|
1 |
|
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" |
|
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
|
4 |
|
5 |
|
6 <html xmlns="http://www.w3.org/1999/xhtml"> |
|
7 <head> |
|
8 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> |
|
9 |
|
10 <title>The SCC netCDF file format — Single Calculus Chain 0.2 documentation</title> |
|
11 |
|
12 <link rel="stylesheet" href="_static/nature.css" type="text/css" /> |
|
13 <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> |
|
14 |
|
15 <script type="text/javascript"> |
|
16 var DOCUMENTATION_OPTIONS = { |
|
17 URL_ROOT: '', |
|
18 VERSION: '0.2', |
|
19 COLLAPSE_INDEX: false, |
|
20 FILE_SUFFIX: '.html', |
|
21 HAS_SOURCE: true |
|
22 }; |
|
23 </script> |
|
24 <script type="text/javascript" src="_static/jquery.js"></script> |
|
25 <script type="text/javascript" src="_static/underscore.js"></script> |
|
26 <script type="text/javascript" src="_static/doctools.js"></script> |
|
27 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
|
28 <link rel="top" title="Single Calculus Chain 0.2 documentation" href="index.html" /> |
|
29 <link rel="next" title="User management" href="user_management.html" /> |
|
30 <link rel="prev" title="View processing results" href="details/viewing_measurements.html" /> |
|
31 </head> |
|
32 <body> |
|
33 <div class="related"> |
|
34 <h3>Navigation</h3> |
|
35 <ul> |
|
36 <li class="right" style="margin-right: 10px"> |
|
37 <a href="genindex.html" title="General Index" |
|
38 accesskey="I">index</a></li> |
|
39 <li class="right" > |
|
40 <a href="user_management.html" title="User management" |
|
41 accesskey="N">next</a> |</li> |
|
42 <li class="right" > |
|
43 <a href="details/viewing_measurements.html" title="View processing results" |
|
44 accesskey="P">previous</a> |</li> |
|
45 <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> |
|
46 </ul> |
|
47 </div> |
|
48 |
|
49 <div class="document"> |
|
50 <div class="documentwrapper"> |
|
51 <div class="bodywrapper"> |
|
52 <div class="body"> |
|
53 |
|
54 <div class="section" id="the-scc-netcdf-file-format"> |
|
55 <h1>The SCC netCDF file format<a class="headerlink" href="#the-scc-netcdf-file-format" title="Permalink to this headline">¶</a></h1> |
|
56 <div class="section" id="rationale"> |
|
57 <h2>Rationale<a class="headerlink" href="#rationale" title="Permalink to this headline">¶</a></h2> |
|
58 <p>The Single Calculus Chain (SCC) is composed by two different modules:</p> |
|
59 <ul class="simple"> |
|
60 <li>pre-processing module ( scc_preprocessing)</li> |
|
61 <li>optical processing module ( ELDA)</li> |
|
62 </ul> |
|
63 <p>To perfom aerosol optical retrievals the SCC needs not only the raw |
|
64 lidar data but also a certain number of parameters to use in both |
|
65 pre-processing and optical processing stages. The SCC gets these |
|
66 parameters looking at two different locations:</p> |
|
67 <ul class="simple"> |
|
68 <li>Single Calculus Chain relational database (SCC_DB)</li> |
|
69 <li>Input files</li> |
|
70 </ul> |
|
71 <p>There are some paramenters that can be found only in the input files |
|
72 (those ones changing from measurement to measurement), others that can |
|
73 be found only in the SCC_DB and other ones that can be found in both |
|
74 these locations. In the last case, if a particular parameter is needed, |
|
75 the SCC will search first in the input files and then in SCC_DB. If the |
|
76 parameter is found in the input files the SCC will keep it without |
|
77 looking into SCC_DB.</p> |
|
78 <p>The input files have to be submitted to the SCC in NetCDF format. At the |
|
79 present the SCC can handle four different types of input files:</p> |
|
80 <ol class="arabic simple"> |
|
81 <li>Raw Lidar Data</li> |
|
82 <li>Sounding Data</li> |
|
83 <li>Overlap</li> |
|
84 <li>Lidar Ratio</li> |
|
85 </ol> |
|
86 <p>As already mentioned, the Raw Lidar Data file contains not only the |
|
87 raw lidar data but also other parameters to use to perform the |
|
88 pre-processing and optical processing. The Sounding Data file |
|
89 contains the data coming from a correlative radiosounding and it is used |
|
90 by the SCC for molecular density calculation. The Overlap file |
|
91 contains the measured overlap function. The Lidar Ratio file contains |
|
92 a lidar ratio profile to use in elastic backscatter retrievals. The |
|
93 Raw Lidar Data file is of course mandatory and the Sounding Data, |
|
94 Overlap and Lidar Ratio files are optional. If Sounding Data file |
|
95 is not submitted by the user, the molecular density will be calculated |
|
96 by the SCC using the “US Standard Atmosphere 1976”. If the Overlap |
|
97 file is not submitted by the user, the SCC will get the full overlap |
|
98 height from SCC_DB and it will produce optical results starting from |
|
99 this height. If Lidar Ratio file is not submitted by the user, the |
|
100 SCC will consider a fixed value for lidar ratio got from SCC_DB.</p> |
|
101 <p>The user can decide to submit all these files or any number of them (of |
|
102 course the file Raw Lidar Data is mandatory). For example the user |
|
103 can submit together with the Raw Lidar Data file only the Sounding |
|
104 Data file or only the Overlap file.</p> |
|
105 <p>This document provides a detailed explanation about the structure of the |
|
106 NetCDF input files to use for SCC data submission. All Earlinet groups |
|
107 should read it carefully because they have to produce such kind of input |
|
108 files if they want to use the SCC for their standard lidar retrievals. |
|
109 Every comments or suggestions regarding this document can be sent to |
|
110 Giuseppe D’Amico by e-mail at <tt class="docutils literal"><span class="pre">damico@imaa.cnr.it</span></tt></p> |
|
111 <p>This document is available for downloading at <tt class="docutils literal"><span class="pre">www.earlinetasos.org</span></tt></p> |
|
112 <p>In table tab:rawdata is reported a list of dimensions, variables and |
|
113 global attributes that can be used in the NetCDF Raw Lidar Data input |
|
114 file. For each of them it is indicated:</p> |
|
115 <ul class="simple"> |
|
116 <li>The name. For the multidimensional variables also the corresponding |
|
117 dimensions are reported</li> |
|
118 <li>A description explaining the meaning</li> |
|
119 <li>The type</li> |
|
120 <li>If it is mandatory or optional</li> |
|
121 </ul> |
|
122 <p>As already mentioned, the SCC can get some parameters looking first in |
|
123 the Raw Lidar Data input file and then into SCC_DB. This means that |
|
124 to use the parameters stored in SCC_DB the optional variables or |
|
125 optional global attributes must not appear within Raw Lidar Data |
|
126 file. This is the suggested and recommended way to use the SCC. Please |
|
127 include optional parameters in the Raw Lidar Data only as an |
|
128 exception.</p> |
|
129 <p>In table tab:sounding, tab:overlap and tab:lr are reported all the |
|
130 information about the structure of Sounding Data, Overlap and |
|
131 Lidar Ratio input files respectively.</p> |
|
132 </div> |
|
133 <div class="section" id="example"> |
|
134 <h2>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h2> |
|
135 <p>Let’s now consider an example of Raw Lidar Data input file. Suppose |
|
136 we want to generate NetCDF input file corresponding to a measurement |
|
137 with the following properties:</p> |
|
138 <table border="1" class="docutils"> |
|
139 <colgroup> |
|
140 <col width="34%" /> |
|
141 <col width="66%" /> |
|
142 </colgroup> |
|
143 <tbody valign="top"> |
|
144 <tr class="row-odd"><td>Start Date</td> |
|
145 <td><span class="math">\(30^{th}\)</span> January 2009</td> |
|
146 </tr> |
|
147 <tr class="row-even"><td>Start Time UT</td> |
|
148 <td>00:00:01</td> |
|
149 </tr> |
|
150 <tr class="row-odd"><td>Stop Time UT</td> |
|
151 <td>00:05:01</td> |
|
152 </tr> |
|
153 <tr class="row-even"><td>Station Name</td> |
|
154 <td>Dummy station</td> |
|
155 </tr> |
|
156 <tr class="row-odd"><td>Earlinet call-sign</td> |
|
157 <td>cc</td> |
|
158 </tr> |
|
159 <tr class="row-even"><td>Pointing angle</td> |
|
160 <td>5 degrees with respect to the zenith</td> |
|
161 </tr> |
|
162 </tbody> |
|
163 </table> |
|
164 <p>Moreover suppose that this measurement is composed by the following |
|
165 lidar channels:</p> |
|
166 <ol class="arabic"> |
|
167 <li><p class="first">1064 lidar channel</p> |
|
168 <table border="1" class="docutils"> |
|
169 <colgroup> |
|
170 <col width="49%" /> |
|
171 <col width="51%" /> |
|
172 </colgroup> |
|
173 <tbody valign="top"> |
|
174 <tr class="row-odd"><td><p class="first last">Emission wavelength=1064nm</p> |
|
175 </td> |
|
176 <td><p class="first last">Detection wavelength=1064nm</p> |
|
177 </td> |
|
178 </tr> |
|
179 <tr class="row-even"><td><p class="first last">Time resolution=30s</p> |
|
180 </td> |
|
181 <td><p class="first last">Number of laser shots=1500</p> |
|
182 </td> |
|
183 </tr> |
|
184 <tr class="row-odd"><td><p class="first last">Number of bins=3000</p> |
|
185 </td> |
|
186 <td><p class="first last">Detection mode=analog</p> |
|
187 </td> |
|
188 </tr> |
|
189 <tr class="row-even"><td><p class="first last">Range resolution=7.5m</p> |
|
190 </td> |
|
191 <td><p class="first last">Polarization state=total</p> |
|
192 </td> |
|
193 </tr> |
|
194 </tbody> |
|
195 </table> |
|
196 </li> |
|
197 <li><p class="first">532 cross lidar channel</p> |
|
198 <table border="1" class="docutils"> |
|
199 <colgroup> |
|
200 <col width="47%" /> |
|
201 <col width="53%" /> |
|
202 </colgroup> |
|
203 <tbody valign="top"> |
|
204 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> |
|
205 </td> |
|
206 <td><p class="first last">Detection wavelength=532nm</p> |
|
207 </td> |
|
208 </tr> |
|
209 <tr class="row-even"><td><p class="first last">Time resolution=60s</p> |
|
210 </td> |
|
211 <td><p class="first last">Number of laser shots=3000</p> |
|
212 </td> |
|
213 </tr> |
|
214 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> |
|
215 </td> |
|
216 <td><p class="first last">Detection mode=photoncounting</p> |
|
217 </td> |
|
218 </tr> |
|
219 <tr class="row-even"><td><p class="first last">Range resolution=15m</p> |
|
220 </td> |
|
221 <td><p class="first last">Polarization state=cross</p> |
|
222 </td> |
|
223 </tr> |
|
224 </tbody> |
|
225 </table> |
|
226 </li> |
|
227 <li><p class="first">532 parallel lidar channel</p> |
|
228 <table border="1" class="docutils"> |
|
229 <colgroup> |
|
230 <col width="47%" /> |
|
231 <col width="53%" /> |
|
232 </colgroup> |
|
233 <tbody valign="top"> |
|
234 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> |
|
235 </td> |
|
236 <td><p class="first last">Detection wavelength=532nm</p> |
|
237 </td> |
|
238 </tr> |
|
239 <tr class="row-even"><td><p class="first last">Time resolution=60s</p> |
|
240 </td> |
|
241 <td><p class="first last">Number of laser shots=3000</p> |
|
242 </td> |
|
243 </tr> |
|
244 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> |
|
245 </td> |
|
246 <td><p class="first last">Detection mode=photoncounting</p> |
|
247 </td> |
|
248 </tr> |
|
249 <tr class="row-even"><td><p class="first last">Range resolution=15m</p> |
|
250 </td> |
|
251 <td><p class="first last">Polarization state=parallel</p> |
|
252 </td> |
|
253 </tr> |
|
254 </tbody> |
|
255 </table> |
|
256 </li> |
|
257 <li><p class="first">607 <span class="math">\(N_2\)</span> vibrational Raman channel</p> |
|
258 <table border="1" class="docutils"> |
|
259 <colgroup> |
|
260 <col width="47%" /> |
|
261 <col width="53%" /> |
|
262 </colgroup> |
|
263 <tbody valign="top"> |
|
264 <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> |
|
265 </td> |
|
266 <td><p class="first last">Detection wavelength=607nm</p> |
|
267 </td> |
|
268 </tr> |
|
269 <tr class="row-even"><td><p class="first last">Time resolution=60s</p> |
|
270 </td> |
|
271 <td><p class="first last">Number of laser shots=3000</p> |
|
272 </td> |
|
273 </tr> |
|
274 <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> |
|
275 </td> |
|
276 <td><p class="first last">Detection mode=photoncounting</p> |
|
277 </td> |
|
278 </tr> |
|
279 <tr class="row-even"><td colspan="2"><p class="first last">Range resolution=15m</p> |
|
280 </td> |
|
281 </tr> |
|
282 </tbody> |
|
283 </table> |
|
284 </li> |
|
285 </ol> |
|
286 <p>Finally let’s assume we have also performed dark measurements before the |
|
287 lidar measurements from the 23:50:01 UT up to 23:53:01 UT of |
|
288 29:math:<cite>^mathrmth</cite> January 2009.</p> |
|
289 <div class="section" id="dimensions"> |
|
290 <h3>Dimensions<a class="headerlink" href="#dimensions" title="Permalink to this headline">¶</a></h3> |
|
291 <p>Looking at table tab:rawdata we have to fix the following dimensions:</p> |
|
292 <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span> |
|
293 <span class="n">channels</span> |
|
294 <span class="n">time</span> |
|
295 <span class="n">nb_of_time_scales</span> |
|
296 <span class="n">scan_angles</span> |
|
297 <span class="n">time_bck</span> |
|
298 </pre></div> |
|
299 </div> |
|
300 <p>The dimension <tt class="docutils literal"><span class="pre">time</span></tt> is unlimited so we don’t have to fix it.</p> |
|
301 <p>We have 4 lidar channels so:</p> |
|
302 <div class="highlight-python"><div class="highlight"><pre><span class="n">channels</span><span class="o">=</span><span class="mi">4</span> |
|
303 </pre></div> |
|
304 </div> |
|
305 <p>Regarding the dimension <tt class="docutils literal"><span class="pre">points</span></tt> we have only one channel with a |
|
306 number of vertical bins equal to 3000 (the 1064nm) and all other |
|
307 channels with 5000 vertical bins. In cases like this the dimension |
|
308 <tt class="docutils literal"><span class="pre">points</span></tt> has to be fixed to the maximum number of vertical bins so:</p> |
|
309 <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span><span class="o">=</span><span class="mi">5000</span> |
|
310 </pre></div> |
|
311 </div> |
|
312 <p>Moreover only one channel (1064nm) is acquired with a time resolution of |
|
313 30 seconds, all the other channels have a time resolution of 60 seconds. |
|
314 This means that we have to define two different time scales. We have to |
|
315 set:</p> |
|
316 <div class="highlight-python"><div class="highlight"><pre><span class="n">nb_of_time_scales</span><span class="o">=</span><span class="mi">2</span> |
|
317 </pre></div> |
|
318 </div> |
|
319 <p>The measurement is performed only at one scan angle (5 degrees with |
|
320 respect to the zenith) so:</p> |
|
321 <div class="highlight-python"><div class="highlight"><pre><span class="n">scan_angles</span><span class="o">=</span><span class="mi">1</span> |
|
322 </pre></div> |
|
323 </div> |
|
324 <p>We have 3 minutes of dark measurements and two different time scales one |
|
325 with 60 seconds time resolution and the other one with 30 seconds time |
|
326 resolution. So we will have 3 different dark profiles for the channels |
|
327 acquired with the first time scale and 6 for the lidar channels acquired |
|
328 with the second time scale. We have to fix the dimension <tt class="docutils literal"><span class="pre">time_bck</span></tt> as |
|
329 the maximum between these values:</p> |
|
330 <div class="highlight-python"><div class="highlight"><pre><span class="n">time_bck</span><span class="o">=</span><span class="mi">6</span> |
|
331 </pre></div> |
|
332 </div> |
|
333 </div> |
|
334 <div class="section" id="variables"> |
|
335 <h3>Variables<a class="headerlink" href="#variables" title="Permalink to this headline">¶</a></h3> |
|
336 <p>In this section it will be explained how to fill all the possible |
|
337 variables either mandatory or optional of Raw Lidar Data input file.</p> |
|
338 <dl class="docutils"> |
|
339 <dt>Raw_Data_Start_Time(time, nb_of_time_scales)</dt> |
|
340 <dd><p class="first">This 2 dimensional mandatory array has to contain the acquisition |
|
341 start time (in seconds from the time given by the global attribute |
|
342 <tt class="docutils literal"><span class="pre">RawData_Start_Time_UT</span></tt>) of each lidar profile. In this example we |
|
343 have two different time scales: one is characterized by steps of 30 |
|
344 seconds (the 1064nm is acquired with this time scale) the other by |
|
345 steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the |
|
346 measurement start time is 00:00:01 UT and the measurement stop time |
|
347 is 00:05:01 UT. In this case we have to define:</p> |
|
348 <div class="highlight-python"><pre>Raw_Data_Start_Time = |
|
349 0, 0, |
|
350 60, 30, |
|
351 120, 60, |
|
352 180, 90, |
|
353 240, 120, |
|
354 _, 150, |
|
355 _, 180, |
|
356 _, 210, |
|
357 _, 240, |
|
358 _, 270 ;</pre> |
|
359 </div> |
|
360 <p class="last">The order used to fill this array defines the correspondence between |
|
361 the different time scales and the time scale index. In this example |
|
362 we have a time scale index of 0 for the time scale with steps of 60 |
|
363 seconds and a time scale index of 1 for the other one.</p> |
|
364 </dd> |
|
365 <dt>Raw_Data_Stop_Time(time, nb_of_time_scales)</dt> |
|
366 <dd><p class="first">The same as previous item but for the data acquisition stop time. |
|
367 Following a similar procedure we have to define:</p> |
|
368 <div class="last highlight-python"><pre>Raw_Data_Stop_Time = |
|
369 60, 30, |
|
370 120, 60, |
|
371 180, 90, |
|
372 240, 120, |
|
373 300, 150, |
|
374 _, 180, |
|
375 _, 210, |
|
376 _, 240, |
|
377 _, 270, |
|
378 _, 300 ;</pre> |
|
379 </div> |
|
380 </dd> |
|
381 <dt>Raw_Lidar_Data(time, channels, points)</dt> |
|
382 <dd><p class="first">This 3 dimensional mandatory array has to be filled with the |
|
383 time-series of raw lidar data. The photoncounting profiles have to |
|
384 submitted in counts (so as integers) while the analog ones in mV. The |
|
385 order the user chooses to fill this array defines the correspondence |
|
386 between channel index and lidar data.</p> |
|
387 <p>For example if we fill this array in such way that:</p> |
|
388 <table border="1" class="docutils"> |
|
389 <colgroup> |
|
390 <col width="38%" /> |
|
391 <col width="62%" /> |
|
392 </colgroup> |
|
393 <tbody valign="top"> |
|
394 <tr class="row-odd"><td>Raw_Lidar_Data(time,0,points</td> |
|
395 <td><span class="math">\(\rightarrow\)</span> is the time-series of 1064 nm</td> |
|
396 </tr> |
|
397 <tr class="row-even"><td>Raw_Lidar_Data(time,1,points</td> |
|
398 <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 cross</td> |
|
399 </tr> |
|
400 <tr class="row-odd"><td>Raw_Lidar_Data(time,2,points</td> |
|
401 <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 parallel</td> |
|
402 </tr> |
|
403 <tr class="row-even"><td>Raw_Lidar_Data(time,3,points</td> |
|
404 <td><span class="math">\(\rightarrow\)</span> is the time-series of 607 nm</td> |
|
405 </tr> |
|
406 </tbody> |
|
407 </table> |
|
408 <p class="last">from now on the channel index 0 is associated to the 1064 channel, |
|
409 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.</p> |
|
410 </dd> |
|
411 <dt>Raw_Bck_Start_Time(time_bck, nb_of_time_scales)</dt> |
|
412 <dd><p class="first">This 2 dimensional optional array has to contain the acquisition |
|
413 start time (in seconds from the time given by the global attribute |
|
414 <tt class="docutils literal"><span class="pre">RawBck_Start_Time_UT</span></tt>) of each dark measurements profile. |
|
415 Following the same procedure used for the variable |
|
416 <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> we have to define:</p> |
|
417 <div class="last highlight-python"><pre>Raw_Bck_Start_Time = |
|
418 0, 0, |
|
419 60, 30, |
|
420 120, 60, |
|
421 _, 90, |
|
422 _, 120, |
|
423 _, 150;</pre> |
|
424 </div> |
|
425 </dd> |
|
426 <dt>Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)</dt> |
|
427 <dd><p class="first">The same as previous item but for the dark acquisition stop time. |
|
428 Following a similar procedure we have to define:</p> |
|
429 <div class="last highlight-python"><pre>Raw_Bck_Stop_Time = |
|
430 60, 30, |
|
431 120, 60, |
|
432 180, 90, |
|
433 _, 120, |
|
434 _, 150, |
|
435 _, 180 ;</pre> |
|
436 </div> |
|
437 </dd> |
|
438 <dt>Background_Profile(time_bck, channels, points)</dt> |
|
439 <dd><p class="first">This 3 dimensional optional array has to be filled with the |
|
440 time-series of the dark measurements data. The photoncounting |
|
441 profiles have to submitted in counts (so as integers) while the |
|
442 analog ones in mV. The user has to fill this array following the same |
|
443 order used in filling the array <tt class="docutils literal"><span class="pre">Raw_Lidar_Data</span></tt>:</p> |
|
444 <table border="1" class="last docutils"> |
|
445 <colgroup> |
|
446 <col width="44%" /> |
|
447 <col width="56%" /> |
|
448 </colgroup> |
|
449 <tbody valign="top"> |
|
450 <tr class="row-odd"><td>Background_Profile(time_bck,0,points</td> |
|
451 <td><span class="math">\(\rightarrow\)</span> dark time-series at 1064 nm</td> |
|
452 </tr> |
|
453 <tr class="row-even"><td>Background_Profile(time_bck,1,points</td> |
|
454 <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 cross</td> |
|
455 </tr> |
|
456 <tr class="row-odd"><td>Background_Profile(time_bck,2,points</td> |
|
457 <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 parallel</td> |
|
458 </tr> |
|
459 <tr class="row-even"><td>Background_Profile(time_bck,3,points</td> |
|
460 <td><span class="math">\(\rightarrow\)</span> dark time-series at 607 nm</td> |
|
461 </tr> |
|
462 </tbody> |
|
463 </table> |
|
464 </dd> |
|
465 <dt>channel_ID(channels)</dt> |
|
466 <dd><p class="first">This mandatory array provides the link between the channel index |
|
467 within the Raw Lidar Data input file and the channel ID in |
|
468 SCC_DB. To fill this variable the user has to know which channel IDs |
|
469 in SCC_DB correspond to his lidar channels. For this purpose the |
|
470 SCC, in its final version will provide to the user a special tool to |
|
471 get these channel IDs through a Web interface. At the moment this |
|
472 interface is not yet available and these channel IDs will be |
|
473 communicated directly to the user by the NA5 people.</p> |
|
474 <p>Anyway to continue the example let’s suppose that the four lidar |
|
475 channels taken into account are mapped into SCC_DB with the |
|
476 following channel IDs:</p> |
|
477 <table border="1" class="docutils"> |
|
478 <colgroup> |
|
479 <col width="30%" /> |
|
480 <col width="70%" /> |
|
481 </colgroup> |
|
482 <tbody valign="top"> |
|
483 <tr class="row-odd"><td>1064 nm</td> |
|
484 <td><span class="math">\(\rightarrow\)</span> channel ID=7</td> |
|
485 </tr> |
|
486 <tr class="row-even"><td>532 cross</td> |
|
487 <td><span class="math">\(\rightarrow\)</span> channel ID=5</td> |
|
488 </tr> |
|
489 <tr class="row-odd"><td>532 parallel</td> |
|
490 <td><span class="math">\(\rightarrow\)</span> channel ID=6</td> |
|
491 </tr> |
|
492 <tr class="row-even"><td>607 nm</td> |
|
493 <td><span class="math">\(\rightarrow\)</span> channel ID=8</td> |
|
494 </tr> |
|
495 </tbody> |
|
496 </table> |
|
497 <blockquote> |
|
498 <div>In this case we have to define:</div></blockquote> |
|
499 <div class="last highlight-python"><div class="highlight"><pre><span class="n">channel_ID</span> <span class="o">=</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span> <span class="p">;</span> |
|
500 </pre></div> |
|
501 </div> |
|
502 </dd> |
|
503 <dt>id_timescale(channels)</dt> |
|
504 <dd><p class="first">This mandatory array is introduced to determine which time scale is |
|
505 used for the acquisition of each lidar channel. In particular this |
|
506 array defines the link between the channel index and the time scale |
|
507 index. In our example we have two different time scales. Filling the |
|
508 arrays <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> and <tt class="docutils literal"><span class="pre">Raw_Data_Stop_Time</span></tt> we have |
|
509 defined a time scale index of 0 for the time scale with steps of 60 |
|
510 seconds and a time scale index of 1 for the other one with steps of |
|
511 30 seconds. In this way this array has to be set as:</p> |
|
512 <div class="last highlight-python"><div class="highlight"><pre><span class="n">id_timescale</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> |
|
513 </pre></div> |
|
514 </div> |
|
515 </dd> |
|
516 <dt>Laser_Pointing_Angle(scan_angles</dt> |
|
517 <dd><p class="first">This mandatory array contains all the scan angles used in the |
|
518 measurement. In our example we have only one scan angle of 5 degrees |
|
519 with respect to the zenith, so we have to define:</p> |
|
520 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Pointing_Angle</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span> |
|
521 </pre></div> |
|
522 </div> |
|
523 </dd> |
|
524 <dt>Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)</dt> |
|
525 <dd><p class="first">This mandatory array is introduced to determine which scan angle is |
|
526 used for the acquisition of each lidar profile. In particular this |
|
527 array defines the link between the time and time scales indexes and |
|
528 the scan angle index. In our example we have a single scan angle that |
|
529 has to correspond to the scan angle index 0. So this array has to be |
|
530 defined as:</p> |
|
531 <div class="last highlight-python"><pre>Laser_Pointing_Angle_of_Profiles = |
|
532 0, 0, |
|
533 0, 0, |
|
534 0, 0, |
|
535 0, 0, |
|
536 0, 0, |
|
537 _, 0, |
|
538 _, 0, |
|
539 _, 0, |
|
540 _, 0, |
|
541 _, 0 ;</pre> |
|
542 </div> |
|
543 </dd> |
|
544 <dt>Laser_Shots(time, channels)</dt> |
|
545 <dd><p class="first">This mandatory array stores the laser shots accumulated at each time |
|
546 for each channel. In our example the number of laser shots |
|
547 accumulated is 1500 for the 1064nm channels and 3000 for all the |
|
548 other channels. Moreover the laser shots do not change with the time. |
|
549 So we have to define this array as:</p> |
|
550 <div class="last highlight-python"><pre>Laser_Shots = |
|
551 1500, 3000, 3000, 3000, |
|
552 1500, 3000, 3000, 3000, |
|
553 1500, 3000, 3000, 3000, |
|
554 1500, 3000, 3000, 3000, |
|
555 1500, 3000, 3000, 3000, |
|
556 1500, _, _, _, |
|
557 1500, _, _, _, |
|
558 1500, _, _, _, |
|
559 1500, _, _, _, |
|
560 1500, _, _, _ ;</pre> |
|
561 </div> |
|
562 </dd> |
|
563 <dt>Emitted_Wavelength(channels)</dt> |
|
564 <dd><p class="first">This optional array defines the link between the channel index and |
|
565 the emission wavelength for each lidar channel. The wavelength has to |
|
566 be expressed in nm. This information can be also taken from SCC_DB. |
|
567 In our example we have:</p> |
|
568 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Emitted_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span> <span class="p">;</span> |
|
569 </pre></div> |
|
570 </div> |
|
571 </dd> |
|
572 <dt>Detected_Wavelength(channels)</dt> |
|
573 <dd><p class="first">This optional array defines the link between the channel index and |
|
574 the detected wavelength for each lidar channel. Here detected |
|
575 wavelength means the value of center of interferential filter |
|
576 expressed in nm. This information can be also taken from SCC_DB. In |
|
577 our example we have:</p> |
|
578 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Detected_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">607</span> <span class="p">;</span> |
|
579 </pre></div> |
|
580 </div> |
|
581 </dd> |
|
582 <dt>Raw_Data_Range_Resolution(channels)</dt> |
|
583 <dd><p class="first">This optional array defines the link between the channel index and |
|
584 the raw range resolution for each channel. If the scan angle is |
|
585 different from zero this quantity is different from the vertical |
|
586 resolution. More precisely if <span class="math">\(\alpha\)</span> is the scan angle used |
|
587 and <span class="math">\(\Delta z\)</span> is the range resolution the vertical |
|
588 resolution is calculated as <span class="math">\(\Delta |
|
589 z'=\Delta z \cos\alpha\)</span>. This array has to be filled with |
|
590 <span class="math">\(\Delta z\)</span> and not with <span class="math">\(\Delta z'\)</span>. The unit is |
|
591 meters. This information can be also taken from SCC_DB. In our |
|
592 example we have:</p> |
|
593 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Raw_Data_Range_Resolution</span> <span class="o">=</span> <span class="mf">7.5</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span> <span class="p">;</span> |
|
594 </pre></div> |
|
595 </div> |
|
596 </dd> |
|
597 <dt>ID_Range(channels)</dt> |
|
598 <dd><p class="first">This optional array defines if a particular channel is configured as |
|
599 high, low or ultranear range channel. In particular a value 0 |
|
600 indicates a low range channel, a value 1 a high range channel and a |
|
601 value of 2 an ultranear range channel. If for a particular channel |
|
602 you don’t separate between high and low range channel, please set the |
|
603 corresponding value to 1. This information can be also taken from |
|
604 SCC_DB. In our case we have to set:</p> |
|
605 <div class="last highlight-python"><div class="highlight"><pre><span class="n">ID_Range</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> |
|
606 </pre></div> |
|
607 </div> |
|
608 </dd> |
|
609 <dt>Scattering_Mechanism(channels)</dt> |
|
610 <dd><p class="first">This optional array defines the scattering mechanism involved in |
|
611 each lidar channel. In particular the following values are adopted:</p> |
|
612 <table border="1" class="docutils"> |
|
613 <colgroup> |
|
614 <col width="6%" /> |
|
615 <col width="94%" /> |
|
616 </colgroup> |
|
617 <tbody valign="top"> |
|
618 <tr class="row-odd"><td>0</td> |
|
619 <td><span class="math">\(\rightarrow\)</span> Total elastic backscatter</td> |
|
620 </tr> |
|
621 <tr class="row-even"><td>1</td> |
|
622 <td><span class="math">\(\rightarrow\)</span> <span class="math">\(N_2\)</span> vibrational Raman backscatter</td> |
|
623 </tr> |
|
624 <tr class="row-odd"><td>2</td> |
|
625 <td><span class="math">\(\rightarrow\)</span> Cross polarization elastic backscatter</td> |
|
626 </tr> |
|
627 <tr class="row-even"><td>3</td> |
|
628 <td><span class="math">\(\rightarrow\)</span> Parallel polarization elastic backscatter</td> |
|
629 </tr> |
|
630 <tr class="row-odd"><td>4</td> |
|
631 <td><span class="math">\(\rightarrow\)</span> <span class="math">\(H_2O\)</span> vibrational Raman backscatter</td> |
|
632 </tr> |
|
633 <tr class="row-even"><td>5</td> |
|
634 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line close to elastic line</td> |
|
635 </tr> |
|
636 <tr class="row-odd"><td>6</td> |
|
637 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line far from elastic line</td> |
|
638 </tr> |
|
639 <tr class="row-even"><td>7</td> |
|
640 <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line close to elastic line</td> |
|
641 </tr> |
|
642 <tr class="row-odd"><td>8</td> |
|
643 <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line far from elastic line</td> |
|
644 </tr> |
|
645 <tr class="row-even"><td>9</td> |
|
646 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines close to elastic line</td> |
|
647 </tr> |
|
648 <tr class="row-odd"><td>10</td> |
|
649 <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines far from elastic line</td> |
|
650 </tr> |
|
651 </tbody> |
|
652 </table> |
|
653 <p>This information can be also taken from SCC_DB. In our example we have:</p> |
|
654 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Scattering_Mechanism</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> |
|
655 </pre></div> |
|
656 </div> |
|
657 </dd> |
|
658 <dt>Acquisition_Mode(channels)</dt> |
|
659 <dd><p class="first">This optional array defines the acquisition mode (analog or |
|
660 photoncounting) involved in each lidar channel. In particular a value |
|
661 of 0 means analog mode and 1 photoncounting mode. This information |
|
662 can be also taken from SCC_DB. In our example we have:</p> |
|
663 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Acquisition_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> |
|
664 </pre></div> |
|
665 </div> |
|
666 </dd> |
|
667 <dt>Laser_Repetition_Rate(channels)</dt> |
|
668 <dd><p class="first">This optional array defines the repetition rate in Hz used to |
|
669 acquire each lidar channel. This information can be also taken from |
|
670 SCC_DB. In our example we are supposing we have only one laser with |
|
671 a repetition rate of 50 Hz so we have to set:</p> |
|
672 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Repetition_Rate</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span> <span class="p">;</span> |
|
673 </pre></div> |
|
674 </div> |
|
675 </dd> |
|
676 <dt>Dead_Time(channels)</dt> |
|
677 <dd><p class="first">This optional array defines the dead time in ns associated to each |
|
678 lidar channel. The SCC will use the values given by this array to |
|
679 correct the photoncounting signals for dead time. Of course for |
|
680 analog signals no dead time correction will be applied (for analog |
|
681 channels the corresponding dead time values have to be set to |
|
682 undefined value). This information can be also taken from SCC_DB. In |
|
683 our example the 1064 nm channel is acquired in analog mode so the |
|
684 corresponding dead time value has to be undefined. If we suppose a |
|
685 dead time of 10 ns for all other channels we have to set:</p> |
|
686 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span> <span class="p">;</span> |
|
687 </pre></div> |
|
688 </div> |
|
689 </dd> |
|
690 <dt>Dead_Time_Corr_Type(channels</dt> |
|
691 <dd><p class="first">This optional array defines which kind of dead time correction has |
|
692 to be applied on each photoncounting channel. The SCC will correct |
|
693 the data supposing a not-paralyzable channel if a value of 0 is found |
|
694 while a paralyzable channel is supposed if a value of 1 is found. Of |
|
695 course for analog signals no dead time correction will be applied and |
|
696 so the corresponding values have to be set to undefined value. This |
|
697 information can be also taken from SCC_DB. In our example the 1064 |
|
698 nm channel is acquired in analog mode so the corresponding has to be |
|
699 undefined. If we want to consider all the photoncounting signals as |
|
700 not-paralyzable ones: we have to set:</p> |
|
701 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time_Corr_Type</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> |
|
702 </pre></div> |
|
703 </div> |
|
704 </dd> |
|
705 <dt>Trigger_Delay(channels)</dt> |
|
706 <dd><p class="first">This optional array defines the delay (in ns) of the middle of the |
|
707 first rangebin with respect to the output laser pulse for each lidar |
|
708 channel. The SCC will use the values given by this array to correct |
|
709 for trigger delay. This information can be also taken from SCC_DB. |
|
710 Let’s suppose that in our example all the photoncounting channels are |
|
711 not affected by this delay and only the analog channel at 1064nm is |
|
712 acquired with a delay of 50ns. In this case we have to set:</p> |
|
713 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Trigger_Delay</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> |
|
714 </pre></div> |
|
715 </div> |
|
716 </dd> |
|
717 <dt>Background_Mode(channels</dt> |
|
718 <dd><p class="first">This optional array defines how the atmospheric background has to be |
|
719 subtracted from the lidar channel. Two options are available for the |
|
720 calculation of atmospheric background:</p> |
|
721 <ol class="arabic simple"> |
|
722 <li>Average in the far field of lidar channel. In this case the value |
|
723 of this variable has to be 1</li> |
|
724 <li>Average within pre-trigger bins. In this case the value of this |
|
725 variable has to be 0</li> |
|
726 </ol> |
|
727 <p>This information can be also taken from SCC_DB. Let’s suppose in our |
|
728 example we use the pre-trigger for the 1064nm channel and the far |
|
729 field for all other channels. In this case we have to set:</p> |
|
730 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> |
|
731 </pre></div> |
|
732 </div> |
|
733 </dd> |
|
734 <dt>Background_Low(channels)</dt> |
|
735 <dd><p class="first">This mandatory array defines the minimum altitude (in meters) to |
|
736 consider in calculating the atmospheric background for each channel. |
|
737 In case pre-trigger mode is used the corresponding value has to be |
|
738 set to the rangebin to be used as lower limit (within pre-trigger |
|
739 region) for background calculation. In our example, if we want to |
|
740 calculate the background between 30000 and 50000 meters for all |
|
741 photoncounting channels and we want to use the first 500 pre-trigger |
|
742 bins for the background calculation for the 1064nm channel we have to |
|
743 set:</p> |
|
744 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Low</span><span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span> <span class="p">;</span> |
|
745 </pre></div> |
|
746 </div> |
|
747 </dd> |
|
748 <dt>Background_High(channels)</dt> |
|
749 <dd><p class="first">This mandatory array defines the maximum altitude (in meters) to |
|
750 consider in calculating the atmospheric background for each channel. |
|
751 In case pre-trigger mode is used the corresponding value has to be |
|
752 set to the rangebin to be used as upper limit (within pre-trigger |
|
753 region) for background calculation. In our example, if we want to |
|
754 calculate the background between 30000 and 50000 meters for all |
|
755 photoncounting channels and we want to use the first 500 pre-trigger |
|
756 bins for the background calculation for the 1064nm channel we have to |
|
757 set:</p> |
|
758 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_High</span> <span class="o">=</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span> <span class="p">;</span> |
|
759 </pre></div> |
|
760 </div> |
|
761 </dd> |
|
762 <dt>Molecular_Calc</dt> |
|
763 <dd><p class="first">This mandatory variable defines the way used by SCC to calculate the |
|
764 molecular density profile. At the moment two options are available:</p> |
|
765 <ol class="arabic simple"> |
|
766 <li>US Standard Atmosphere 1976. In this case the value of this |
|
767 variable has to be 0</li> |
|
768 <li>Radiosounding. In this case the value of this variable has to be 1</li> |
|
769 </ol> |
|
770 <p>If we decide to use the option 1. we have to provide also the |
|
771 measured pressure and temperature at lidar station level. Indeed if |
|
772 we decide to use the option 2. a radiosounding file has to be |
|
773 submitted separately in NetCDF format (the structure of this file is |
|
774 summarized in table tab:sounding). Let’s suppose we want to use the |
|
775 option 1. so:</p> |
|
776 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">0</span> <span class="p">;</span> |
|
777 </pre></div> |
|
778 </div> |
|
779 </dd> |
|
780 <dt>Pressure_at_Lidar_Station</dt> |
|
781 <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of |
|
782 the molecular density profile we have to give the pressure in hPa at |
|
783 lidar station level:</p> |
|
784 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Pressure_at_Lidar_Station</span> <span class="o">=</span> <span class="mi">1010</span> <span class="p">;</span> |
|
785 </pre></div> |
|
786 </div> |
|
787 </dd> |
|
788 <dt>Temperature_at_Lidar_Station</dt> |
|
789 <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of |
|
790 the molecular density profile we have to give the temperature in C at |
|
791 lidar station level:</p> |
|
792 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Temperature_at_Lidar_Station</span> <span class="o">=</span> <span class="mf">19.8</span> <span class="p">;</span> |
|
793 </pre></div> |
|
794 </div> |
|
795 </dd> |
|
796 <dt>Depolarization_Factor(channels)</dt> |
|
797 <dd><p class="first">This array is required only for lidar systems that use the two |
|
798 depolarization channels for the backscatter retrieval. It represents |
|
799 the factor <span class="math">\(f\)</span> to calculate the total backscatter signal |
|
800 <span class="math">\(S_t\)</span> combining its cross <span class="math">\(S_c\)</span> and parallel |
|
801 <span class="math">\(S_p\)</span> components: <span class="math">\(S_t=S_p+fS_c\)</span>. This factor is |
|
802 mandatory only for systems acquiring <span class="math">\(S_c\)</span> and <span class="math">\(S_p\)</span> |
|
803 and not <span class="math">\(S_t\)</span>. For systems acquiring <span class="math">\(S_c\)</span>, |
|
804 <span class="math">\(S_p\)</span> and <span class="math">\(S_t\)</span> this factor is optional and it will |
|
805 be used only for depolarizaton ratio calculation. Moreover only the |
|
806 values of the array corresponding to cross polarization channels will |
|
807 be considered; all other values will be not taken into account and |
|
808 should be set to undefined value. In our example for the wavelength |
|
809 532nm we have only the cross and the parallel components and not the |
|
810 total one. So we have to give the value of this factor only in |
|
811 correspondence of the 532nm cross polarization channel that |
|
812 corresponds to the channel index 1. Suppose that this factor is 0.88. |
|
813 Moreover, because we don’t have any other depolarization channels we |
|
814 have also to set all other values of the array to undefined value.</p> |
|
815 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Depolarization_Factor</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span><span class="mf">0.88</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> |
|
816 </pre></div> |
|
817 </div> |
|
818 </dd> |
|
819 <dt>LR_Input(channels)</dt> |
|
820 <dd><p class="first">This array is required only for lidar channels for which elastic |
|
821 backscatter retrieval has to be performed. It defines the lidar ratio |
|
822 to be used within this retrieval. Two options are available:</p> |
|
823 <ol class="arabic simple"> |
|
824 <li>The user can submit a lidar ratio profile. In this case the value |
|
825 of this variable has to be 0.</li> |
|
826 <li>A fixed value of lidar ratio can be used. In this case the value |
|
827 of this variable has to be 1.</li> |
|
828 </ol> |
|
829 <p>If we decide to use the option 1. a lidar ratio file has to be |
|
830 submitted separately in NetCDF format (the structure of this file is |
|
831 summarized in table tab:lr). If we decide to use the option 2. the |
|
832 fixed value of lidar ratio will be taken from SCC_DB. In our example |
|
833 we have to give a value of this array only for the 1064nm lidar |
|
834 channel because for the 532nm we will be able to retrieve a Raman |
|
835 backscatter coefficient. In case we want to use the fixed value |
|
836 stored in SCC_DB we have to set:</p> |
|
837 <div class="last highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> |
|
838 </pre></div> |
|
839 </div> |
|
840 </dd> |
|
841 <dt>DAQ_Range(channels)</dt> |
|
842 <dd><p class="first">This array is required only if one or more lidar signals are |
|
843 acquired in analog mode. It gives the analog scale in mV used to |
|
844 acquire the analog signals. In our example we have only the 1064nm |
|
845 channel acquired in analog mode. If we have used a 100mV analog scale |
|
846 to acquire this channel we have to set:</p> |
|
847 <div class="last highlight-python"><div class="highlight"><pre><span class="n">DAQ_Range</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> |
|
848 </pre></div> |
|
849 </div> |
|
850 </dd> |
|
851 </dl> |
|
852 </div> |
|
853 <div class="section" id="global-attributes"> |
|
854 <h3>Global attributes<a class="headerlink" href="#global-attributes" title="Permalink to this headline">¶</a></h3> |
|
855 <dl class="docutils"> |
|
856 <dt>Measurement_ID</dt> |
|
857 <dd><p class="first">This mandatory global attribute defines the measurement ID |
|
858 corresponding to the actual lidar measurement. It is a string |
|
859 composed by 12 characters. The first 8 characters give the start date |
|
860 of measurement in the format YYYYMMDD. The next 2 characters give the |
|
861 Earlinet call-sign of the station. The last 2 characters are used to |
|
862 distinguish between different time-series within the same date. In |
|
863 our example we have to set:</p> |
|
864 <div class="last highlight-python"><div class="highlight"><pre><span class="n">Measurement_ID</span><span class="o">=</span> <span class="s">"20090130cc00"</span> <span class="p">;</span> |
|
865 </pre></div> |
|
866 </div> |
|
867 </dd> |
|
868 <dt>RawData_Start_Date</dt> |
|
869 <dd><p class="first">This mandatory global attribute defines the start date of lidar |
|
870 measurements in the format YYYYMMDD. In our case we have:</p> |
|
871 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Date</span> <span class="o">=</span> <span class="s">"20090130"</span> <span class="p">;</span> |
|
872 </pre></div> |
|
873 </div> |
|
874 </dd> |
|
875 <dt>RawData_Start_Time_UT</dt> |
|
876 <dd><p class="first">This mandatory global attribute defines the UT start time of lidar |
|
877 measurements in the format HHMMSS. In our case we have:</p> |
|
878 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Time_UT</span> <span class="o">=</span> <span class="s">"000001"</span> <span class="p">;</span> |
|
879 </pre></div> |
|
880 </div> |
|
881 </dd> |
|
882 <dt>RawData_Stop_Time_UT``</dt> |
|
883 <dd><p class="first">This mandatory global attribute defines the UT stop time of lidar |
|
884 measurements in the format HHMMSS. In our case we have:</p> |
|
885 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"000501"</span> <span class="p">;</span> |
|
886 </pre></div> |
|
887 </div> |
|
888 </dd> |
|
889 <dt>RawBck_Start_Date</dt> |
|
890 <dd><p class="first">This optional global attribute defines the start date of dark |
|
891 measurements in the format YYYYMMDD. In our case we have:</p> |
|
892 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Date</span> <span class="o">=</span> <span class="s">"20090129"</span> <span class="p">;</span> |
|
893 </pre></div> |
|
894 </div> |
|
895 </dd> |
|
896 <dt>RawBck_Start_Time_UT</dt> |
|
897 <dd><p class="first">This optional global attribute defines the UT start time of dark |
|
898 measurements in the format HHMMSS. In our case we have:</p> |
|
899 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Time_UT</span> <span class="o">=</span> <span class="s">"235001"</span> <span class="p">;</span> |
|
900 </pre></div> |
|
901 </div> |
|
902 </dd> |
|
903 <dt>RawBck_Stop_Time_UT</dt> |
|
904 <dd><p class="first">This optional global attribute defines the UT stop time of dark |
|
905 measurements in the format HHMMSS. In our case we have:</p> |
|
906 <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"235301"</span> <span class="p">;</span> |
|
907 </pre></div> |
|
908 </div> |
|
909 </dd> |
|
910 </dl> |
|
911 </div> |
|
912 </div> |
|
913 <div class="section" id="example-of-file-cdl-format"> |
|
914 <h2>Example of file (CDL format)<a class="headerlink" href="#example-of-file-cdl-format" title="Permalink to this headline">¶</a></h2> |
|
915 <p>To summarize we have the following NetCDF Raw Lidar Data file (in CDL |
|
916 format):</p> |
|
917 <div class="highlight-python"><pre>dimensions: |
|
918 points = 5000 ; |
|
919 channels = 4 ; |
|
920 time = UNLIMITED ; // (10 currently) |
|
921 nb_of_time_scales = 2 ; |
|
922 scan_angles = 1 ; |
|
923 time_bck = 6 ; |
|
924 variables: |
|
925 int channel_ID(channels) ; |
|
926 int Laser_Repetition_Rate(channels) ; |
|
927 double Laser_Pointing_Angle(scan_angles) ; |
|
928 int ID_Range(channels) ; |
|
929 int Scattering_Mechanism(channels) ; |
|
930 double Emitted_Wavelength(channels) ; |
|
931 double Detected_Wavelength(channels) ; |
|
932 double Raw_Data_Range_Resolution(channels) ; |
|
933 int Background_Mode(channels) ; |
|
934 double Background_Low(channels) ; |
|
935 double Background_High(channels) ; |
|
936 int Molecular_Calc ; |
|
937 double Pressure_at_Lidar_Station ; |
|
938 double Temperature_at_Lidar_Station ; |
|
939 int id_timescale(channels) ; |
|
940 double Dead_Time(channels) ; |
|
941 int Dead_Time_Corr_Type(channels) ; |
|
942 int Acquisition_Mode(channels) ; |
|
943 double Trigger_Delay(channels) ; |
|
944 int LR_Input(channels) ; |
|
945 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
|
946 int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
|
947 int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
|
948 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
|
949 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
|
950 int Laser_Shots(time, channels) ; |
|
951 double Raw_Lidar_Data(time, channels, points) ; |
|
952 double Background_Profile(time_bck, channels, points) ; |
|
953 double DAQ_Range(channels) ; |
|
954 |
|
955 // global attributes: |
|
956 :Measurement_ID = "20090130cc00" ; |
|
957 :RawData_Start_Date = "20090130" ; |
|
958 :RawData_Start_Time_UT = "000001" ; |
|
959 :RawData_Stop_Time_UT = "000501" ; |
|
960 :RawBck_Start_Date = "20090129" ; |
|
961 :RawBck_Start_Time_UT = "235001" ; |
|
962 :RawBck_Stop_Time_UT = "235301" ; |
|
963 |
|
964 data: |
|
965 |
|
966 channel_ID = 7, 5, 6, 8 ; |
|
967 |
|
968 Laser_Repetition_Rate = 50, 50, 50, 50 ; |
|
969 |
|
970 Laser_Pointing_Angle = 5 ; |
|
971 |
|
972 ID_Range = 1, 1, 1, 1 ; |
|
973 |
|
974 Scattering_Mechanism = 0, 2, 3, 1 ; |
|
975 |
|
976 Emitted_Wavelength = 1064, 532, 532, 532 ; |
|
977 |
|
978 Detected_Wavelength = 1064, 532, 532, 607 ; |
|
979 |
|
980 Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ; |
|
981 |
|
982 Background_Mode = 0, 1, 1, 1 ; |
|
983 |
|
984 Background_Low = 0, 30000, 30000, 30000 ; |
|
985 |
|
986 Background_High = 500, 50000, 50000, 50000 ; |
|
987 |
|
988 Molecular_Calc = 0 ; |
|
989 |
|
990 Pressure_at_Lidar_Station = 1010 ; |
|
991 |
|
992 Temperature_at_Lidar_Station = 19.8 ; |
|
993 |
|
994 id_timescale = 1, 0, 0, 0 ; |
|
995 |
|
996 Dead_Time = _, 10, 10, 10 ; |
|
997 |
|
998 Dead_Time_Corr_Type = _, 0, 0, 0 ; |
|
999 |
|
1000 Acquisition_Mode = 0, 1, 1, 1 ; |
|
1001 |
|
1002 Trigger_Delay = 50, 0, 0, 0 ; |
|
1003 |
|
1004 LR_Input = 1,_,_,_ ; |
|
1005 |
|
1006 DAQ_Range = 100,_,_,_ ; |
|
1007 |
|
1008 Laser_Pointing_Angle_of_Profiles = |
|
1009 0, 0, |
|
1010 0, 0, |
|
1011 0, 0, |
|
1012 0, 0, |
|
1013 0, 0, |
|
1014 _, 0, |
|
1015 _, 0, |
|
1016 _, 0, |
|
1017 _, 0, |
|
1018 _, 0 ; |
|
1019 |
|
1020 |
|
1021 Raw_Data_Start_Time = |
|
1022 0, 0, |
|
1023 60, 30, |
|
1024 120, 60, |
|
1025 180, 90, |
|
1026 240, 120, |
|
1027 _, 150, |
|
1028 _, 180, |
|
1029 _, 210, |
|
1030 _, 240, |
|
1031 _, 270 ; |
|
1032 |
|
1033 Raw_Data_Stop_Time = |
|
1034 60, 30, |
|
1035 120, 60, |
|
1036 180, 90, |
|
1037 240, 120, |
|
1038 300, 150, |
|
1039 _, 180, |
|
1040 _, 210, |
|
1041 _, 240, |
|
1042 _, 270, |
|
1043 _, 300 ; |
|
1044 |
|
1045 |
|
1046 Raw_Bck_Start_Time = |
|
1047 0, 0, |
|
1048 60, 30, |
|
1049 120, 60, |
|
1050 _, 90, |
|
1051 _, 120, |
|
1052 _, 150; |
|
1053 |
|
1054 |
|
1055 Raw_Bck_Stop_Time = |
|
1056 60, 30, |
|
1057 120, 60, |
|
1058 180, 90, |
|
1059 _, 120, |
|
1060 _, 150, |
|
1061 _, 180 ; |
|
1062 |
|
1063 |
|
1064 Laser_Shots = |
|
1065 1500, 3000, 3000, 3000, |
|
1066 1500, 3000, 3000, 3000, |
|
1067 1500, 3000, 3000, 3000, |
|
1068 1500, 3000, 3000, 3000, |
|
1069 1500, 3000, 3000, 3000, |
|
1070 1500, _, _, _, |
|
1071 1500, _, _, _, |
|
1072 1500, _, _, _, |
|
1073 1500, _, _, _, |
|
1074 1500, _, _, _ ; |
|
1075 |
|
1076 |
|
1077 Raw_Lidar_Data = ... |
|
1078 |
|
1079 Background_Profile = ...</pre> |
|
1080 </div> |
|
1081 <p>Please keep in mind that in case you submit a file like the previous one |
|
1082 all the parameters present in it will be used by the SCC even if you |
|
1083 have different values for the same parameters within the SCC_DB. If you |
|
1084 want to use the values already stored in SCC_DB (this should be the |
|
1085 usual way to use SCC) the Raw Lidar Data input file has to be |
|
1086 modified as follows:</p> |
|
1087 <div class="highlight-python"><pre>dimensions: |
|
1088 points = 5000 ; |
|
1089 channels = 4 ; |
|
1090 time = UNLIMITED ; // (10 currently) |
|
1091 nb_of_time_scales = 2 ; |
|
1092 scan_angles = 1 ; |
|
1093 time_bck = 6 ; |
|
1094 variables: |
|
1095 int channel_ID(channels) ; |
|
1096 double Laser_Pointing_Angle(scan_angles) ; |
|
1097 double Background_Low(channels) ; |
|
1098 double Background_High(channels) ; |
|
1099 int Molecular_Calc ; |
|
1100 double Pressure_at_Lidar_Station ; |
|
1101 double Temperature_at_Lidar_Station ; |
|
1102 int id_timescale(channels) ; |
|
1103 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
|
1104 int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
|
1105 int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
|
1106 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
|
1107 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
|
1108 int LR_Input(channels) ; |
|
1109 int Laser_Shots(time, channels) ; |
|
1110 double Raw_Lidar_Data(time, channels, points) ; |
|
1111 double Background_Profile(time_bck, channels, points) ; |
|
1112 double DAQ_Range(channels) ; |
|
1113 |
|
1114 // global attributes: |
|
1115 :Measurement_ID = "20090130cc00" ; |
|
1116 :RawData_Start_Date = "20090130" ; |
|
1117 :RawData_Start_Time_UT = "000001" ; |
|
1118 :RawData_Stop_Time_UT = "000501" ; |
|
1119 :RawBck_Start_Date = "20090129" ; |
|
1120 :RawBck_Start_Time_UT = "235001" ; |
|
1121 :RawBck_Stop_Time_UT = "235301" ; |
|
1122 |
|
1123 data: |
|
1124 |
|
1125 channel_ID = 7, 5, 6, 8 ; |
|
1126 |
|
1127 Laser_Pointing_Angle = 5 ; |
|
1128 |
|
1129 Background_Low = 0, 30000, 30000, 30000 ; |
|
1130 |
|
1131 Background_High = 500, 50000, 50000, 50000 ; |
|
1132 |
|
1133 Molecular_Calc = 0 ; |
|
1134 |
|
1135 Pressure_at_Lidar_Station = 1010 ; |
|
1136 |
|
1137 Temperature_at_Lidar_Station = 19.8 ; |
|
1138 |
|
1139 id_timescale = 1, 0, 0, 0 ; |
|
1140 |
|
1141 LR_Input = 1,_,_,_ ; |
|
1142 |
|
1143 DAQ_Range = 100,_,_,_ ; |
|
1144 |
|
1145 Laser_Pointing_Angle_of_Profiles = |
|
1146 0, 0, |
|
1147 0, 0, |
|
1148 0, 0, |
|
1149 0, 0, |
|
1150 0, 0, |
|
1151 _, 0, |
|
1152 _, 0, |
|
1153 _, 0, |
|
1154 _, 0, |
|
1155 _, 0 ; |
|
1156 |
|
1157 |
|
1158 Raw_Data_Start_Time = |
|
1159 0, 0, |
|
1160 60, 30, |
|
1161 120, 60, |
|
1162 180, 90, |
|
1163 240, 120, |
|
1164 _, 150, |
|
1165 _, 180, |
|
1166 _, 210, |
|
1167 _, 240, |
|
1168 _, 270 ; |
|
1169 |
|
1170 Raw_Data_Stop_Time = |
|
1171 60, 30, |
|
1172 120, 60, |
|
1173 180, 90, |
|
1174 240, 120, |
|
1175 300, 150, |
|
1176 _, 180, |
|
1177 _, 210, |
|
1178 _, 240, |
|
1179 _, 270, |
|
1180 _, 300 ; |
|
1181 |
|
1182 |
|
1183 Raw_Bck_Start_Time = |
|
1184 0, 0, |
|
1185 60, 30, |
|
1186 120, 60, |
|
1187 _, 90, |
|
1188 _, 120, |
|
1189 _, 150; |
|
1190 |
|
1191 |
|
1192 Raw_Bck_Stop_Time = |
|
1193 60, 30, |
|
1194 120, 60, |
|
1195 180, 90, |
|
1196 _, 120, |
|
1197 _, 150, |
|
1198 _, 180 ; |
|
1199 |
|
1200 |
|
1201 Laser_Shots = |
|
1202 1500, 3000, 3000, 3000, |
|
1203 1500, 3000, 3000, 3000, |
|
1204 1500, 3000, 3000, 3000, |
|
1205 1500, 3000, 3000, 3000, |
|
1206 1500, 3000, 3000, 3000, |
|
1207 1500, _, _, _, |
|
1208 1500, _, _, _, |
|
1209 1500, _, _, _, |
|
1210 1500, _, _, _, |
|
1211 1500, _, _, _ ; |
|
1212 |
|
1213 |
|
1214 Raw_Lidar_Data = ... |
|
1215 |
|
1216 Background_Profile = ...</pre> |
|
1217 </div> |
|
1218 <p>This example file contains the minimum collection of mandatory |
|
1219 information that has to be found within the Raw Lidar Data input |
|
1220 file. If it is really necessary, the user can decide to add to these |
|
1221 mandatory parameters any number of additional parameters considered in |
|
1222 the previous example.</p> |
|
1223 <p>Finally, suppose we want to make the following changes with respect to |
|
1224 the previous example:</p> |
|
1225 <ol class="arabic simple"> |
|
1226 <li>use a sounding file for molecular density calculation instead of “US |
|
1227 Standar Atmosphere 1976”</li> |
|
1228 <li>supply a lidar ratio profile to use in elastic backscatter retrieval |
|
1229 instead of a fixed value</li> |
|
1230 <li>provide a overlap function for overlap correction</li> |
|
1231 </ol> |
|
1232 <p>In this case we have to generate the following NetCDF additional files:</p> |
|
1233 <dl class="docutils"> |
|
1234 <dt>rs_20090130cc00.nc</dt> |
|
1235 <dd>The name of Sounding Data file has to be computed as follows: |
|
1236 <tt class="docutils literal"><span class="pre">"rs_"``+``Measurement_ID</span></tt> |
|
1237 The structure of this file is summarized in table tab:sounding.</dd> |
|
1238 <dt>ov_20090130cc00.nc</dt> |
|
1239 <dd>The name of Overlap file has to be computed as follows: |
|
1240 <tt class="docutils literal"><span class="pre">"ov_"``+``Measurement_ID</span></tt> |
|
1241 The structure of this file is summarized in table tab:overlap.</dd> |
|
1242 <dt>lr_20090130cc00.nc</dt> |
|
1243 <dd>The name of Lidar Ratio file has to be computed as follows: |
|
1244 <tt class="docutils literal"><span class="pre">"lr_"``+``Measurement_ID</span></tt> |
|
1245 The structure of this file is summarized in table tab:lr.</dd> |
|
1246 </dl> |
|
1247 <p>Moreover we need to apply the following changes to the Raw Lidar Data |
|
1248 input file:</p> |
|
1249 <ol class="arabic"> |
|
1250 <li><p class="first">Change the value of the variable <tt class="docutils literal"><span class="pre">Molecular_Calc</span></tt> as follows:</p> |
|
1251 <div class="highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">1</span> <span class="p">;</span> |
|
1252 </pre></div> |
|
1253 </div> |
|
1254 <p>Of course the variables <tt class="docutils literal"><span class="pre">Pressure_at_Lidar_Station</span></tt> and |
|
1255 <tt class="docutils literal"><span class="pre">Temperature_at_Lidar_Station</span></tt> are not necessary anymore.</p> |
|
1256 </li> |
|
1257 <li><p class="first">Change the values of the array <tt class="docutils literal"><span class="pre">LR_Input</span></tt> as follows:</p> |
|
1258 <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> |
|
1259 </pre></div> |
|
1260 </div> |
|
1261 </li> |
|
1262 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Sounding_File_Name</span></tt></p> |
|
1263 <div class="highlight-python"><div class="highlight"><pre><span class="n">Sounding_File_Name</span> <span class="o">=</span> <span class="s">"rs_20090130cc00.nc"</span> <span class="p">;</span> |
|
1264 </pre></div> |
|
1265 </div> |
|
1266 </li> |
|
1267 </ol> |
|
1268 <ol class="arabic" start="5"> |
|
1269 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">LR_File_Name</span></tt></p> |
|
1270 <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_File_Name</span> <span class="o">=</span> <span class="s">"lr_20090130cc00.nc"</span> <span class="p">;</span> |
|
1271 </pre></div> |
|
1272 </div> |
|
1273 </li> |
|
1274 <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Overlap_File_Name</span></tt></p> |
|
1275 <div class="highlight-python"><div class="highlight"><pre><span class="n">Overlap_File_Name</span> <span class="o">=</span> <span class="s">"ov_20090130cc00.nc"</span> <span class="p">;</span> |
|
1276 </pre></div> |
|
1277 </div> |
|
1278 </li> |
|
1279 </ol> |
|
1280 </div> |
|
1281 </div> |
|
1282 |
|
1283 |
|
1284 </div> |
|
1285 </div> |
|
1286 </div> |
|
1287 <div class="sphinxsidebar"> |
|
1288 <div class="sphinxsidebarwrapper"> |
|
1289 <h3><a href="index.html">Table Of Contents</a></h3> |
|
1290 <ul> |
|
1291 <li><a class="reference internal" href="#">The SCC netCDF file format</a><ul> |
|
1292 <li><a class="reference internal" href="#rationale">Rationale</a></li> |
|
1293 <li><a class="reference internal" href="#example">Example</a><ul> |
|
1294 <li><a class="reference internal" href="#dimensions">Dimensions</a></li> |
|
1295 <li><a class="reference internal" href="#variables">Variables</a></li> |
|
1296 <li><a class="reference internal" href="#global-attributes">Global attributes</a></li> |
|
1297 </ul> |
|
1298 </li> |
|
1299 <li><a class="reference internal" href="#example-of-file-cdl-format">Example of file (CDL format)</a></li> |
|
1300 </ul> |
|
1301 </li> |
|
1302 </ul> |
|
1303 |
|
1304 <h4>Previous topic</h4> |
|
1305 <p class="topless"><a href="details/viewing_measurements.html" |
|
1306 title="previous chapter">View processing results</a></p> |
|
1307 <h4>Next topic</h4> |
|
1308 <p class="topless"><a href="user_management.html" |
|
1309 title="next chapter">User management</a></p> |
|
1310 <h3>This Page</h3> |
|
1311 <ul class="this-page-menu"> |
|
1312 <li><a href="_sources/netcdf_file.txt" |
|
1313 rel="nofollow">Show Source</a></li> |
|
1314 </ul> |
|
1315 <div id="searchbox" style="display: none"> |
|
1316 <h3>Quick search</h3> |
|
1317 <form class="search" action="search.html" method="get"> |
|
1318 <input type="text" name="q" /> |
|
1319 <input type="submit" value="Go" /> |
|
1320 <input type="hidden" name="check_keywords" value="yes" /> |
|
1321 <input type="hidden" name="area" value="default" /> |
|
1322 </form> |
|
1323 <p class="searchtip" style="font-size: 90%"> |
|
1324 Enter search terms or a module, class or function name. |
|
1325 </p> |
|
1326 </div> |
|
1327 <script type="text/javascript">$('#searchbox').show(0);</script> |
|
1328 </div> |
|
1329 </div> |
|
1330 <div class="clearer"></div> |
|
1331 </div> |
|
1332 <div class="related"> |
|
1333 <h3>Navigation</h3> |
|
1334 <ul> |
|
1335 <li class="right" style="margin-right: 10px"> |
|
1336 <a href="genindex.html" title="General Index" |
|
1337 >index</a></li> |
|
1338 <li class="right" > |
|
1339 <a href="user_management.html" title="User management" |
|
1340 >next</a> |</li> |
|
1341 <li class="right" > |
|
1342 <a href="details/viewing_measurements.html" title="View processing results" |
|
1343 >previous</a> |</li> |
|
1344 <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> |
|
1345 </ul> |
|
1346 </div> |
|
1347 <div class="footer"> |
|
1348 © Copyright 2012, SCC team. |
|
1349 Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.2. |
|
1350 </div> |
|
1351 </body> |
|
1352 </html> |