docs/_build/html/netcdf_file.html

Fri, 11 May 2012 14:11:05 +0200

author
ulalume3 <binietoglou@imaa.cnr.it>
date
Fri, 11 May 2012 14:11:05 +0200
changeset 13
52af8fbed3d7
parent 11
79fea4145278
permissions
-rw-r--r--

Some more tutorial.

ulalume3@11 1
ulalume3@11 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
ulalume3@11 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
ulalume3@11 4
ulalume3@11 5
ulalume3@11 6 <html xmlns="http://www.w3.org/1999/xhtml">
ulalume3@11 7 <head>
ulalume3@11 8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
ulalume3@11 9
ulalume3@11 10 <title>The SCC netCDF file format &mdash; Single Calculus Chain 0.2 documentation</title>
ulalume3@11 11
ulalume3@11 12 <link rel="stylesheet" href="_static/nature.css" type="text/css" />
ulalume3@11 13 <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
ulalume3@11 14
ulalume3@11 15 <script type="text/javascript">
ulalume3@11 16 var DOCUMENTATION_OPTIONS = {
ulalume3@11 17 URL_ROOT: '',
ulalume3@11 18 VERSION: '0.2',
ulalume3@11 19 COLLAPSE_INDEX: false,
ulalume3@11 20 FILE_SUFFIX: '.html',
ulalume3@11 21 HAS_SOURCE: true
ulalume3@11 22 };
ulalume3@11 23 </script>
ulalume3@11 24 <script type="text/javascript" src="_static/jquery.js"></script>
ulalume3@11 25 <script type="text/javascript" src="_static/underscore.js"></script>
ulalume3@11 26 <script type="text/javascript" src="_static/doctools.js"></script>
ulalume3@11 27 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
ulalume3@11 28 <link rel="top" title="Single Calculus Chain 0.2 documentation" href="index.html" />
ulalume3@11 29 <link rel="next" title="User management" href="user_management.html" />
ulalume3@11 30 <link rel="prev" title="View processing results" href="details/viewing_measurements.html" />
ulalume3@11 31 </head>
ulalume3@11 32 <body>
ulalume3@11 33 <div class="related">
ulalume3@11 34 <h3>Navigation</h3>
ulalume3@11 35 <ul>
ulalume3@11 36 <li class="right" style="margin-right: 10px">
ulalume3@11 37 <a href="genindex.html" title="General Index"
ulalume3@11 38 accesskey="I">index</a></li>
ulalume3@11 39 <li class="right" >
ulalume3@11 40 <a href="user_management.html" title="User management"
ulalume3@11 41 accesskey="N">next</a> |</li>
ulalume3@11 42 <li class="right" >
ulalume3@11 43 <a href="details/viewing_measurements.html" title="View processing results"
ulalume3@11 44 accesskey="P">previous</a> |</li>
ulalume3@11 45 <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> &raquo;</li>
ulalume3@11 46 </ul>
ulalume3@11 47 </div>
ulalume3@11 48
ulalume3@11 49 <div class="document">
ulalume3@11 50 <div class="documentwrapper">
ulalume3@11 51 <div class="bodywrapper">
ulalume3@11 52 <div class="body">
ulalume3@11 53
ulalume3@11 54 <div class="section" id="the-scc-netcdf-file-format">
ulalume3@11 55 <h1>The SCC netCDF file format<a class="headerlink" href="#the-scc-netcdf-file-format" title="Permalink to this headline">¶</a></h1>
ulalume3@11 56 <div class="section" id="rationale">
ulalume3@11 57 <h2>Rationale<a class="headerlink" href="#rationale" title="Permalink to this headline">¶</a></h2>
ulalume3@11 58 <p>The Single Calculus Chain (SCC) is composed by two different modules:</p>
ulalume3@11 59 <ul class="simple">
ulalume3@11 60 <li>pre-processing module ( scc_preprocessing)</li>
ulalume3@11 61 <li>optical processing module ( ELDA)</li>
ulalume3@11 62 </ul>
ulalume3@11 63 <p>To perfom aerosol optical retrievals the SCC needs not only the raw
ulalume3@11 64 lidar data but also a certain number of parameters to use in both
ulalume3@11 65 pre-processing and optical processing stages. The SCC gets these
ulalume3@11 66 parameters looking at two different locations:</p>
ulalume3@11 67 <ul class="simple">
ulalume3@11 68 <li>Single Calculus Chain relational database (SCC_DB)</li>
ulalume3@11 69 <li>Input files</li>
ulalume3@11 70 </ul>
ulalume3@11 71 <p>There are some paramenters that can be found only in the input files
ulalume3@11 72 (those ones changing from measurement to measurement), others that can
ulalume3@11 73 be found only in the SCC_DB and other ones that can be found in both
ulalume3@11 74 these locations. In the last case, if a particular parameter is needed,
ulalume3@11 75 the SCC will search first in the input files and then in SCC_DB. If the
ulalume3@11 76 parameter is found in the input files the SCC will keep it without
ulalume3@11 77 looking into SCC_DB.</p>
ulalume3@11 78 <p>The input files have to be submitted to the SCC in NetCDF format. At the
ulalume3@11 79 present the SCC can handle four different types of input files:</p>
ulalume3@11 80 <ol class="arabic simple">
ulalume3@11 81 <li>Raw Lidar Data</li>
ulalume3@11 82 <li>Sounding Data</li>
ulalume3@11 83 <li>Overlap</li>
ulalume3@11 84 <li>Lidar Ratio</li>
ulalume3@11 85 </ol>
ulalume3@11 86 <p>As already mentioned, the Raw Lidar Data file contains not only the
ulalume3@11 87 raw lidar data but also other parameters to use to perform the
ulalume3@11 88 pre-processing and optical processing. The Sounding Data file
ulalume3@11 89 contains the data coming from a correlative radiosounding and it is used
ulalume3@11 90 by the SCC for molecular density calculation. The Overlap file
ulalume3@11 91 contains the measured overlap function. The Lidar Ratio file contains
ulalume3@11 92 a lidar ratio profile to use in elastic backscatter retrievals. The
ulalume3@11 93 Raw Lidar Data file is of course mandatory and the Sounding Data,
ulalume3@11 94 Overlap and Lidar Ratio files are optional. If Sounding Data file
ulalume3@11 95 is not submitted by the user, the molecular density will be calculated
ulalume3@11 96 by the SCC using the “US Standard Atmosphere 1976”. If the Overlap
ulalume3@11 97 file is not submitted by the user, the SCC will get the full overlap
ulalume3@11 98 height from SCC_DB and it will produce optical results starting from
ulalume3@11 99 this height. If Lidar Ratio file is not submitted by the user, the
ulalume3@11 100 SCC will consider a fixed value for lidar ratio got from SCC_DB.</p>
ulalume3@11 101 <p>The user can decide to submit all these files or any number of them (of
ulalume3@11 102 course the file Raw Lidar Data is mandatory). For example the user
ulalume3@11 103 can submit together with the Raw Lidar Data file only the Sounding
ulalume3@11 104 Data file or only the Overlap file.</p>
ulalume3@11 105 <p>This document provides a detailed explanation about the structure of the
ulalume3@11 106 NetCDF input files to use for SCC data submission. All Earlinet groups
ulalume3@11 107 should read it carefully because they have to produce such kind of input
ulalume3@11 108 files if they want to use the SCC for their standard lidar retrievals.
ulalume3@11 109 Every comments or suggestions regarding this document can be sent to
ulalume3@11 110 Giuseppe D’Amico by e-mail at <tt class="docutils literal"><span class="pre">damico&#64;imaa.cnr.it</span></tt></p>
ulalume3@11 111 <p>This document is available for downloading at <tt class="docutils literal"><span class="pre">www.earlinetasos.org</span></tt></p>
ulalume3@11 112 <p>In table tab:rawdata is reported a list of dimensions, variables and
ulalume3@11 113 global attributes that can be used in the NetCDF Raw Lidar Data input
ulalume3@11 114 file. For each of them it is indicated:</p>
ulalume3@11 115 <ul class="simple">
ulalume3@11 116 <li>The name. For the multidimensional variables also the corresponding
ulalume3@11 117 dimensions are reported</li>
ulalume3@11 118 <li>A description explaining the meaning</li>
ulalume3@11 119 <li>The type</li>
ulalume3@11 120 <li>If it is mandatory or optional</li>
ulalume3@11 121 </ul>
ulalume3@11 122 <p>As already mentioned, the SCC can get some parameters looking first in
ulalume3@11 123 the Raw Lidar Data input file and then into SCC_DB. This means that
ulalume3@11 124 to use the parameters stored in SCC_DB the optional variables or
ulalume3@11 125 optional global attributes must not appear within Raw Lidar Data
ulalume3@11 126 file. This is the suggested and recommended way to use the SCC. Please
ulalume3@11 127 include optional parameters in the Raw Lidar Data only as an
ulalume3@11 128 exception.</p>
ulalume3@11 129 <p>In table tab:sounding, tab:overlap and tab:lr are reported all the
ulalume3@11 130 information about the structure of Sounding Data, Overlap and
ulalume3@11 131 Lidar Ratio input files respectively.</p>
ulalume3@11 132 </div>
ulalume3@11 133 <div class="section" id="example">
ulalume3@11 134 <h2>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h2>
ulalume3@11 135 <p>Let’s now consider an example of Raw Lidar Data input file. Suppose
ulalume3@11 136 we want to generate NetCDF input file corresponding to a measurement
ulalume3@11 137 with the following properties:</p>
ulalume3@11 138 <table border="1" class="docutils">
ulalume3@11 139 <colgroup>
ulalume3@11 140 <col width="34%" />
ulalume3@11 141 <col width="66%" />
ulalume3@11 142 </colgroup>
ulalume3@11 143 <tbody valign="top">
ulalume3@11 144 <tr class="row-odd"><td>Start Date</td>
ulalume3@11 145 <td><span class="math">\(30^{th}\)</span> January 2009</td>
ulalume3@11 146 </tr>
ulalume3@11 147 <tr class="row-even"><td>Start Time UT</td>
ulalume3@11 148 <td>00:00:01</td>
ulalume3@11 149 </tr>
ulalume3@11 150 <tr class="row-odd"><td>Stop Time UT</td>
ulalume3@11 151 <td>00:05:01</td>
ulalume3@11 152 </tr>
ulalume3@11 153 <tr class="row-even"><td>Station Name</td>
ulalume3@11 154 <td>Dummy station</td>
ulalume3@11 155 </tr>
ulalume3@11 156 <tr class="row-odd"><td>Earlinet call-sign</td>
ulalume3@11 157 <td>cc</td>
ulalume3@11 158 </tr>
ulalume3@11 159 <tr class="row-even"><td>Pointing angle</td>
ulalume3@11 160 <td>5 degrees with respect to the zenith</td>
ulalume3@11 161 </tr>
ulalume3@11 162 </tbody>
ulalume3@11 163 </table>
ulalume3@11 164 <p>Moreover suppose that this measurement is composed by the following
ulalume3@11 165 lidar channels:</p>
ulalume3@11 166 <ol class="arabic">
ulalume3@11 167 <li><p class="first">1064 lidar channel</p>
ulalume3@11 168 <table border="1" class="docutils">
ulalume3@11 169 <colgroup>
ulalume3@11 170 <col width="49%" />
ulalume3@11 171 <col width="51%" />
ulalume3@11 172 </colgroup>
ulalume3@11 173 <tbody valign="top">
ulalume3@11 174 <tr class="row-odd"><td><p class="first last">Emission wavelength=1064nm</p>
ulalume3@11 175 </td>
ulalume3@11 176 <td><p class="first last">Detection wavelength=1064nm</p>
ulalume3@11 177 </td>
ulalume3@11 178 </tr>
ulalume3@11 179 <tr class="row-even"><td><p class="first last">Time resolution=30s</p>
ulalume3@11 180 </td>
ulalume3@11 181 <td><p class="first last">Number of laser shots=1500</p>
ulalume3@11 182 </td>
ulalume3@11 183 </tr>
ulalume3@11 184 <tr class="row-odd"><td><p class="first last">Number of bins=3000</p>
ulalume3@11 185 </td>
ulalume3@11 186 <td><p class="first last">Detection mode=analog</p>
ulalume3@11 187 </td>
ulalume3@11 188 </tr>
ulalume3@11 189 <tr class="row-even"><td><p class="first last">Range resolution=7.5m</p>
ulalume3@11 190 </td>
ulalume3@11 191 <td><p class="first last">Polarization state=total</p>
ulalume3@11 192 </td>
ulalume3@11 193 </tr>
ulalume3@11 194 </tbody>
ulalume3@11 195 </table>
ulalume3@11 196 </li>
ulalume3@11 197 <li><p class="first">532 cross lidar channel</p>
ulalume3@11 198 <table border="1" class="docutils">
ulalume3@11 199 <colgroup>
ulalume3@11 200 <col width="47%" />
ulalume3@11 201 <col width="53%" />
ulalume3@11 202 </colgroup>
ulalume3@11 203 <tbody valign="top">
ulalume3@11 204 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p>
ulalume3@11 205 </td>
ulalume3@11 206 <td><p class="first last">Detection wavelength=532nm</p>
ulalume3@11 207 </td>
ulalume3@11 208 </tr>
ulalume3@11 209 <tr class="row-even"><td><p class="first last">Time resolution=60s</p>
ulalume3@11 210 </td>
ulalume3@11 211 <td><p class="first last">Number of laser shots=3000</p>
ulalume3@11 212 </td>
ulalume3@11 213 </tr>
ulalume3@11 214 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p>
ulalume3@11 215 </td>
ulalume3@11 216 <td><p class="first last">Detection mode=photoncounting</p>
ulalume3@11 217 </td>
ulalume3@11 218 </tr>
ulalume3@11 219 <tr class="row-even"><td><p class="first last">Range resolution=15m</p>
ulalume3@11 220 </td>
ulalume3@11 221 <td><p class="first last">Polarization state=cross</p>
ulalume3@11 222 </td>
ulalume3@11 223 </tr>
ulalume3@11 224 </tbody>
ulalume3@11 225 </table>
ulalume3@11 226 </li>
ulalume3@11 227 <li><p class="first">532 parallel lidar channel</p>
ulalume3@11 228 <table border="1" class="docutils">
ulalume3@11 229 <colgroup>
ulalume3@11 230 <col width="47%" />
ulalume3@11 231 <col width="53%" />
ulalume3@11 232 </colgroup>
ulalume3@11 233 <tbody valign="top">
ulalume3@11 234 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p>
ulalume3@11 235 </td>
ulalume3@11 236 <td><p class="first last">Detection wavelength=532nm</p>
ulalume3@11 237 </td>
ulalume3@11 238 </tr>
ulalume3@11 239 <tr class="row-even"><td><p class="first last">Time resolution=60s</p>
ulalume3@11 240 </td>
ulalume3@11 241 <td><p class="first last">Number of laser shots=3000</p>
ulalume3@11 242 </td>
ulalume3@11 243 </tr>
ulalume3@11 244 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p>
ulalume3@11 245 </td>
ulalume3@11 246 <td><p class="first last">Detection mode=photoncounting</p>
ulalume3@11 247 </td>
ulalume3@11 248 </tr>
ulalume3@11 249 <tr class="row-even"><td><p class="first last">Range resolution=15m</p>
ulalume3@11 250 </td>
ulalume3@11 251 <td><p class="first last">Polarization state=parallel</p>
ulalume3@11 252 </td>
ulalume3@11 253 </tr>
ulalume3@11 254 </tbody>
ulalume3@11 255 </table>
ulalume3@11 256 </li>
ulalume3@11 257 <li><p class="first">607 <span class="math">\(N_2\)</span> vibrational Raman channel</p>
ulalume3@11 258 <table border="1" class="docutils">
ulalume3@11 259 <colgroup>
ulalume3@11 260 <col width="47%" />
ulalume3@11 261 <col width="53%" />
ulalume3@11 262 </colgroup>
ulalume3@11 263 <tbody valign="top">
ulalume3@11 264 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p>
ulalume3@11 265 </td>
ulalume3@11 266 <td><p class="first last">Detection wavelength=607nm</p>
ulalume3@11 267 </td>
ulalume3@11 268 </tr>
ulalume3@11 269 <tr class="row-even"><td><p class="first last">Time resolution=60s</p>
ulalume3@11 270 </td>
ulalume3@11 271 <td><p class="first last">Number of laser shots=3000</p>
ulalume3@11 272 </td>
ulalume3@11 273 </tr>
ulalume3@11 274 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p>
ulalume3@11 275 </td>
ulalume3@11 276 <td><p class="first last">Detection mode=photoncounting</p>
ulalume3@11 277 </td>
ulalume3@11 278 </tr>
ulalume3@11 279 <tr class="row-even"><td colspan="2"><p class="first last">Range resolution=15m</p>
ulalume3@11 280 </td>
ulalume3@11 281 </tr>
ulalume3@11 282 </tbody>
ulalume3@11 283 </table>
ulalume3@11 284 </li>
ulalume3@11 285 </ol>
ulalume3@11 286 <p>Finally let’s assume we have also performed dark measurements before the
ulalume3@11 287 lidar measurements from the 23:50:01 UT up to 23:53:01 UT of
ulalume3@11 288 29:math:<cite>^mathrmth</cite> January 2009.</p>
ulalume3@11 289 <div class="section" id="dimensions">
ulalume3@11 290 <h3>Dimensions<a class="headerlink" href="#dimensions" title="Permalink to this headline">¶</a></h3>
ulalume3@11 291 <p>Looking at table tab:rawdata we have to fix the following dimensions:</p>
ulalume3@11 292 <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span>
ulalume3@11 293 <span class="n">channels</span>
ulalume3@11 294 <span class="n">time</span>
ulalume3@11 295 <span class="n">nb_of_time_scales</span>
ulalume3@11 296 <span class="n">scan_angles</span>
ulalume3@11 297 <span class="n">time_bck</span>
ulalume3@11 298 </pre></div>
ulalume3@11 299 </div>
ulalume3@11 300 <p>The dimension <tt class="docutils literal"><span class="pre">time</span></tt> is unlimited so we don’t have to fix it.</p>
ulalume3@11 301 <p>We have 4 lidar channels so:</p>
ulalume3@11 302 <div class="highlight-python"><div class="highlight"><pre><span class="n">channels</span><span class="o">=</span><span class="mi">4</span>
ulalume3@11 303 </pre></div>
ulalume3@11 304 </div>
ulalume3@11 305 <p>Regarding the dimension <tt class="docutils literal"><span class="pre">points</span></tt> we have only one channel with a
ulalume3@11 306 number of vertical bins equal to 3000 (the 1064nm) and all other
ulalume3@11 307 channels with 5000 vertical bins. In cases like this the dimension
ulalume3@11 308 <tt class="docutils literal"><span class="pre">points</span></tt> has to be fixed to the maximum number of vertical bins so:</p>
ulalume3@11 309 <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span><span class="o">=</span><span class="mi">5000</span>
ulalume3@11 310 </pre></div>
ulalume3@11 311 </div>
ulalume3@11 312 <p>Moreover only one channel (1064nm) is acquired with a time resolution of
ulalume3@11 313 30 seconds, all the other channels have a time resolution of 60 seconds.
ulalume3@11 314 This means that we have to define two different time scales. We have to
ulalume3@11 315 set:</p>
ulalume3@11 316 <div class="highlight-python"><div class="highlight"><pre><span class="n">nb_of_time_scales</span><span class="o">=</span><span class="mi">2</span>
ulalume3@11 317 </pre></div>
ulalume3@11 318 </div>
ulalume3@11 319 <p>The measurement is performed only at one scan angle (5 degrees with
ulalume3@11 320 respect to the zenith) so:</p>
ulalume3@11 321 <div class="highlight-python"><div class="highlight"><pre><span class="n">scan_angles</span><span class="o">=</span><span class="mi">1</span>
ulalume3@11 322 </pre></div>
ulalume3@11 323 </div>
ulalume3@11 324 <p>We have 3 minutes of dark measurements and two different time scales one
ulalume3@11 325 with 60 seconds time resolution and the other one with 30 seconds time
ulalume3@11 326 resolution. So we will have 3 different dark profiles for the channels
ulalume3@11 327 acquired with the first time scale and 6 for the lidar channels acquired
ulalume3@11 328 with the second time scale. We have to fix the dimension <tt class="docutils literal"><span class="pre">time_bck</span></tt> as
ulalume3@11 329 the maximum between these values:</p>
ulalume3@11 330 <div class="highlight-python"><div class="highlight"><pre><span class="n">time_bck</span><span class="o">=</span><span class="mi">6</span>
ulalume3@11 331 </pre></div>
ulalume3@11 332 </div>
ulalume3@11 333 </div>
ulalume3@11 334 <div class="section" id="variables">
ulalume3@11 335 <h3>Variables<a class="headerlink" href="#variables" title="Permalink to this headline">¶</a></h3>
ulalume3@11 336 <p>In this section it will be explained how to fill all the possible
ulalume3@11 337 variables either mandatory or optional of Raw Lidar Data input file.</p>
ulalume3@11 338 <dl class="docutils">
ulalume3@11 339 <dt>Raw_Data_Start_Time(time, nb_of_time_scales)</dt>
ulalume3@11 340 <dd><p class="first">This 2 dimensional mandatory array has to contain the acquisition
ulalume3@11 341 start time (in seconds from the time given by the global attribute
ulalume3@11 342 <tt class="docutils literal"><span class="pre">RawData_Start_Time_UT</span></tt>) of each lidar profile. In this example we
ulalume3@11 343 have two different time scales: one is characterized by steps of 30
ulalume3@11 344 seconds (the 1064nm is acquired with this time scale) the other by
ulalume3@11 345 steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the
ulalume3@11 346 measurement start time is 00:00:01 UT and the measurement stop time
ulalume3@11 347 is 00:05:01 UT. In this case we have to define:</p>
ulalume3@11 348 <div class="highlight-python"><pre>Raw_Data_Start_Time =
ulalume3@11 349 0, 0,
ulalume3@11 350 60, 30,
ulalume3@11 351 120, 60,
ulalume3@11 352 180, 90,
ulalume3@11 353 240, 120,
ulalume3@11 354 _, 150,
ulalume3@11 355 _, 180,
ulalume3@11 356 _, 210,
ulalume3@11 357 _, 240,
ulalume3@11 358 _, 270 ;</pre>
ulalume3@11 359 </div>
ulalume3@11 360 <p class="last">The order used to fill this array defines the correspondence between
ulalume3@11 361 the different time scales and the time scale index. In this example
ulalume3@11 362 we have a time scale index of 0 for the time scale with steps of 60
ulalume3@11 363 seconds and a time scale index of 1 for the other one.</p>
ulalume3@11 364 </dd>
ulalume3@11 365 <dt>Raw_Data_Stop_Time(time, nb_of_time_scales)</dt>
ulalume3@11 366 <dd><p class="first">The same as previous item but for the data acquisition stop time.
ulalume3@11 367 Following a similar procedure we have to define:</p>
ulalume3@11 368 <div class="last highlight-python"><pre>Raw_Data_Stop_Time =
ulalume3@11 369 60, 30,
ulalume3@11 370 120, 60,
ulalume3@11 371 180, 90,
ulalume3@11 372 240, 120,
ulalume3@11 373 300, 150,
ulalume3@11 374 _, 180,
ulalume3@11 375 _, 210,
ulalume3@11 376 _, 240,
ulalume3@11 377 _, 270,
ulalume3@11 378 _, 300 ;</pre>
ulalume3@11 379 </div>
ulalume3@11 380 </dd>
ulalume3@11 381 <dt>Raw_Lidar_Data(time, channels, points)</dt>
ulalume3@11 382 <dd><p class="first">This 3 dimensional mandatory array has to be filled with the
ulalume3@11 383 time-series of raw lidar data. The photoncounting profiles have to
ulalume3@11 384 submitted in counts (so as integers) while the analog ones in mV. The
ulalume3@11 385 order the user chooses to fill this array defines the correspondence
ulalume3@11 386 between channel index and lidar data.</p>
ulalume3@11 387 <p>For example if we fill this array in such way that:</p>
ulalume3@11 388 <table border="1" class="docutils">
ulalume3@11 389 <colgroup>
ulalume3@11 390 <col width="38%" />
ulalume3@11 391 <col width="62%" />
ulalume3@11 392 </colgroup>
ulalume3@11 393 <tbody valign="top">
ulalume3@11 394 <tr class="row-odd"><td>Raw_Lidar_Data(time,0,points</td>
ulalume3@11 395 <td><span class="math">\(\rightarrow\)</span> is the time-series of 1064 nm</td>
ulalume3@11 396 </tr>
ulalume3@11 397 <tr class="row-even"><td>Raw_Lidar_Data(time,1,points</td>
ulalume3@11 398 <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 cross</td>
ulalume3@11 399 </tr>
ulalume3@11 400 <tr class="row-odd"><td>Raw_Lidar_Data(time,2,points</td>
ulalume3@11 401 <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 parallel</td>
ulalume3@11 402 </tr>
ulalume3@11 403 <tr class="row-even"><td>Raw_Lidar_Data(time,3,points</td>
ulalume3@11 404 <td><span class="math">\(\rightarrow\)</span> is the time-series of 607 nm</td>
ulalume3@11 405 </tr>
ulalume3@11 406 </tbody>
ulalume3@11 407 </table>
ulalume3@11 408 <p class="last">from now on the channel index 0 is associated to the 1064 channel,
ulalume3@11 409 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.</p>
ulalume3@11 410 </dd>
ulalume3@11 411 <dt>Raw_Bck_Start_Time(time_bck, nb_of_time_scales)</dt>
ulalume3@11 412 <dd><p class="first">This 2 dimensional optional array has to contain the acquisition
ulalume3@11 413 start time (in seconds from the time given by the global attribute
ulalume3@11 414 <tt class="docutils literal"><span class="pre">RawBck_Start_Time_UT</span></tt>) of each dark measurements profile.
ulalume3@11 415 Following the same procedure used for the variable
ulalume3@11 416 <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> we have to define:</p>
ulalume3@11 417 <div class="last highlight-python"><pre>Raw_Bck_Start_Time =
ulalume3@11 418 0, 0,
ulalume3@11 419 60, 30,
ulalume3@11 420 120, 60,
ulalume3@11 421 _, 90,
ulalume3@11 422 _, 120,
ulalume3@11 423 _, 150;</pre>
ulalume3@11 424 </div>
ulalume3@11 425 </dd>
ulalume3@11 426 <dt>Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)</dt>
ulalume3@11 427 <dd><p class="first">The same as previous item but for the dark acquisition stop time.
ulalume3@11 428 Following a similar procedure we have to define:</p>
ulalume3@11 429 <div class="last highlight-python"><pre>Raw_Bck_Stop_Time =
ulalume3@11 430 60, 30,
ulalume3@11 431 120, 60,
ulalume3@11 432 180, 90,
ulalume3@11 433 _, 120,
ulalume3@11 434 _, 150,
ulalume3@11 435 _, 180 ;</pre>
ulalume3@11 436 </div>
ulalume3@11 437 </dd>
ulalume3@11 438 <dt>Background_Profile(time_bck, channels, points)</dt>
ulalume3@11 439 <dd><p class="first">This 3 dimensional optional array has to be filled with the
ulalume3@11 440 time-series of the dark measurements data. The photoncounting
ulalume3@11 441 profiles have to submitted in counts (so as integers) while the
ulalume3@11 442 analog ones in mV. The user has to fill this array following the same
ulalume3@11 443 order used in filling the array <tt class="docutils literal"><span class="pre">Raw_Lidar_Data</span></tt>:</p>
ulalume3@11 444 <table border="1" class="last docutils">
ulalume3@11 445 <colgroup>
ulalume3@11 446 <col width="44%" />
ulalume3@11 447 <col width="56%" />
ulalume3@11 448 </colgroup>
ulalume3@11 449 <tbody valign="top">
ulalume3@11 450 <tr class="row-odd"><td>Background_Profile(time_bck,0,points</td>
ulalume3@11 451 <td><span class="math">\(\rightarrow\)</span> dark time-series at 1064 nm</td>
ulalume3@11 452 </tr>
ulalume3@11 453 <tr class="row-even"><td>Background_Profile(time_bck,1,points</td>
ulalume3@11 454 <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 cross</td>
ulalume3@11 455 </tr>
ulalume3@11 456 <tr class="row-odd"><td>Background_Profile(time_bck,2,points</td>
ulalume3@11 457 <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 parallel</td>
ulalume3@11 458 </tr>
ulalume3@11 459 <tr class="row-even"><td>Background_Profile(time_bck,3,points</td>
ulalume3@11 460 <td><span class="math">\(\rightarrow\)</span> dark time-series at 607 nm</td>
ulalume3@11 461 </tr>
ulalume3@11 462 </tbody>
ulalume3@11 463 </table>
ulalume3@11 464 </dd>
ulalume3@11 465 <dt>channel_ID(channels)</dt>
ulalume3@11 466 <dd><p class="first">This mandatory array provides the link between the channel index
ulalume3@11 467 within the Raw Lidar Data input file and the channel ID in
ulalume3@11 468 SCC_DB. To fill this variable the user has to know which channel IDs
ulalume3@11 469 in SCC_DB correspond to his lidar channels. For this purpose the
ulalume3@11 470 SCC, in its final version will provide to the user a special tool to
ulalume3@11 471 get these channel IDs through a Web interface. At the moment this
ulalume3@11 472 interface is not yet available and these channel IDs will be
ulalume3@11 473 communicated directly to the user by the NA5 people.</p>
ulalume3@11 474 <p>Anyway to continue the example let’s suppose that the four lidar
ulalume3@11 475 channels taken into account are mapped into SCC_DB with the
ulalume3@11 476 following channel IDs:</p>
ulalume3@11 477 <table border="1" class="docutils">
ulalume3@11 478 <colgroup>
ulalume3@11 479 <col width="30%" />
ulalume3@11 480 <col width="70%" />
ulalume3@11 481 </colgroup>
ulalume3@11 482 <tbody valign="top">
ulalume3@11 483 <tr class="row-odd"><td>1064 nm</td>
ulalume3@11 484 <td><span class="math">\(\rightarrow\)</span> channel ID=7</td>
ulalume3@11 485 </tr>
ulalume3@11 486 <tr class="row-even"><td>532 cross</td>
ulalume3@11 487 <td><span class="math">\(\rightarrow\)</span> channel ID=5</td>
ulalume3@11 488 </tr>
ulalume3@11 489 <tr class="row-odd"><td>532 parallel</td>
ulalume3@11 490 <td><span class="math">\(\rightarrow\)</span> channel ID=6</td>
ulalume3@11 491 </tr>
ulalume3@11 492 <tr class="row-even"><td>607 nm</td>
ulalume3@11 493 <td><span class="math">\(\rightarrow\)</span> channel ID=8</td>
ulalume3@11 494 </tr>
ulalume3@11 495 </tbody>
ulalume3@11 496 </table>
ulalume3@11 497 <blockquote>
ulalume3@11 498 <div>In this case we have to define:</div></blockquote>
ulalume3@11 499 <div class="last highlight-python"><div class="highlight"><pre><span class="n">channel_ID</span> <span class="o">=</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span> <span class="p">;</span>
ulalume3@11 500 </pre></div>
ulalume3@11 501 </div>
ulalume3@11 502 </dd>
ulalume3@11 503 <dt>id_timescale(channels)</dt>
ulalume3@11 504 <dd><p class="first">This mandatory array is introduced to determine which time scale is
ulalume3@11 505 used for the acquisition of each lidar channel. In particular this
ulalume3@11 506 array defines the link between the channel index and the time scale
ulalume3@11 507 index. In our example we have two different time scales. Filling the
ulalume3@11 508 arrays <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> and <tt class="docutils literal"><span class="pre">Raw_Data_Stop_Time</span></tt> we have
ulalume3@11 509 defined a time scale index of 0 for the time scale with steps of 60
ulalume3@11 510 seconds and a time scale index of 1 for the other one with steps of
ulalume3@11 511 30 seconds. In this way this array has to be set as:</p>
ulalume3@11 512 <div class="last highlight-python"><div class="highlight"><pre><span class="n">id_timescale</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span>
ulalume3@11 513 </pre></div>
ulalume3@11 514 </div>
ulalume3@11 515 </dd>
ulalume3@11 516 <dt>Laser_Pointing_Angle(scan_angles</dt>
ulalume3@11 517 <dd><p class="first">This mandatory array contains all the scan angles used in the
ulalume3@11 518 measurement. In our example we have only one scan angle of 5 degrees
ulalume3@11 519 with respect to the zenith, so we have to define:</p>
ulalume3@11 520 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Pointing_Angle</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span>
ulalume3@11 521 </pre></div>
ulalume3@11 522 </div>
ulalume3@11 523 </dd>
ulalume3@11 524 <dt>Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)</dt>
ulalume3@11 525 <dd><p class="first">This mandatory array is introduced to determine which scan angle is
ulalume3@11 526 used for the acquisition of each lidar profile. In particular this
ulalume3@11 527 array defines the link between the time and time scales indexes and
ulalume3@11 528 the scan angle index. In our example we have a single scan angle that
ulalume3@11 529 has to correspond to the scan angle index 0. So this array has to be
ulalume3@11 530 defined as:</p>
ulalume3@11 531 <div class="last highlight-python"><pre>Laser_Pointing_Angle_of_Profiles =
ulalume3@11 532 0, 0,
ulalume3@11 533 0, 0,
ulalume3@11 534 0, 0,
ulalume3@11 535 0, 0,
ulalume3@11 536 0, 0,
ulalume3@11 537 _, 0,
ulalume3@11 538 _, 0,
ulalume3@11 539 _, 0,
ulalume3@11 540 _, 0,
ulalume3@11 541 _, 0 ;</pre>
ulalume3@11 542 </div>
ulalume3@11 543 </dd>
ulalume3@11 544 <dt>Laser_Shots(time, channels)</dt>
ulalume3@11 545 <dd><p class="first">This mandatory array stores the laser shots accumulated at each time
ulalume3@11 546 for each channel. In our example the number of laser shots
ulalume3@11 547 accumulated is 1500 for the 1064nm channels and 3000 for all the
ulalume3@11 548 other channels. Moreover the laser shots do not change with the time.
ulalume3@11 549 So we have to define this array as:</p>
ulalume3@11 550 <div class="last highlight-python"><pre>Laser_Shots =
ulalume3@11 551 1500, 3000, 3000, 3000,
ulalume3@11 552 1500, 3000, 3000, 3000,
ulalume3@11 553 1500, 3000, 3000, 3000,
ulalume3@11 554 1500, 3000, 3000, 3000,
ulalume3@11 555 1500, 3000, 3000, 3000,
ulalume3@11 556 1500, _, _, _,
ulalume3@11 557 1500, _, _, _,
ulalume3@11 558 1500, _, _, _,
ulalume3@11 559 1500, _, _, _,
ulalume3@11 560 1500, _, _, _ ;</pre>
ulalume3@11 561 </div>
ulalume3@11 562 </dd>
ulalume3@11 563 <dt>Emitted_Wavelength(channels)</dt>
ulalume3@11 564 <dd><p class="first">This optional array defines the link between the channel index and
ulalume3@11 565 the emission wavelength for each lidar channel. The wavelength has to
ulalume3@11 566 be expressed in nm. This information can be also taken from SCC_DB.
ulalume3@11 567 In our example we have:</p>
ulalume3@11 568 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Emitted_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span> <span class="p">;</span>
ulalume3@11 569 </pre></div>
ulalume3@11 570 </div>
ulalume3@11 571 </dd>
ulalume3@11 572 <dt>Detected_Wavelength(channels)</dt>
ulalume3@11 573 <dd><p class="first">This optional array defines the link between the channel index and
ulalume3@11 574 the detected wavelength for each lidar channel. Here detected
ulalume3@11 575 wavelength means the value of center of interferential filter
ulalume3@11 576 expressed in nm. This information can be also taken from SCC_DB. In
ulalume3@11 577 our example we have:</p>
ulalume3@11 578 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Detected_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">607</span> <span class="p">;</span>
ulalume3@11 579 </pre></div>
ulalume3@11 580 </div>
ulalume3@11 581 </dd>
ulalume3@11 582 <dt>Raw_Data_Range_Resolution(channels)</dt>
ulalume3@11 583 <dd><p class="first">This optional array defines the link between the channel index and
ulalume3@11 584 the raw range resolution for each channel. If the scan angle is
ulalume3@11 585 different from zero this quantity is different from the vertical
ulalume3@11 586 resolution. More precisely if <span class="math">\(\alpha\)</span> is the scan angle used
ulalume3@11 587 and <span class="math">\(\Delta z\)</span> is the range resolution the vertical
ulalume3@11 588 resolution is calculated as <span class="math">\(\Delta
ulalume3@11 589 z'=\Delta z \cos\alpha\)</span>. This array has to be filled with
ulalume3@11 590 <span class="math">\(\Delta z\)</span> and not with <span class="math">\(\Delta z'\)</span>. The unit is
ulalume3@11 591 meters. This information can be also taken from SCC_DB. In our
ulalume3@11 592 example we have:</p>
ulalume3@11 593 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Raw_Data_Range_Resolution</span> <span class="o">=</span> <span class="mf">7.5</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span> <span class="p">;</span>
ulalume3@11 594 </pre></div>
ulalume3@11 595 </div>
ulalume3@11 596 </dd>
ulalume3@11 597 <dt>ID_Range(channels)</dt>
ulalume3@11 598 <dd><p class="first">This optional array defines if a particular channel is configured as
ulalume3@11 599 high, low or ultranear range channel. In particular a value 0
ulalume3@11 600 indicates a low range channel, a value 1 a high range channel and a
ulalume3@11 601 value of 2 an ultranear range channel. If for a particular channel
ulalume3@11 602 you don’t separate between high and low range channel, please set the
ulalume3@11 603 corresponding value to 1. This information can be also taken from
ulalume3@11 604 SCC_DB. In our case we have to set:</p>
ulalume3@11 605 <div class="last highlight-python"><div class="highlight"><pre><span class="n">ID_Range</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span>
ulalume3@11 606 </pre></div>
ulalume3@11 607 </div>
ulalume3@11 608 </dd>
ulalume3@11 609 <dt>Scattering_Mechanism(channels)</dt>
ulalume3@11 610 <dd><p class="first">This optional array defines the scattering mechanism involved in
ulalume3@11 611 each lidar channel. In particular the following values are adopted:</p>
ulalume3@11 612 <table border="1" class="docutils">
ulalume3@11 613 <colgroup>
ulalume3@11 614 <col width="6%" />
ulalume3@11 615 <col width="94%" />
ulalume3@11 616 </colgroup>
ulalume3@11 617 <tbody valign="top">
ulalume3@11 618 <tr class="row-odd"><td>0</td>
ulalume3@11 619 <td><span class="math">\(\rightarrow\)</span> Total elastic backscatter</td>
ulalume3@11 620 </tr>
ulalume3@11 621 <tr class="row-even"><td>1</td>
ulalume3@11 622 <td><span class="math">\(\rightarrow\)</span> <span class="math">\(N_2\)</span> vibrational Raman backscatter</td>
ulalume3@11 623 </tr>
ulalume3@11 624 <tr class="row-odd"><td>2</td>
ulalume3@11 625 <td><span class="math">\(\rightarrow\)</span> Cross polarization elastic backscatter</td>
ulalume3@11 626 </tr>
ulalume3@11 627 <tr class="row-even"><td>3</td>
ulalume3@11 628 <td><span class="math">\(\rightarrow\)</span> Parallel polarization elastic backscatter</td>
ulalume3@11 629 </tr>
ulalume3@11 630 <tr class="row-odd"><td>4</td>
ulalume3@11 631 <td><span class="math">\(\rightarrow\)</span> <span class="math">\(H_2O\)</span> vibrational Raman backscatter</td>
ulalume3@11 632 </tr>
ulalume3@11 633 <tr class="row-even"><td>5</td>
ulalume3@11 634 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line close to elastic line</td>
ulalume3@11 635 </tr>
ulalume3@11 636 <tr class="row-odd"><td>6</td>
ulalume3@11 637 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line far from elastic line</td>
ulalume3@11 638 </tr>
ulalume3@11 639 <tr class="row-even"><td>7</td>
ulalume3@11 640 <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line close to elastic line</td>
ulalume3@11 641 </tr>
ulalume3@11 642 <tr class="row-odd"><td>8</td>
ulalume3@11 643 <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line far from elastic line</td>
ulalume3@11 644 </tr>
ulalume3@11 645 <tr class="row-even"><td>9</td>
ulalume3@11 646 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines close to elastic line</td>
ulalume3@11 647 </tr>
ulalume3@11 648 <tr class="row-odd"><td>10</td>
ulalume3@11 649 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines far from elastic line</td>
ulalume3@11 650 </tr>
ulalume3@11 651 </tbody>
ulalume3@11 652 </table>
ulalume3@11 653 <p>This information can be also taken from SCC_DB. In our example we have:</p>
ulalume3@11 654 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Scattering_Mechanism</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span>
ulalume3@11 655 </pre></div>
ulalume3@11 656 </div>
ulalume3@11 657 </dd>
ulalume3@11 658 <dt>Acquisition_Mode(channels)</dt>
ulalume3@11 659 <dd><p class="first">This optional array defines the acquisition mode (analog or
ulalume3@11 660 photoncounting) involved in each lidar channel. In particular a value
ulalume3@11 661 of 0 means analog mode and 1 photoncounting mode. This information
ulalume3@11 662 can be also taken from SCC_DB. In our example we have:</p>
ulalume3@11 663 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Acquisition_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span>
ulalume3@11 664 </pre></div>
ulalume3@11 665 </div>
ulalume3@11 666 </dd>
ulalume3@11 667 <dt>Laser_Repetition_Rate(channels)</dt>
ulalume3@11 668 <dd><p class="first">This optional array defines the repetition rate in Hz used to
ulalume3@11 669 acquire each lidar channel. This information can be also taken from
ulalume3@11 670 SCC_DB. In our example we are supposing we have only one laser with
ulalume3@11 671 a repetition rate of 50 Hz so we have to set:</p>
ulalume3@11 672 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Repetition_Rate</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span> <span class="p">;</span>
ulalume3@11 673 </pre></div>
ulalume3@11 674 </div>
ulalume3@11 675 </dd>
ulalume3@11 676 <dt>Dead_Time(channels)</dt>
ulalume3@11 677 <dd><p class="first">This optional array defines the dead time in ns associated to each
ulalume3@11 678 lidar channel. The SCC will use the values given by this array to
ulalume3@11 679 correct the photoncounting signals for dead time. Of course for
ulalume3@11 680 analog signals no dead time correction will be applied (for analog
ulalume3@11 681 channels the corresponding dead time values have to be set to
ulalume3@11 682 undefined value). This information can be also taken from SCC_DB. In
ulalume3@11 683 our example the 1064 nm channel is acquired in analog mode so the
ulalume3@11 684 corresponding dead time value has to be undefined. If we suppose a
ulalume3@11 685 dead time of 10 ns for all other channels we have to set:</p>
ulalume3@11 686 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span> <span class="p">;</span>
ulalume3@11 687 </pre></div>
ulalume3@11 688 </div>
ulalume3@11 689 </dd>
ulalume3@11 690 <dt>Dead_Time_Corr_Type(channels</dt>
ulalume3@11 691 <dd><p class="first">This optional array defines which kind of dead time correction has
ulalume3@11 692 to be applied on each photoncounting channel. The SCC will correct
ulalume3@11 693 the data supposing a not-paralyzable channel if a value of 0 is found
ulalume3@11 694 while a paralyzable channel is supposed if a value of 1 is found. Of
ulalume3@11 695 course for analog signals no dead time correction will be applied and
ulalume3@11 696 so the corresponding values have to be set to undefined value. This
ulalume3@11 697 information can be also taken from SCC_DB. In our example the 1064
ulalume3@11 698 nm channel is acquired in analog mode so the corresponding has to be
ulalume3@11 699 undefined. If we want to consider all the photoncounting signals as
ulalume3@11 700 not-paralyzable ones: we have to set:</p>
ulalume3@11 701 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time_Corr_Type</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span>
ulalume3@11 702 </pre></div>
ulalume3@11 703 </div>
ulalume3@11 704 </dd>
ulalume3@11 705 <dt>Trigger_Delay(channels)</dt>
ulalume3@11 706 <dd><p class="first">This optional array defines the delay (in ns) of the middle of the
ulalume3@11 707 first rangebin with respect to the output laser pulse for each lidar
ulalume3@11 708 channel. The SCC will use the values given by this array to correct
ulalume3@11 709 for trigger delay. This information can be also taken from SCC_DB.
ulalume3@11 710 Let’s suppose that in our example all the photoncounting channels are
ulalume3@11 711 not affected by this delay and only the analog channel at 1064nm is
ulalume3@11 712 acquired with a delay of 50ns. In this case we have to set:</p>
ulalume3@11 713 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Trigger_Delay</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span>
ulalume3@11 714 </pre></div>
ulalume3@11 715 </div>
ulalume3@11 716 </dd>
ulalume3@11 717 <dt>Background_Mode(channels</dt>
ulalume3@11 718 <dd><p class="first">This optional array defines how the atmospheric background has to be
ulalume3@11 719 subtracted from the lidar channel. Two options are available for the
ulalume3@11 720 calculation of atmospheric background:</p>
ulalume3@11 721 <ol class="arabic simple">
ulalume3@11 722 <li>Average in the far field of lidar channel. In this case the value
ulalume3@11 723 of this variable has to be 1</li>
ulalume3@11 724 <li>Average within pre-trigger bins. In this case the value of this
ulalume3@11 725 variable has to be 0</li>
ulalume3@11 726 </ol>
ulalume3@11 727 <p>This information can be also taken from SCC_DB. Let’s suppose in our
ulalume3@11 728 example we use the pre-trigger for the 1064nm channel and the far
ulalume3@11 729 field for all other channels. In this case we have to set:</p>
ulalume3@11 730 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span>
ulalume3@11 731 </pre></div>
ulalume3@11 732 </div>
ulalume3@11 733 </dd>
ulalume3@11 734 <dt>Background_Low(channels)</dt>
ulalume3@11 735 <dd><p class="first">This mandatory array defines the minimum altitude (in meters) to
ulalume3@11 736 consider in calculating the atmospheric background for each channel.
ulalume3@11 737 In case pre-trigger mode is used the corresponding value has to be
ulalume3@11 738 set to the rangebin to be used as lower limit (within pre-trigger
ulalume3@11 739 region) for background calculation. In our example, if we want to
ulalume3@11 740 calculate the background between 30000 and 50000 meters for all
ulalume3@11 741 photoncounting channels and we want to use the first 500 pre-trigger
ulalume3@11 742 bins for the background calculation for the 1064nm channel we have to
ulalume3@11 743 set:</p>
ulalume3@11 744 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Low</span><span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span> <span class="p">;</span>
ulalume3@11 745 </pre></div>
ulalume3@11 746 </div>
ulalume3@11 747 </dd>
ulalume3@11 748 <dt>Background_High(channels)</dt>
ulalume3@11 749 <dd><p class="first">This mandatory array defines the maximum altitude (in meters) to
ulalume3@11 750 consider in calculating the atmospheric background for each channel.
ulalume3@11 751 In case pre-trigger mode is used the corresponding value has to be
ulalume3@11 752 set to the rangebin to be used as upper limit (within pre-trigger
ulalume3@11 753 region) for background calculation. In our example, if we want to
ulalume3@11 754 calculate the background between 30000 and 50000 meters for all
ulalume3@11 755 photoncounting channels and we want to use the first 500 pre-trigger
ulalume3@11 756 bins for the background calculation for the 1064nm channel we have to
ulalume3@11 757 set:</p>
ulalume3@11 758 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_High</span> <span class="o">=</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span> <span class="p">;</span>
ulalume3@11 759 </pre></div>
ulalume3@11 760 </div>
ulalume3@11 761 </dd>
ulalume3@11 762 <dt>Molecular_Calc</dt>
ulalume3@11 763 <dd><p class="first">This mandatory variable defines the way used by SCC to calculate the
ulalume3@11 764 molecular density profile. At the moment two options are available:</p>
ulalume3@11 765 <ol class="arabic simple">
ulalume3@11 766 <li>US Standard Atmosphere 1976. In this case the value of this
ulalume3@11 767 variable has to be 0</li>
ulalume3@11 768 <li>Radiosounding. In this case the value of this variable has to be 1</li>
ulalume3@11 769 </ol>
ulalume3@11 770 <p>If we decide to use the option 1. we have to provide also the
ulalume3@11 771 measured pressure and temperature at lidar station level. Indeed if
ulalume3@11 772 we decide to use the option 2. a radiosounding file has to be
ulalume3@11 773 submitted separately in NetCDF format (the structure of this file is
ulalume3@11 774 summarized in table tab:sounding). Let’s suppose we want to use the
ulalume3@11 775 option 1. so:</p>
ulalume3@11 776 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">0</span> <span class="p">;</span>
ulalume3@11 777 </pre></div>
ulalume3@11 778 </div>
ulalume3@11 779 </dd>
ulalume3@11 780 <dt>Pressure_at_Lidar_Station</dt>
ulalume3@11 781 <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of
ulalume3@11 782 the molecular density profile we have to give the pressure in hPa at
ulalume3@11 783 lidar station level:</p>
ulalume3@11 784 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Pressure_at_Lidar_Station</span> <span class="o">=</span> <span class="mi">1010</span> <span class="p">;</span>
ulalume3@11 785 </pre></div>
ulalume3@11 786 </div>
ulalume3@11 787 </dd>
ulalume3@11 788 <dt>Temperature_at_Lidar_Station</dt>
ulalume3@11 789 <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of
ulalume3@11 790 the molecular density profile we have to give the temperature in C at
ulalume3@11 791 lidar station level:</p>
ulalume3@11 792 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Temperature_at_Lidar_Station</span> <span class="o">=</span> <span class="mf">19.8</span> <span class="p">;</span>
ulalume3@11 793 </pre></div>
ulalume3@11 794 </div>
ulalume3@11 795 </dd>
ulalume3@11 796 <dt>Depolarization_Factor(channels)</dt>
ulalume3@11 797 <dd><p class="first">This array is required only for lidar systems that use the two
ulalume3@11 798 depolarization channels for the backscatter retrieval. It represents
ulalume3@11 799 the factor <span class="math">\(f\)</span> to calculate the total backscatter signal
ulalume3@11 800 <span class="math">\(S_t\)</span> combining its cross <span class="math">\(S_c\)</span> and parallel
ulalume3@11 801 <span class="math">\(S_p\)</span> components: <span class="math">\(S_t=S_p+fS_c\)</span>. This factor is
ulalume3@11 802 mandatory only for systems acquiring <span class="math">\(S_c\)</span> and <span class="math">\(S_p\)</span>
ulalume3@11 803 and not <span class="math">\(S_t\)</span>. For systems acquiring <span class="math">\(S_c\)</span>,
ulalume3@11 804 <span class="math">\(S_p\)</span> and <span class="math">\(S_t\)</span> this factor is optional and it will
ulalume3@11 805 be used only for depolarizaton ratio calculation. Moreover only the
ulalume3@11 806 values of the array corresponding to cross polarization channels will
ulalume3@11 807 be considered; all other values will be not taken into account and
ulalume3@11 808 should be set to undefined value. In our example for the wavelength
ulalume3@11 809 532nm we have only the cross and the parallel components and not the
ulalume3@11 810 total one. So we have to give the value of this factor only in
ulalume3@11 811 correspondence of the 532nm cross polarization channel that
ulalume3@11 812 corresponds to the channel index 1. Suppose that this factor is 0.88.
ulalume3@11 813 Moreover, because we don’t have any other depolarization channels we
ulalume3@11 814 have also to set all other values of the array to undefined value.</p>
ulalume3@11 815 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Depolarization_Factor</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span><span class="mf">0.88</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span>
ulalume3@11 816 </pre></div>
ulalume3@11 817 </div>
ulalume3@11 818 </dd>
ulalume3@11 819 <dt>LR_Input(channels)</dt>
ulalume3@11 820 <dd><p class="first">This array is required only for lidar channels for which elastic
ulalume3@11 821 backscatter retrieval has to be performed. It defines the lidar ratio
ulalume3@11 822 to be used within this retrieval. Two options are available:</p>
ulalume3@11 823 <ol class="arabic simple">
ulalume3@11 824 <li>The user can submit a lidar ratio profile. In this case the value
ulalume3@11 825 of this variable has to be 0.</li>
ulalume3@11 826 <li>A fixed value of lidar ratio can be used. In this case the value
ulalume3@11 827 of this variable has to be 1.</li>
ulalume3@11 828 </ol>
ulalume3@11 829 <p>If we decide to use the option 1. a lidar ratio file has to be
ulalume3@11 830 submitted separately in NetCDF format (the structure of this file is
ulalume3@11 831 summarized in table tab:lr). If we decide to use the option 2. the
ulalume3@11 832 fixed value of lidar ratio will be taken from SCC_DB. In our example
ulalume3@11 833 we have to give a value of this array only for the 1064nm lidar
ulalume3@11 834 channel because for the 532nm we will be able to retrieve a Raman
ulalume3@11 835 backscatter coefficient. In case we want to use the fixed value
ulalume3@11 836 stored in SCC_DB we have to set:</p>
ulalume3@11 837 <div class="last highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span>
ulalume3@11 838 </pre></div>
ulalume3@11 839 </div>
ulalume3@11 840 </dd>
ulalume3@11 841 <dt>DAQ_Range(channels)</dt>
ulalume3@11 842 <dd><p class="first">This array is required only if one or more lidar signals are
ulalume3@11 843 acquired in analog mode. It gives the analog scale in mV used to
ulalume3@11 844 acquire the analog signals. In our example we have only the 1064nm
ulalume3@11 845 channel acquired in analog mode. If we have used a 100mV analog scale
ulalume3@11 846 to acquire this channel we have to set:</p>
ulalume3@11 847 <div class="last highlight-python"><div class="highlight"><pre><span class="n">DAQ_Range</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span>
ulalume3@11 848 </pre></div>
ulalume3@11 849 </div>
ulalume3@11 850 </dd>
ulalume3@11 851 </dl>
ulalume3@11 852 </div>
ulalume3@11 853 <div class="section" id="global-attributes">
ulalume3@11 854 <h3>Global attributes<a class="headerlink" href="#global-attributes" title="Permalink to this headline">¶</a></h3>
ulalume3@11 855 <dl class="docutils">
ulalume3@11 856 <dt>Measurement_ID</dt>
ulalume3@11 857 <dd><p class="first">This mandatory global attribute defines the measurement ID
ulalume3@11 858 corresponding to the actual lidar measurement. It is a string
ulalume3@11 859 composed by 12 characters. The first 8 characters give the start date
ulalume3@11 860 of measurement in the format YYYYMMDD. The next 2 characters give the
ulalume3@11 861 Earlinet call-sign of the station. The last 2 characters are used to
ulalume3@11 862 distinguish between different time-series within the same date. In
ulalume3@11 863 our example we have to set:</p>
ulalume3@11 864 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Measurement_ID</span><span class="o">=</span> <span class="s">&quot;20090130cc00&quot;</span> <span class="p">;</span>
ulalume3@11 865 </pre></div>
ulalume3@11 866 </div>
ulalume3@11 867 </dd>
ulalume3@11 868 <dt>RawData_Start_Date</dt>
ulalume3@11 869 <dd><p class="first">This mandatory global attribute defines the start date of lidar
ulalume3@11 870 measurements in the format YYYYMMDD. In our case we have:</p>
ulalume3@11 871 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Date</span> <span class="o">=</span> <span class="s">&quot;20090130&quot;</span> <span class="p">;</span>
ulalume3@11 872 </pre></div>
ulalume3@11 873 </div>
ulalume3@11 874 </dd>
ulalume3@11 875 <dt>RawData_Start_Time_UT</dt>
ulalume3@11 876 <dd><p class="first">This mandatory global attribute defines the UT start time of lidar
ulalume3@11 877 measurements in the format HHMMSS. In our case we have:</p>
ulalume3@11 878 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Time_UT</span> <span class="o">=</span> <span class="s">&quot;000001&quot;</span> <span class="p">;</span>
ulalume3@11 879 </pre></div>
ulalume3@11 880 </div>
ulalume3@11 881 </dd>
ulalume3@11 882 <dt>RawData_Stop_Time_UT``</dt>
ulalume3@11 883 <dd><p class="first">This mandatory global attribute defines the UT stop time of lidar
ulalume3@11 884 measurements in the format HHMMSS. In our case we have:</p>
ulalume3@11 885 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Stop_Time_UT</span> <span class="o">=</span> <span class="s">&quot;000501&quot;</span> <span class="p">;</span>
ulalume3@11 886 </pre></div>
ulalume3@11 887 </div>
ulalume3@11 888 </dd>
ulalume3@11 889 <dt>RawBck_Start_Date</dt>
ulalume3@11 890 <dd><p class="first">This optional global attribute defines the start date of dark
ulalume3@11 891 measurements in the format YYYYMMDD. In our case we have:</p>
ulalume3@11 892 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Date</span> <span class="o">=</span> <span class="s">&quot;20090129&quot;</span> <span class="p">;</span>
ulalume3@11 893 </pre></div>
ulalume3@11 894 </div>
ulalume3@11 895 </dd>
ulalume3@11 896 <dt>RawBck_Start_Time_UT</dt>
ulalume3@11 897 <dd><p class="first">This optional global attribute defines the UT start time of dark
ulalume3@11 898 measurements in the format HHMMSS. In our case we have:</p>
ulalume3@11 899 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Time_UT</span> <span class="o">=</span> <span class="s">&quot;235001&quot;</span> <span class="p">;</span>
ulalume3@11 900 </pre></div>
ulalume3@11 901 </div>
ulalume3@11 902 </dd>
ulalume3@11 903 <dt>RawBck_Stop_Time_UT</dt>
ulalume3@11 904 <dd><p class="first">This optional global attribute defines the UT stop time of dark
ulalume3@11 905 measurements in the format HHMMSS. In our case we have:</p>
ulalume3@11 906 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Stop_Time_UT</span> <span class="o">=</span> <span class="s">&quot;235301&quot;</span> <span class="p">;</span>
ulalume3@11 907 </pre></div>
ulalume3@11 908 </div>
ulalume3@11 909 </dd>
ulalume3@11 910 </dl>
ulalume3@11 911 </div>
ulalume3@11 912 </div>
ulalume3@11 913 <div class="section" id="example-of-file-cdl-format">
ulalume3@11 914 <h2>Example of file (CDL format)<a class="headerlink" href="#example-of-file-cdl-format" title="Permalink to this headline">¶</a></h2>
ulalume3@11 915 <p>To summarize we have the following NetCDF Raw Lidar Data file (in CDL
ulalume3@11 916 format):</p>
ulalume3@11 917 <div class="highlight-python"><pre>dimensions:
ulalume3@11 918 points = 5000 ;
ulalume3@11 919 channels = 4 ;
ulalume3@11 920 time = UNLIMITED ; // (10 currently)
ulalume3@11 921 nb_of_time_scales = 2 ;
ulalume3@11 922 scan_angles = 1 ;
ulalume3@11 923 time_bck = 6 ;
ulalume3@11 924 variables:
ulalume3@11 925 int channel_ID(channels) ;
ulalume3@11 926 int Laser_Repetition_Rate(channels) ;
ulalume3@11 927 double Laser_Pointing_Angle(scan_angles) ;
ulalume3@11 928 int ID_Range(channels) ;
ulalume3@11 929 int Scattering_Mechanism(channels) ;
ulalume3@11 930 double Emitted_Wavelength(channels) ;
ulalume3@11 931 double Detected_Wavelength(channels) ;
ulalume3@11 932 double Raw_Data_Range_Resolution(channels) ;
ulalume3@11 933 int Background_Mode(channels) ;
ulalume3@11 934 double Background_Low(channels) ;
ulalume3@11 935 double Background_High(channels) ;
ulalume3@11 936 int Molecular_Calc ;
ulalume3@11 937 double Pressure_at_Lidar_Station ;
ulalume3@11 938 double Temperature_at_Lidar_Station ;
ulalume3@11 939 int id_timescale(channels) ;
ulalume3@11 940 double Dead_Time(channels) ;
ulalume3@11 941 int Dead_Time_Corr_Type(channels) ;
ulalume3@11 942 int Acquisition_Mode(channels) ;
ulalume3@11 943 double Trigger_Delay(channels) ;
ulalume3@11 944 int LR_Input(channels) ;
ulalume3@11 945 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
ulalume3@11 946 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
ulalume3@11 947 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
ulalume3@11 948 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
ulalume3@11 949 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
ulalume3@11 950 int Laser_Shots(time, channels) ;
ulalume3@11 951 double Raw_Lidar_Data(time, channels, points) ;
ulalume3@11 952 double Background_Profile(time_bck, channels, points) ;
ulalume3@11 953 double DAQ_Range(channels) ;
ulalume3@11 954
ulalume3@11 955 // global attributes:
ulalume3@11 956 :Measurement_ID = "20090130cc00" ;
ulalume3@11 957 :RawData_Start_Date = "20090130" ;
ulalume3@11 958 :RawData_Start_Time_UT = "000001" ;
ulalume3@11 959 :RawData_Stop_Time_UT = "000501" ;
ulalume3@11 960 :RawBck_Start_Date = "20090129" ;
ulalume3@11 961 :RawBck_Start_Time_UT = "235001" ;
ulalume3@11 962 :RawBck_Stop_Time_UT = "235301" ;
ulalume3@11 963
ulalume3@11 964 data:
ulalume3@11 965
ulalume3@11 966 channel_ID = 7, 5, 6, 8 ;
ulalume3@11 967
ulalume3@11 968 Laser_Repetition_Rate = 50, 50, 50, 50 ;
ulalume3@11 969
ulalume3@11 970 Laser_Pointing_Angle = 5 ;
ulalume3@11 971
ulalume3@11 972 ID_Range = 1, 1, 1, 1 ;
ulalume3@11 973
ulalume3@11 974 Scattering_Mechanism = 0, 2, 3, 1 ;
ulalume3@11 975
ulalume3@11 976 Emitted_Wavelength = 1064, 532, 532, 532 ;
ulalume3@11 977
ulalume3@11 978 Detected_Wavelength = 1064, 532, 532, 607 ;
ulalume3@11 979
ulalume3@11 980 Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ;
ulalume3@11 981
ulalume3@11 982 Background_Mode = 0, 1, 1, 1 ;
ulalume3@11 983
ulalume3@11 984 Background_Low = 0, 30000, 30000, 30000 ;
ulalume3@11 985
ulalume3@11 986 Background_High = 500, 50000, 50000, 50000 ;
ulalume3@11 987
ulalume3@11 988 Molecular_Calc = 0 ;
ulalume3@11 989
ulalume3@11 990 Pressure_at_Lidar_Station = 1010 ;
ulalume3@11 991
ulalume3@11 992 Temperature_at_Lidar_Station = 19.8 ;
ulalume3@11 993
ulalume3@11 994 id_timescale = 1, 0, 0, 0 ;
ulalume3@11 995
ulalume3@11 996 Dead_Time = _, 10, 10, 10 ;
ulalume3@11 997
ulalume3@11 998 Dead_Time_Corr_Type = _, 0, 0, 0 ;
ulalume3@11 999
ulalume3@11 1000 Acquisition_Mode = 0, 1, 1, 1 ;
ulalume3@11 1001
ulalume3@11 1002 Trigger_Delay = 50, 0, 0, 0 ;
ulalume3@11 1003
ulalume3@11 1004 LR_Input = 1,_,_,_ ;
ulalume3@11 1005
ulalume3@11 1006 DAQ_Range = 100,_,_,_ ;
ulalume3@11 1007
ulalume3@11 1008 Laser_Pointing_Angle_of_Profiles =
ulalume3@11 1009 0, 0,
ulalume3@11 1010 0, 0,
ulalume3@11 1011 0, 0,
ulalume3@11 1012 0, 0,
ulalume3@11 1013 0, 0,
ulalume3@11 1014 _, 0,
ulalume3@11 1015 _, 0,
ulalume3@11 1016 _, 0,
ulalume3@11 1017 _, 0,
ulalume3@11 1018 _, 0 ;
ulalume3@11 1019
ulalume3@11 1020
ulalume3@11 1021 Raw_Data_Start_Time =
ulalume3@11 1022 0, 0,
ulalume3@11 1023 60, 30,
ulalume3@11 1024 120, 60,
ulalume3@11 1025 180, 90,
ulalume3@11 1026 240, 120,
ulalume3@11 1027 _, 150,
ulalume3@11 1028 _, 180,
ulalume3@11 1029 _, 210,
ulalume3@11 1030 _, 240,
ulalume3@11 1031 _, 270 ;
ulalume3@11 1032
ulalume3@11 1033 Raw_Data_Stop_Time =
ulalume3@11 1034 60, 30,
ulalume3@11 1035 120, 60,
ulalume3@11 1036 180, 90,
ulalume3@11 1037 240, 120,
ulalume3@11 1038 300, 150,
ulalume3@11 1039 _, 180,
ulalume3@11 1040 _, 210,
ulalume3@11 1041 _, 240,
ulalume3@11 1042 _, 270,
ulalume3@11 1043 _, 300 ;
ulalume3@11 1044
ulalume3@11 1045
ulalume3@11 1046 Raw_Bck_Start_Time =
ulalume3@11 1047 0, 0,
ulalume3@11 1048 60, 30,
ulalume3@11 1049 120, 60,
ulalume3@11 1050 _, 90,
ulalume3@11 1051 _, 120,
ulalume3@11 1052 _, 150;
ulalume3@11 1053
ulalume3@11 1054
ulalume3@11 1055 Raw_Bck_Stop_Time =
ulalume3@11 1056 60, 30,
ulalume3@11 1057 120, 60,
ulalume3@11 1058 180, 90,
ulalume3@11 1059 _, 120,
ulalume3@11 1060 _, 150,
ulalume3@11 1061 _, 180 ;
ulalume3@11 1062
ulalume3@11 1063
ulalume3@11 1064 Laser_Shots =
ulalume3@11 1065 1500, 3000, 3000, 3000,
ulalume3@11 1066 1500, 3000, 3000, 3000,
ulalume3@11 1067 1500, 3000, 3000, 3000,
ulalume3@11 1068 1500, 3000, 3000, 3000,
ulalume3@11 1069 1500, 3000, 3000, 3000,
ulalume3@11 1070 1500, _, _, _,
ulalume3@11 1071 1500, _, _, _,
ulalume3@11 1072 1500, _, _, _,
ulalume3@11 1073 1500, _, _, _,
ulalume3@11 1074 1500, _, _, _ ;
ulalume3@11 1075
ulalume3@11 1076
ulalume3@11 1077 Raw_Lidar_Data = ...
ulalume3@11 1078
ulalume3@11 1079 Background_Profile = ...</pre>
ulalume3@11 1080 </div>
ulalume3@11 1081 <p>Please keep in mind that in case you submit a file like the previous one
ulalume3@11 1082 all the parameters present in it will be used by the SCC even if you
ulalume3@11 1083 have different values for the same parameters within the SCC_DB. If you
ulalume3@11 1084 want to use the values already stored in SCC_DB (this should be the
ulalume3@11 1085 usual way to use SCC) the Raw Lidar Data input file has to be
ulalume3@11 1086 modified as follows:</p>
ulalume3@11 1087 <div class="highlight-python"><pre>dimensions:
ulalume3@11 1088 points = 5000 ;
ulalume3@11 1089 channels = 4 ;
ulalume3@11 1090 time = UNLIMITED ; // (10 currently)
ulalume3@11 1091 nb_of_time_scales = 2 ;
ulalume3@11 1092 scan_angles = 1 ;
ulalume3@11 1093 time_bck = 6 ;
ulalume3@11 1094 variables:
ulalume3@11 1095 int channel_ID(channels) ;
ulalume3@11 1096 double Laser_Pointing_Angle(scan_angles) ;
ulalume3@11 1097 double Background_Low(channels) ;
ulalume3@11 1098 double Background_High(channels) ;
ulalume3@11 1099 int Molecular_Calc ;
ulalume3@11 1100 double Pressure_at_Lidar_Station ;
ulalume3@11 1101 double Temperature_at_Lidar_Station ;
ulalume3@11 1102 int id_timescale(channels) ;
ulalume3@11 1103 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
ulalume3@11 1104 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
ulalume3@11 1105 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
ulalume3@11 1106 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
ulalume3@11 1107 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
ulalume3@11 1108 int LR_Input(channels) ;
ulalume3@11 1109 int Laser_Shots(time, channels) ;
ulalume3@11 1110 double Raw_Lidar_Data(time, channels, points) ;
ulalume3@11 1111 double Background_Profile(time_bck, channels, points) ;
ulalume3@11 1112 double DAQ_Range(channels) ;
ulalume3@11 1113
ulalume3@11 1114 // global attributes:
ulalume3@11 1115 :Measurement_ID = "20090130cc00" ;
ulalume3@11 1116 :RawData_Start_Date = "20090130" ;
ulalume3@11 1117 :RawData_Start_Time_UT = "000001" ;
ulalume3@11 1118 :RawData_Stop_Time_UT = "000501" ;
ulalume3@11 1119 :RawBck_Start_Date = "20090129" ;
ulalume3@11 1120 :RawBck_Start_Time_UT = "235001" ;
ulalume3@11 1121 :RawBck_Stop_Time_UT = "235301" ;
ulalume3@11 1122
ulalume3@11 1123 data:
ulalume3@11 1124
ulalume3@11 1125 channel_ID = 7, 5, 6, 8 ;
ulalume3@11 1126
ulalume3@11 1127 Laser_Pointing_Angle = 5 ;
ulalume3@11 1128
ulalume3@11 1129 Background_Low = 0, 30000, 30000, 30000 ;
ulalume3@11 1130
ulalume3@11 1131 Background_High = 500, 50000, 50000, 50000 ;
ulalume3@11 1132
ulalume3@11 1133 Molecular_Calc = 0 ;
ulalume3@11 1134
ulalume3@11 1135 Pressure_at_Lidar_Station = 1010 ;
ulalume3@11 1136
ulalume3@11 1137 Temperature_at_Lidar_Station = 19.8 ;
ulalume3@11 1138
ulalume3@11 1139 id_timescale = 1, 0, 0, 0 ;
ulalume3@11 1140
ulalume3@11 1141 LR_Input = 1,_,_,_ ;
ulalume3@11 1142
ulalume3@11 1143 DAQ_Range = 100,_,_,_ ;
ulalume3@11 1144
ulalume3@11 1145 Laser_Pointing_Angle_of_Profiles =
ulalume3@11 1146 0, 0,
ulalume3@11 1147 0, 0,
ulalume3@11 1148 0, 0,
ulalume3@11 1149 0, 0,
ulalume3@11 1150 0, 0,
ulalume3@11 1151 _, 0,
ulalume3@11 1152 _, 0,
ulalume3@11 1153 _, 0,
ulalume3@11 1154 _, 0,
ulalume3@11 1155 _, 0 ;
ulalume3@11 1156
ulalume3@11 1157
ulalume3@11 1158 Raw_Data_Start_Time =
ulalume3@11 1159 0, 0,
ulalume3@11 1160 60, 30,
ulalume3@11 1161 120, 60,
ulalume3@11 1162 180, 90,
ulalume3@11 1163 240, 120,
ulalume3@11 1164 _, 150,
ulalume3@11 1165 _, 180,
ulalume3@11 1166 _, 210,
ulalume3@11 1167 _, 240,
ulalume3@11 1168 _, 270 ;
ulalume3@11 1169
ulalume3@11 1170 Raw_Data_Stop_Time =
ulalume3@11 1171 60, 30,
ulalume3@11 1172 120, 60,
ulalume3@11 1173 180, 90,
ulalume3@11 1174 240, 120,
ulalume3@11 1175 300, 150,
ulalume3@11 1176 _, 180,
ulalume3@11 1177 _, 210,
ulalume3@11 1178 _, 240,
ulalume3@11 1179 _, 270,
ulalume3@11 1180 _, 300 ;
ulalume3@11 1181
ulalume3@11 1182
ulalume3@11 1183 Raw_Bck_Start_Time =
ulalume3@11 1184 0, 0,
ulalume3@11 1185 60, 30,
ulalume3@11 1186 120, 60,
ulalume3@11 1187 _, 90,
ulalume3@11 1188 _, 120,
ulalume3@11 1189 _, 150;
ulalume3@11 1190
ulalume3@11 1191
ulalume3@11 1192 Raw_Bck_Stop_Time =
ulalume3@11 1193 60, 30,
ulalume3@11 1194 120, 60,
ulalume3@11 1195 180, 90,
ulalume3@11 1196 _, 120,
ulalume3@11 1197 _, 150,
ulalume3@11 1198 _, 180 ;
ulalume3@11 1199
ulalume3@11 1200
ulalume3@11 1201 Laser_Shots =
ulalume3@11 1202 1500, 3000, 3000, 3000,
ulalume3@11 1203 1500, 3000, 3000, 3000,
ulalume3@11 1204 1500, 3000, 3000, 3000,
ulalume3@11 1205 1500, 3000, 3000, 3000,
ulalume3@11 1206 1500, 3000, 3000, 3000,
ulalume3@11 1207 1500, _, _, _,
ulalume3@11 1208 1500, _, _, _,
ulalume3@11 1209 1500, _, _, _,
ulalume3@11 1210 1500, _, _, _,
ulalume3@11 1211 1500, _, _, _ ;
ulalume3@11 1212
ulalume3@11 1213
ulalume3@11 1214 Raw_Lidar_Data = ...
ulalume3@11 1215
ulalume3@11 1216 Background_Profile = ...</pre>
ulalume3@11 1217 </div>
ulalume3@11 1218 <p>This example file contains the minimum collection of mandatory
ulalume3@11 1219 information that has to be found within the Raw Lidar Data input
ulalume3@11 1220 file. If it is really necessary, the user can decide to add to these
ulalume3@11 1221 mandatory parameters any number of additional parameters considered in
ulalume3@11 1222 the previous example.</p>
ulalume3@11 1223 <p>Finally, suppose we want to make the following changes with respect to
ulalume3@11 1224 the previous example:</p>
ulalume3@11 1225 <ol class="arabic simple">
ulalume3@11 1226 <li>use a sounding file for molecular density calculation instead of “US
ulalume3@11 1227 Standar Atmosphere 1976”</li>
ulalume3@11 1228 <li>supply a lidar ratio profile to use in elastic backscatter retrieval
ulalume3@11 1229 instead of a fixed value</li>
ulalume3@11 1230 <li>provide a overlap function for overlap correction</li>
ulalume3@11 1231 </ol>
ulalume3@11 1232 <p>In this case we have to generate the following NetCDF additional files:</p>
ulalume3@11 1233 <dl class="docutils">
ulalume3@11 1234 <dt>rs_20090130cc00.nc</dt>
ulalume3@11 1235 <dd>The name of Sounding Data file has to be computed as follows:
ulalume3@11 1236 <tt class="docutils literal"><span class="pre">&quot;rs_&quot;``+``Measurement_ID</span></tt>
ulalume3@11 1237 The structure of this file is summarized in table tab:sounding.</dd>
ulalume3@11 1238 <dt>ov_20090130cc00.nc</dt>
ulalume3@11 1239 <dd>The name of Overlap file has to be computed as follows:
ulalume3@11 1240 <tt class="docutils literal"><span class="pre">&quot;ov_&quot;``+``Measurement_ID</span></tt>
ulalume3@11 1241 The structure of this file is summarized in table tab:overlap.</dd>
ulalume3@11 1242 <dt>lr_20090130cc00.nc</dt>
ulalume3@11 1243 <dd>The name of Lidar Ratio file has to be computed as follows:
ulalume3@11 1244 <tt class="docutils literal"><span class="pre">&quot;lr_&quot;``+``Measurement_ID</span></tt>
ulalume3@11 1245 The structure of this file is summarized in table tab:lr.</dd>
ulalume3@11 1246 </dl>
ulalume3@11 1247 <p>Moreover we need to apply the following changes to the Raw Lidar Data
ulalume3@11 1248 input file:</p>
ulalume3@11 1249 <ol class="arabic">
ulalume3@11 1250 <li><p class="first">Change the value of the variable <tt class="docutils literal"><span class="pre">Molecular_Calc</span></tt> as follows:</p>
ulalume3@11 1251 <div class="highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">1</span> <span class="p">;</span>
ulalume3@11 1252 </pre></div>
ulalume3@11 1253 </div>
ulalume3@11 1254 <p>Of course the variables <tt class="docutils literal"><span class="pre">Pressure_at_Lidar_Station</span></tt> and
ulalume3@11 1255 <tt class="docutils literal"><span class="pre">Temperature_at_Lidar_Station</span></tt> are not necessary anymore.</p>
ulalume3@11 1256 </li>
ulalume3@11 1257 <li><p class="first">Change the values of the array <tt class="docutils literal"><span class="pre">LR_Input</span></tt> as follows:</p>
ulalume3@11 1258 <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span>
ulalume3@11 1259 </pre></div>
ulalume3@11 1260 </div>
ulalume3@11 1261 </li>
ulalume3@11 1262 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Sounding_File_Name</span></tt></p>
ulalume3@11 1263 <div class="highlight-python"><div class="highlight"><pre><span class="n">Sounding_File_Name</span> <span class="o">=</span> <span class="s">&quot;rs_20090130cc00.nc&quot;</span> <span class="p">;</span>
ulalume3@11 1264 </pre></div>
ulalume3@11 1265 </div>
ulalume3@11 1266 </li>
ulalume3@11 1267 </ol>
ulalume3@11 1268 <ol class="arabic" start="5">
ulalume3@11 1269 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">LR_File_Name</span></tt></p>
ulalume3@11 1270 <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_File_Name</span> <span class="o">=</span> <span class="s">&quot;lr_20090130cc00.nc&quot;</span> <span class="p">;</span>
ulalume3@11 1271 </pre></div>
ulalume3@11 1272 </div>
ulalume3@11 1273 </li>
ulalume3@11 1274 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Overlap_File_Name</span></tt></p>
ulalume3@11 1275 <div class="highlight-python"><div class="highlight"><pre><span class="n">Overlap_File_Name</span> <span class="o">=</span> <span class="s">&quot;ov_20090130cc00.nc&quot;</span> <span class="p">;</span>
ulalume3@11 1276 </pre></div>
ulalume3@11 1277 </div>
ulalume3@11 1278 </li>
ulalume3@11 1279 </ol>
ulalume3@11 1280 </div>
ulalume3@11 1281 </div>
ulalume3@11 1282
ulalume3@11 1283
ulalume3@11 1284 </div>
ulalume3@11 1285 </div>
ulalume3@11 1286 </div>
ulalume3@11 1287 <div class="sphinxsidebar">
ulalume3@11 1288 <div class="sphinxsidebarwrapper">
ulalume3@11 1289 <h3><a href="index.html">Table Of Contents</a></h3>
ulalume3@11 1290 <ul>
ulalume3@11 1291 <li><a class="reference internal" href="#">The SCC netCDF file format</a><ul>
ulalume3@11 1292 <li><a class="reference internal" href="#rationale">Rationale</a></li>
ulalume3@11 1293 <li><a class="reference internal" href="#example">Example</a><ul>
ulalume3@11 1294 <li><a class="reference internal" href="#dimensions">Dimensions</a></li>
ulalume3@11 1295 <li><a class="reference internal" href="#variables">Variables</a></li>
ulalume3@11 1296 <li><a class="reference internal" href="#global-attributes">Global attributes</a></li>
ulalume3@11 1297 </ul>
ulalume3@11 1298 </li>
ulalume3@11 1299 <li><a class="reference internal" href="#example-of-file-cdl-format">Example of file (CDL format)</a></li>
ulalume3@11 1300 </ul>
ulalume3@11 1301 </li>
ulalume3@11 1302 </ul>
ulalume3@11 1303
ulalume3@11 1304 <h4>Previous topic</h4>
ulalume3@11 1305 <p class="topless"><a href="details/viewing_measurements.html"
ulalume3@11 1306 title="previous chapter">View processing results</a></p>
ulalume3@11 1307 <h4>Next topic</h4>
ulalume3@11 1308 <p class="topless"><a href="user_management.html"
ulalume3@11 1309 title="next chapter">User management</a></p>
ulalume3@11 1310 <h3>This Page</h3>
ulalume3@11 1311 <ul class="this-page-menu">
ulalume3@11 1312 <li><a href="_sources/netcdf_file.txt"
ulalume3@11 1313 rel="nofollow">Show Source</a></li>
ulalume3@11 1314 </ul>
ulalume3@11 1315 <div id="searchbox" style="display: none">
ulalume3@11 1316 <h3>Quick search</h3>
ulalume3@11 1317 <form class="search" action="search.html" method="get">
ulalume3@11 1318 <input type="text" name="q" />
ulalume3@11 1319 <input type="submit" value="Go" />
ulalume3@11 1320 <input type="hidden" name="check_keywords" value="yes" />
ulalume3@11 1321 <input type="hidden" name="area" value="default" />
ulalume3@11 1322 </form>
ulalume3@11 1323 <p class="searchtip" style="font-size: 90%">
ulalume3@11 1324 Enter search terms or a module, class or function name.
ulalume3@11 1325 </p>
ulalume3@11 1326 </div>
ulalume3@11 1327 <script type="text/javascript">$('#searchbox').show(0);</script>
ulalume3@11 1328 </div>
ulalume3@11 1329 </div>
ulalume3@11 1330 <div class="clearer"></div>
ulalume3@11 1331 </div>
ulalume3@11 1332 <div class="related">
ulalume3@11 1333 <h3>Navigation</h3>
ulalume3@11 1334 <ul>
ulalume3@11 1335 <li class="right" style="margin-right: 10px">
ulalume3@11 1336 <a href="genindex.html" title="General Index"
ulalume3@11 1337 >index</a></li>
ulalume3@11 1338 <li class="right" >
ulalume3@11 1339 <a href="user_management.html" title="User management"
ulalume3@11 1340 >next</a> |</li>
ulalume3@11 1341 <li class="right" >
ulalume3@11 1342 <a href="details/viewing_measurements.html" title="View processing results"
ulalume3@11 1343 >previous</a> |</li>
ulalume3@11 1344 <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> &raquo;</li>
ulalume3@11 1345 </ul>
ulalume3@11 1346 </div>
ulalume3@11 1347 <div class="footer">
ulalume3@11 1348 &copy; Copyright 2012, SCC team.
ulalume3@11 1349 Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.2.
ulalume3@11 1350 </div>
ulalume3@11 1351 </body>
ulalume3@11 1352 </html>

mercurial