 | _, 120, |
binietoglou@0 | 958 | _, 150, |
binietoglou@0 | 959 | _, 180 ; |
binietoglou@0 | 960 | |
binietoglou@0 | 961 | |
binietoglou@0 | 962 | Laser_Shots = |
binietoglou@0 | 963 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 964 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 965 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 966 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 967 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 968 | 1500, _, _, _, |
binietoglou@0 | 969 | 1500, _, _, _, |
binietoglou@0 | 970 | 1500, _, _, _, |
binietoglou@0 | 971 | 1500, _, _, _, |
binietoglou@0 | 972 | 1500, _, _, _ ; |
binietoglou@0 | 973 | |
binietoglou@0 | 974 | |
binietoglou@0 | 975 | Raw_Lidar_Data = ... |
binietoglou@0 | 976 | |
binietoglou@0 | 977 | Background_Profile = ... |
binietoglou@0 | 978 | |
binietoglou@0 | 979 | Please keep in mind that in case you submit a file like the previous one |
binietoglou@0 | 980 | all the parameters present in it will be used by the SCC even if you |
binietoglou@0 | 981 | have different values for the same parameters within the SCC\_DB. If you |
binietoglou@0 | 982 | want to use the values already stored in SCC\_DB (this should be the |
binietoglou@0 | 983 | usual way to use SCC) the Raw Lidar Data input file has to be |
binietoglou@0 | 984 | modified as follows: |
binietoglou@0 | 985 | |
binietoglou@0 | 986 | :: |
binietoglou@0 | 987 | |
binietoglou@0 | 988 | dimensions: |
binietoglou@0 | 989 | points = 5000 ; |
binietoglou@0 | 990 | channels = 4 ; |
binietoglou@0 | 991 | time = UNLIMITED ; // (10 currently) |
binietoglou@0 | 992 | nb_of_time_scales = 2 ; |
binietoglou@0 | 993 | scan_angles = 1 ; |
binietoglou@0 | 994 | time_bck = 6 ; |
binietoglou@0 | 995 | variables: |
binietoglou@0 | 996 | int channel_ID(channels) ; |
binietoglou@0 | 997 | double Laser_Pointing_Angle(scan_angles) ; |
binietoglou@0 | 998 | double Background_Low(channels) ; |
binietoglou@0 | 999 | double Background_High(channels) ; |
binietoglou@0 | 1000 | int Molecular_Calc ; |
binietoglou@0 | 1001 | double Pressure_at_Lidar_Station ; |
binietoglou@0 | 1002 | double Temperature_at_Lidar_Station ; |
binietoglou@0 | 1003 | int id_timescale(channels) ; |
binietoglou@0 | 1004 | int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
binietoglou@0 | 1005 | int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
binietoglou@0 | 1006 | int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
binietoglou@0 | 1007 | int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
binietoglou@0 | 1008 | int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
binietoglou@0 | 1009 | int LR_Input(channels) ; |
binietoglou@0 | 1010 | int Laser_Shots(time, channels) ; |
binietoglou@0 | 1011 | double Raw_Lidar_Data(time, channels, points) ; |
binietoglou@0 | 1012 | double Background_Profile(time_bck, channels, points) ; |
binietoglou@0 | 1013 | double DAQ_Range(channels) ; |
binietoglou@0 | 1014 | |
binietoglou@0 | 1015 | // global attributes: |
binietoglou@0 | 1016 | :Measurement_ID = "20090130cc00" ; |
binietoglou@0 | 1017 | :RawData_Start_Date = "20090130" ; |
binietoglou@0 | 1018 | :RawData_Start_Time_UT = "000001" ; |
binietoglou@0 | 1019 | :RawData_Stop_Time_UT = "000501" ; |
binietoglou@0 | 1020 | :RawBck_Start_Date = "20090129" ; |
binietoglou@0 | 1021 | :RawBck_Start_Time_UT = "235001" ; |
binietoglou@0 | 1022 | :RawBck_Stop_Time_UT = "235301" ; |
binietoglou@0 | 1023 | |
binietoglou@0 | 1024 | data: |
binietoglou@0 | 1025 | |
binietoglou@0 | 1026 | channel_ID = 7, 5, 6, 8 ; |
binietoglou@0 | 1027 | |
binietoglou@0 | 1028 | Laser_Pointing_Angle = 5 ; |
binietoglou@0 | 1029 | |
binietoglou@0 | 1030 | Background_Low = 0, 30000, 30000, 30000 ; |
binietoglou@0 | 1031 | |
binietoglou@0 | 1032 | Background_High = 500, 50000, 50000, 50000 ; |
binietoglou@0 | 1033 | |
binietoglou@0 | 1034 | Molecular_Calc = 0 ; |
binietoglou@0 | 1035 | |
binietoglou@0 | 1036 | Pressure_at_Lidar_Station = 1010 ; |
binietoglou@0 | 1037 | |
binietoglou@0 | 1038 | Temperature_at_Lidar_Station = 19.8 ; |
binietoglou@0 | 1039 | |
binietoglou@0 | 1040 | id_timescale = 1, 0, 0, 0 ; |
binietoglou@0 | 1041 | |
binietoglou@0 | 1042 | LR_Input = 1,_,_,_ ; |
binietoglou@0 | 1043 | |
binietoglou@0 | 1044 | DAQ_Range = 100,_,_,_ ; |
binietoglou@0 | 1045 | |
binietoglou@0 | 1046 | Laser_Pointing_Angle_of_Profiles = |
binietoglou@0 | 1047 | 0, 0, |
binietoglou@0 | 1048 | 0, 0, |
binietoglou@0 | 1049 | 0, 0, |
binietoglou@0 | 1050 | 0, 0, |
binietoglou@0 | 1051 | 0, 0, |
binietoglou@0 | 1052 | _, 0, |
binietoglou@0 | 1053 | _, 0, |
binietoglou@0 | 1054 | _, 0, |
binietoglou@0 | 1055 | _, 0, |
binietoglou@0 | 1056 | _, 0 ; |
binietoglou@0 | 1057 | |
binietoglou@0 | 1058 | |
binietoglou@0 | 1059 | Raw_Data_Start_Time = |
binietoglou@0 | 1060 | 0, 0, |
binietoglou@0 | 1061 | 60, 30, |
binietoglou@0 | 1062 | 120, 60, |
binietoglou@0 | 1063 | 180, 90, |
binietoglou@0 | 1064 | 240, 120, |
binietoglou@0 | 1065 | _, 150, |
binietoglou@0 | 1066 | _, 180, |
binietoglou@0 | 1067 | _, 210, |
binietoglou@0 | 1068 | _, 240, |
binietoglou@0 | 1069 | _, 270 ; |
binietoglou@0 | 1070 | |
binietoglou@0 | 1071 | Raw_Data_Stop_Time = |
binietoglou@0 | 1072 | 60, 30, |
binietoglou@0 | 1073 | 120, 60, |
binietoglou@0 | 1074 | 180, 90, |
binietoglou@0 | 1075 | 240, 120, |
binietoglou@0 | 1076 | 300, 150, |
binietoglou@0 | 1077 | _, 180, |
binietoglou@0 | 1078 | _, 210, |
binietoglou@0 | 1079 | _, 240, |
binietoglou@0 | 1080 | _, 270, |
binietoglou@0 | 1081 | _, 300 ; |
binietoglou@0 | 1082 | |
binietoglou@0 | 1083 | |
binietoglou@0 | 1084 | Raw_Bck_Start_Time = |
binietoglou@0 | 1085 | 0, 0, |
binietoglou@0 | 1086 | 60, 30, |
binietoglou@0 | 1087 | 120, 60, |
binietoglou@0 | 1088 | _, 90, |
binietoglou@0 | 1089 | _, 120, |
binietoglou@0 | 1090 | _, 150; |
binietoglou@0 | 1091 | |
binietoglou@0 | 1092 | |
binietoglou@0 | 1093 | Raw_Bck_Stop_Time = |
binietoglou@0 | 1094 | 60, 30, |
binietoglou@0 | 1095 | 120, 60, |
binietoglou@0 | 1096 | 180, 90, |
binietoglou@0 | 1097 | _, 120, |
binietoglou@0 | 1098 | _, 150, |
binietoglou@0 | 1099 | _, 180 ; |
binietoglou@0 | 1100 | |
binietoglou@0 | 1101 | |
binietoglou@0 | 1102 | Laser_Shots = |
binietoglou@0 | 1103 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 1104 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 1105 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 1106 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 1107 | 1500, 3000, 3000, 3000, |
binietoglou@0 | 1108 | 1500, _, _, _, |
binietoglou@0 | 1109 | 1500, _, _, _, |
binietoglou@0 | 1110 | 1500, _, _, _, |
binietoglou@0 | 1111 | 1500, _, _, _, |
binietoglou@0 | 1112 | 1500, _, _, _ ; |
binietoglou@0 | 1113 | |
binietoglou@0 | 1114 | |
binietoglou@0 | 1115 | Raw_Lidar_Data = ... |
binietoglou@0 | 1116 | |
binietoglou@0 | 1117 | Background_Profile = ... |
binietoglou@0 | 1118 | |
binietoglou@0 | 1119 | This example file contains the minimum collection of mandatory |
binietoglou@0 | 1120 | information that has to be found within the Raw Lidar Data input |
binietoglou@0 | 1121 | file. If it is really necessary, the user can decide to add to these |
binietoglou@0 | 1122 | mandatory parameters any number of additional parameters considered in |
binietoglou@0 | 1123 | the previous example. |
binietoglou@0 | 1124 | |
binietoglou@0 | 1125 | Finally, suppose we want to make the following changes with respect to |
binietoglou@0 | 1126 | the previous example: |
binietoglou@0 | 1127 | |
binietoglou@0 | 1128 | #. use a sounding file for molecular density calculation instead of “US |
binietoglou@0 | 1129 | Standar Atmosphere 1976” |
binietoglou@0 | 1130 | |
binietoglou@0 | 1131 | #. supply a lidar ratio profile to use in elastic backscatter retrieval |
binietoglou@0 | 1132 | instead of a fixed value |
binietoglou@0 | 1133 | |
binietoglou@0 | 1134 | #. provide a overlap function for overlap correction |
binietoglou@0 | 1135 | |
binietoglou@0 | 1136 | In this case we have to generate the following NetCDF additional files: |
binietoglou@0 | 1137 | |
binietoglou@0 | 1138 | rs_20090130cc00.nc |
binietoglou@0 | 1139 | The name of Sounding Data file has to be computed as follows: |
binietoglou@0 | 1140 | ``"rs_"``+``Measurement_ID`` |
binietoglou@0 | 1141 | The structure of this file is summarized in table tab:sounding. |
binietoglou@0 | 1142 | |
binietoglou@0 | 1143 | ov_20090130cc00.nc |
binietoglou@0 | 1144 | The name of Overlap file has to be computed as follows: |
binietoglou@0 | 1145 | ``"ov_"``+``Measurement_ID`` |
binietoglou@0 | 1146 | The structure of this file is summarized in table tab:overlap. |
binietoglou@0 | 1147 | |
binietoglou@0 | 1148 | lr_20090130cc00.nc |
binietoglou@0 | 1149 | The name of Lidar Ratio file has to be computed as follows: |
binietoglou@0 | 1150 | ``"lr_"``+``Measurement_ID`` |
binietoglou@0 | 1151 | The structure of this file is summarized in table tab:lr. |
binietoglou@0 | 1152 | |
binietoglou@0 | 1153 | Moreover we need to apply the following changes to the Raw Lidar Data |
binietoglou@0 | 1154 | input file: |
binietoglou@0 | 1155 | |
binietoglou@0 | 1156 | 1. Change the value of the variable ``Molecular_Calc`` as follows: |
binietoglou@0 | 1157 | |
binietoglou@0 | 1158 | :: |
binietoglou@0 | 1159 | |
binietoglou@0 | 1160 | Molecular_Calc = 1 ; |
binietoglou@0 | 1161 | |
binietoglou@0 | 1162 | Of course the variables ``Pressure_at_Lidar_Station`` and |
binietoglou@0 | 1163 | ``Temperature_at_Lidar_Station`` are not necessary anymore. |
binietoglou@0 | 1164 | |
binietoglou@0 | 1165 | 2. Change the values of the array ``LR_Input`` as follows: |
binietoglou@0 | 1166 | |
binietoglou@0 | 1167 | :: |
binietoglou@0 | 1168 | |
binietoglou@0 | 1169 | LR_Input = 0,_,_,_ ; |
binietoglou@0 | 1170 | |
binietoglou@0 | 1171 | 3. Add the global attribute ``Sounding_File_Name`` |
binietoglou@0 | 1172 | |
binietoglou@0 | 1173 | :: |
binietoglou@0 | 1174 | |
binietoglou@0 | 1175 | Sounding_File_Name = "rs_20090130cc00.nc" ; |
binietoglou@0 | 1176 | |
binietoglou@0 | 1177 | 5. Add the global attribute ``LR_File_Name`` |
binietoglou@0 | 1178 | |
binietoglou@0 | 1179 | :: |
binietoglou@0 | 1180 | |
binietoglou@0 | 1181 | LR_File_Name = "lr_20090130cc00.nc" ; |
binietoglou@0 | 1182 | |
binietoglou@0 | 1183 | 6. Add the global attribute ``Overlap_File_Name`` |
binietoglou@0 | 1184 | |
binietoglou@0 | 1185 | :: |
binietoglou@0 | 1186 | |
binietoglou@0 | 1187 | Overlap_File_Name = "ov_20090130cc00.nc" ; |