1 .. _netcdf_file: |
|
2 |
|
3 The SCC input netCDF file format |
|
4 ================================ |
|
5 |
|
6 A more detailed version of this document can be found in this :download:`pdf file <files/NetCDF_input_file_v3.pdf>`. |
|
7 |
|
8 .. note:: |
|
9 |
|
10 You can check the format of the files you create using the linked `script <https://bitbucket.org/iannis_b/scc-netcdf-checker>`_ . |
|
11 |
|
12 |
|
13 Rationale |
|
14 --------- |
|
15 |
|
16 The Single Calculus Chain (SCC) is composed by three different modules: |
|
17 |
|
18 - pre-processing module (*ELPP*) |
|
19 |
|
20 - optical processing module (*ELDA*) |
|
21 |
|
22 - depolarization calibrator module (*ELDEC*) |
|
23 |
|
24 To perfom aerosol optical retrievals the SCC needs not only the raw |
|
25 lidar data but also a certain number of parameters to use in both |
|
26 pre-processing and optical processing stages. The SCC gets these |
|
27 parameters looking at two different locations: |
|
28 |
|
29 - Single Calculus Chain relational database (SCC\_DB) |
|
30 |
|
31 - Input files |
|
32 |
|
33 There are some paramenters that can be found only in the input files |
|
34 (those ones changing from measurement to measurement), others that can |
|
35 be found only in the SCC\_DB and other ones that can be found in both |
|
36 these locations. In the last case, if a particular parameter is needed, |
|
37 the SCC will search first in the input files and then in SCC\_DB. If the |
|
38 parameter is found in the input files, the SCC will keep it without |
|
39 looking into SCC\_DB. |
|
40 |
|
41 The input files have to be submitted to the SCC in NetCDF format. At |
|
42 present the SCC can handle four different types of input files: |
|
43 |
|
44 1. Raw Lidar Data |
|
45 |
|
46 2. Sounding Data |
|
47 |
|
48 3. Overlap |
|
49 |
|
50 4. Lidar Ratio |
|
51 |
|
52 As already mentioned, the *Raw lidar data* file contains not only the |
|
53 raw lidar data but also other parameters to use to perform the |
|
54 pre-processing and optical processing. The *Sounding Data* file contains |
|
55 the data coming from a correlative radiosounding and it is used by the |
|
56 SCC for molecular density calculation. The *Overlap* file contains the |
|
57 measured overlap function. The *Lidar Ratio* file contains a lidar ratio |
|
58 profile to use in elastic backscatter retrievals. The *Raw Lidar Data* |
|
59 file is of course mandatory and the *Sounding Data*, *Overlap* and |
|
60 *Lidar Ratio* files are optional. If *Sounding Data* file is not |
|
61 submitted by the user, the molecular density will be calculated by the |
|
62 SCC using the "US Standard Atmosphere 1976". If the *Overlap* file is |
|
63 not submitted by the user, the SCC will get the full overlap height from |
|
64 SCC\_DB and it will produce optical results starting from this height. |
|
65 If *Lidar Ratio* file is not submitted by the user, the SCC will |
|
66 consider a fixed value for lidar ratio got from SCC\_DB. |
|
67 |
|
68 The user can decide to submit all these files or any number of them (of |
|
69 course the file *Raw Lidar Data* is mandatory). For example the user can |
|
70 submit together with the *Raw Lidar Data* file only the *Sounding Data* |
|
71 file or only the *Overlap* file. |
|
72 |
|
73 This document provides a detailed example about the structure of |
|
74 the NetCDF input files to use for SCC data submission. All Earlinet |
|
75 groups should read it carefully because they have to produce such kind |
|
76 of input files if they want to use the SCC for their standard lidar |
|
77 retrievals. |
|
78 |
|
79 Additionaly, the linked :download:`pdf file <files/NetCDF_input_file_v3.pdf>` contains |
|
80 tables with all mandatory and optional variables for the netcdf files |
|
81 accepted by the SCC. Table 1 contains a list of dimensions, variables and |
|
82 global attributes that can be used in the NetCDF *Raw Lidar Data* |
|
83 input file. For each of them it is indicated: |
|
84 |
|
85 - The name. For the multidimensional variables also the corresponding |
|
86 dimensions are reported |
|
87 |
|
88 - A description explaining the meaning |
|
89 |
|
90 - The type |
|
91 |
|
92 - If it is mandatory or optional |
|
93 |
|
94 As already mentioned, the SCC can get some parameters looking first in |
|
95 the *Raw Lidar Data* input file and then into SCC\_DB. This means that |
|
96 to use the parameters stored in SCC\_DB the optional variables or |
|
97 optional global attributes must not appear within *Raw Lidar Data* file. |
|
98 This is the suggested and recommended way to use the SCC. Please include |
|
99 optional parameters in the *Raw Lidar Data* only as an exception. |
|
100 |
|
101 Tables 2, 3, and 4 report all the |
|
102 information about the structure of *Sounding Data*, *Overlap* and *Lidar |
|
103 Ratio* input files respectively. |
|
104 |
|
105 |
|
106 Example |
|
107 ------- |
|
108 |
|
109 Let's now consider an example of *Raw Lidar Data* input file. Suppose |
|
110 we want to generate NetCDF input file corresponding to a measurement |
|
111 with the following properties: |
|
112 |
|
113 +----------------------+-------------------------------------------+ |
|
114 | Start Date | 30\ :sup:`th` January 2009 | |
|
115 +----------------------+-------------------------------------------+ |
|
116 | Start Time UT | 00:00:01 | |
|
117 +----------------------+-------------------------------------------+ |
|
118 | Stop Time UT | 00:05:01 | |
|
119 +----------------------+-------------------------------------------+ |
|
120 | Station Name | Dummy station | |
|
121 +----------------------+-------------------------------------------+ |
|
122 | Earlinet call-sign | cc | |
|
123 +----------------------+-------------------------------------------+ |
|
124 | Pointing angle | 5 degrees with respect to the zenith | |
|
125 +----------------------+-------------------------------------------+ |
|
126 |
|
127 |
|
128 Moreover suppose that this measurement is composed by the following |
|
129 lidar channels: |
|
130 |
|
131 #. 1064 lidar channel |
|
132 |
|
133 +------------------------------+-------------------------------+ |
|
134 | Emission wavelength=1064nm | Detection wavelength=1064nm | |
|
135 +------------------------------+-------------------------------+ |
|
136 | Time resolution=30s | Number of laser shots=1500 | |
|
137 +------------------------------+-------------------------------+ |
|
138 | Number of bins=3000 | Detection mode=analog | |
|
139 +------------------------------+-------------------------------+ |
|
140 | Range resolution=7.5m | Polarization state=total | |
|
141 +------------------------------+-------------------------------+ |
|
142 |
|
143 #. 532 cross lidar channel |
|
144 |
|
145 +-----------------------------+------------------------------------------+ |
|
146 | Emission wavelength=532nm | Detection wavelength=532nm | |
|
147 +-----------------------------+------------------------------------------+ |
|
148 | Time resolution=60s | Number of laser shots=3000 | |
|
149 +-----------------------------+------------------------------------------+ |
|
150 | Number of bins=5000 | Detection mode=photoncounting | |
|
151 +-----------------------------+------------------------------------------+ |
|
152 | Range resolution=15m | Polarization state=cross (transmitted) | |
|
153 +-----------------------------+------------------------------------------+ |
|
154 |
|
155 #. 532 parallel lidar channel |
|
156 |
|
157 +-----------------------------+-------------------------------------------+ |
|
158 | Emission wavelength=532nm | Detection wavelength=532nm | |
|
159 +-----------------------------+-------------------------------------------+ |
|
160 | Time resolution=60s | Number of laser shots=3000 | |
|
161 +-----------------------------+-------------------------------------------+ |
|
162 | Number of bins=5000 | Detection mode=photoncounting | |
|
163 +-----------------------------+-------------------------------------------+ |
|
164 | Range resolution=15m | Polarization state=parallel (reflected) | |
|
165 +-----------------------------+-------------------------------------------+ |
|
166 |
|
167 #. | 607 :math:`N_2` vibrational Raman channel |
|
168 |
|
169 +-----------------------------+---------------------------------+ |
|
170 | Emission wavelength=532nm | Detection wavelength=607nm | |
|
171 +-----------------------------+---------------------------------+ |
|
172 | Time resolution=60s | Number of laser shots=3000 | |
|
173 +-----------------------------+---------------------------------+ |
|
174 | Number of bins=5000 | Detection mode=photoncounting | |
|
175 +-----------------------------+---------------------------------+ |
|
176 | Range resolution=15m | | |
|
177 +-----------------------------+---------------------------------+ |
|
178 |
|
179 Finally let's assume we have also performed dark measurements before the |
|
180 lidar measurements from the 23:50:01 UT up to 23:53:01 UT of |
|
181 29\ :sup:`th` January 2009. |
|
182 |
|
183 |
|
184 Dimensions |
|
185 ~~~~~~~~~~ |
|
186 |
|
187 Looking at table 1 of the pdf file we have to fix the following dimensions: |
|
188 |
|
189 :: |
|
190 |
|
191 points |
|
192 channels |
|
193 time |
|
194 nb_of_time_scales |
|
195 scan_angles |
|
196 time_bck |
|
197 |
|
198 The dimension ``time`` is unlimited so we don’t have to fix it. |
|
199 We have 4 lidar channels so: |
|
200 |
|
201 :: |
|
202 |
|
203 channels=4 |
|
204 |
|
205 Regarding the dimension ``points`` we have only one channel with a |
|
206 number of vertical bins equal to 3000 (the 1064nm) and all other |
|
207 channels with 5000 vertical bins. In cases like this the dimension |
|
208 ``points`` has to be fixed to the maximum number of vertical bins so: |
|
209 |
|
210 :: |
|
211 |
|
212 points=5000 |
|
213 |
|
214 Moreover only one channel (1064nm) is acquired with a time resolution of |
|
215 30 seconds, all the other channels have a time resolution of 60 seconds. |
|
216 This means that we have to define two different time scales. We have to |
|
217 set: |
|
218 |
|
219 :: |
|
220 |
|
221 nb_of_time_scales=2 |
|
222 |
|
223 The measurement is performed only at one scan angle (5 degrees with |
|
224 respect to the zenith) so: |
|
225 |
|
226 :: |
|
227 |
|
228 scan_angles=1 |
|
229 |
|
230 We have 3 minutes of dark measurements and two different time scales one |
|
231 with 60 seconds time resolution and the other one with 30 seconds time |
|
232 resolution. So we will have 3 different dark profiles for the channels |
|
233 acquired with the first time scale and 6 for the lidar channels acquired |
|
234 with the second time scale. We have to fix the dimension ``time_bck`` as |
|
235 the maximum between these values: |
|
236 |
|
237 :: |
|
238 |
|
239 time_bck=6 |
|
240 |
|
241 |
|
242 Variables |
|
243 ~~~~~~~~~ |
|
244 |
|
245 In this section it will be explained how to fill all the possible |
|
246 variables either mandatory or optional of *Raw Lidar Data* input file. |
|
247 |
|
248 - | ``Raw_Data_Start_Time(time, nb_of_time_scales)`` |
|
249 | This 2 dimensional mandatory array has to contain the acquisition |
|
250 start time (in seconds from the time given by the global attribute |
|
251 ``RawData_Start_Time_UT``) of each lidar profile. In this example |
|
252 we have two different time scales: one is characterized by steps of |
|
253 30 seconds (the 1064nm is acquired with this time scale) the other |
|
254 by steps of 60 seconds (532cross, 532parallel and 607nm). Moreover |
|
255 the measurement start time is 00:00:01 UT and the measurement stop |
|
256 time is 00:05:01 UT. In this case we have to define: |
|
257 |
|
258 :: |
|
259 |
|
260 Raw_Data_Start_Time = |
|
261 0, 0, |
|
262 60, 30, |
|
263 120, 60, |
|
264 180, 90, |
|
265 240, 120, |
|
266 _, 150, |
|
267 _, 180, |
|
268 _, 210, |
|
269 _, 240, |
|
270 _, 270 ; |
|
271 |
|
272 The order used to fill this array defines the correspondence between |
|
273 the different time scales and the time scale index. In this example |
|
274 we have a time scale index of 0 for the time scale with steps of 60 |
|
275 seconds and a time scale index of 1 for the other one. |
|
276 |
|
277 - | ``Raw_Data_Stop_Time(time, nb_of_time_scales)`` |
|
278 | The same as previous item but for the data acquisition stop time. |
|
279 Following a similar procedure we have to define: |
|
280 |
|
281 :: |
|
282 |
|
283 Raw_Data_Stop_Time = |
|
284 60, 30, |
|
285 120, 60, |
|
286 180, 90, |
|
287 240, 120, |
|
288 300, 150, |
|
289 _, 180, |
|
290 _, 210, |
|
291 _, 240, |
|
292 _, 270, |
|
293 _, 300 ; |
|
294 |
|
295 - | ``Raw_Lidar_Data(time, channels, points)`` |
|
296 | This 3 dimensional mandatory array has to be filled with the |
|
297 time-series of raw lidar data. The photoncounting profiles have to |
|
298 submitted in counts (so as integers) while the analog ones in mV. |
|
299 The order the user chooses to fill this array defines the |
|
300 correspondence between channel index and lidar data. |
|
301 | For example if we fill this array in such way that: |
|
302 |
|
303 +-------------------------------------+---------------------------------------+ |
|
304 | ``Raw_Lidar_Data(time,0,points)`` | is the time-series of 1064 nm | |
|
305 +-------------------------------------+---------------------------------------+ |
|
306 | ``Raw_Lidar_Data(time,1,points)`` | is the time-series of 532 cross | |
|
307 +-------------------------------------+---------------------------------------+ |
|
308 | ``Raw_Lidar_Data(time,2,points)`` | is the time-series of 532 parallel | |
|
309 +-------------------------------------+---------------------------------------+ |
|
310 | ``Raw_Lidar_Data(time,3,points)`` | is the time-series of 607 nm | |
|
311 +-------------------------------------+---------------------------------------+ |
|
312 |
|
313 | |
|
314 | from now on the channel index 0 is associated to the 1064 channel, |
|
315 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm. |
|
316 |
|
317 - | ``Raw_Bck_Start_Time(time_bck, nb_of_time_scales)`` |
|
318 | This 2 dimensional optional array has to contain the acquisition |
|
319 start time (in seconds from the time given by the global attribute |
|
320 ``RawBck_Start_Time_UT``) of each dark measurements profile. |
|
321 Following the same procedure used for the variable |
|
322 ``Raw_Data_Start_Time`` we have to define: |
|
323 |
|
324 :: |
|
325 |
|
326 Raw_Bck_Start_Time = |
|
327 0, 0, |
|
328 60, 30, |
|
329 120, 60, |
|
330 _, 90, |
|
331 _, 120, |
|
332 _, 150; |
|
333 |
|
334 - | ``Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)`` |
|
335 | The same as previous item but for the dark acquisition stop time. |
|
336 Following a similar procedure we have to define: |
|
337 |
|
338 :: |
|
339 |
|
340 Raw_Bck_Stop_Time = |
|
341 60, 30, |
|
342 120, 60, |
|
343 180, 90, |
|
344 _, 120, |
|
345 _, 150, |
|
346 _, 180 ; |
|
347 |
|
348 - | ``Background_Profile(time_bck, channels, points)`` |
|
349 | This 3 dimensional optional array has to be filled with the |
|
350 time-series of the dark measurements data. The photoncounting |
|
351 profiles have to submitted in counts (so as integers) while the |
|
352 analog ones in mV. The user has to fill this array following the |
|
353 same order used in filling the array ``Raw_Lidar_Data``: |
|
354 |
|
355 +---------------------------------------------+-------------------------------------+ |
|
356 | ``Background_Profile(time_bck,0,points)`` | dark time-series at 1064 nm | |
|
357 +---------------------------------------------+-------------------------------------+ |
|
358 | ``Background_Profile(time_bck,1,points)`` | dark time-series at 532 cross | |
|
359 +---------------------------------------------+-------------------------------------+ |
|
360 | ``Background_Profile(time_bck,2,points)`` | dark time-series at 532 parallel | |
|
361 +---------------------------------------------+-------------------------------------+ |
|
362 | ``Background_Profile(time_bck,3,points)`` | dark time-series at 607 nm | |
|
363 +---------------------------------------------+-------------------------------------+ |
|
364 |
|
365 | |
|
366 |
|
367 - | ``channel_ID(channels)`` |
|
368 | This mandatory array provides the link between the channel index |
|
369 within the *Raw Lidar Data* input file and the channel ID in |
|
370 SCC\_DB. To fill this variable the user has to know which channel |
|
371 IDs in SCC\_DB correspond to his lidar channels. For this purpose |
|
372 the SCC, in its final version will provide to the user a special |
|
373 tool to get these channel IDs through a Web interface. At the |
|
374 moment this interface is not yet available and these channel IDs |
|
375 will be communicated directly to the user by the NA5 people. |
|
376 | Anyway to continue the example let’s suppose that the four lidar |
|
377 channels taken into account are mapped into SCC\_DB with the |
|
378 following channel IDs: |
|
379 |
|
380 +----------------+-----------------+ |
|
381 | 1064 nm | channel ID=7 | |
|
382 +----------------+-----------------+ |
|
383 | 532 cross | channel ID=5 | |
|
384 +----------------+-----------------+ |
|
385 | 532 parallel | channel ID=6 | |
|
386 +----------------+-----------------+ |
|
387 | 607 nm | channel ID=8 | |
|
388 +----------------+-----------------+ |
|
389 |
|
390 | |
|
391 | In this case we have to define: |
|
392 |
|
393 :: |
|
394 |
|
395 channel_ID = 7, 5, 6, 8 ; |
|
396 |
|
397 - | ``id_timescale(channels)`` |
|
398 | This mandatory array is introduced to determine which time scale is |
|
399 used for the acquisition of each lidar channel. In particular this |
|
400 array defines the link between the channel index and the time scale |
|
401 index. In our example we have two different time scales. Filling |
|
402 the arrays ``Raw_Data_Start_Time`` and ``Raw_Data_Stop_Time`` we |
|
403 have defined a time scale index of 0 for the time scale with steps |
|
404 of 60 seconds and a time scale index of 1 for the other one with |
|
405 steps of 30 seconds. In this way this array has to be set as: |
|
406 |
|
407 :: |
|
408 |
|
409 id_timescale = 1, 0, 0, 0 ; |
|
410 |
|
411 - | ``Laser_Pointing_Angle(scan_angles)`` |
|
412 | This mandatory array contains all the scan angles used in the |
|
413 measurement. In our example we have only one scan angle of 5 |
|
414 degrees with respect to the zenith, so we have to define: |
|
415 |
|
416 :: |
|
417 |
|
418 Laser_Pointing_Angle = 5 ; |
|
419 |
|
420 - | ``Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)`` |
|
421 | This mandatory array is introduced to determine which scan angle is |
|
422 used for the acquisition of each lidar profile. In particular this |
|
423 array defines the link between the time and time scales indexes and |
|
424 the scan angle index. In our example we have a single scan angle |
|
425 that has to correspond to the scan angle index 0. So this array has |
|
426 to be defined as: |
|
427 |
|
428 :: |
|
429 |
|
430 Laser_Pointing_Angle_of_Profiles = |
|
431 0, 0, |
|
432 0, 0, |
|
433 0, 0, |
|
434 0, 0, |
|
435 0, 0, |
|
436 _, 0, |
|
437 _, 0, |
|
438 _, 0, |
|
439 _, 0, |
|
440 _, 0 ; |
|
441 |
|
442 - | ``Laser_Shots(time, channels)`` |
|
443 | This mandatory array stores the laser shots accumulated at each |
|
444 time for each channel. In our example the number of laser shots |
|
445 accumulated is 1500 for the 1064nm channels and 3000 for all the |
|
446 other channels. Moreover the laser shots do not change with the |
|
447 time. So we have to define this array as: |
|
448 |
|
449 :: |
|
450 |
|
451 Laser_Shots = |
|
452 1500, 3000, 3000, 3000, |
|
453 1500, 3000, 3000, 3000, |
|
454 1500, 3000, 3000, 3000, |
|
455 1500, 3000, 3000, 3000, |
|
456 1500, 3000, 3000, 3000, |
|
457 1500, _, _, _, |
|
458 1500, _, _, _, |
|
459 1500, _, _, _, |
|
460 1500, _, _, _, |
|
461 1500, _, _, _ ; |
|
462 |
|
463 - | ``Emitted_Wavelength(channels)`` |
|
464 | This optional array defines the link between the channel index and |
|
465 the emission wavelength for each lidar channel. The wavelength has |
|
466 to be expressed in nm. This information can be also taken from |
|
467 SCC\_DB. In our example we have: |
|
468 |
|
469 :: |
|
470 |
|
471 Emitted_Wavelength = 1064, 532, 532, 532 ; |
|
472 |
|
473 - | ``Detected_Wavelength(channels)`` |
|
474 | This optional array defines the link between the channel index and |
|
475 the detected wavelength for each lidar channel. Here detected |
|
476 wavelength means the value of center of interferential filter |
|
477 expressed in nm. This information can be also taken from SCC\_DB. |
|
478 In our example we have: |
|
479 |
|
480 :: |
|
481 |
|
482 Detected_Wavelength = 1064, 532, 532, 607 ; |
|
483 |
|
484 - | ``Raw_Data_Range_Resolution(channels)`` |
|
485 | This optional array defines the link between the channel index and |
|
486 the raw range resolution for each channel. If the scan angle is |
|
487 different from zero this quantity is different from the vertical |
|
488 resolution. More precisely if :math:`\alpha` is the scan angle used |
|
489 and :math:`\Delta z` is the range resolution the vertical |
|
490 resolution is calculated as :math:`\Delta |
|
491 z'=\Delta z \cos\alpha`. This array has to be filled with |
|
492 :math:`\Delta z` and not with :math:`\Delta z'`. The unit is |
|
493 meters. This information can be also taken from SCC\_DB. In our |
|
494 example we have: |
|
495 |
|
496 :: |
|
497 |
|
498 Raw_Data_Range_Resolution = 7.5, 15.0, 15.0, 15.0 ; |
|
499 |
|
500 - | ``Scattering_Mechanism(channels)`` |
|
501 | This optional array defines the scattering mechanism involved in |
|
502 each lidar channel. In particular the following values are adopted: |
|
503 |
|
504 +-----+---------------------------------------------------+ |
|
505 | 0 | Total elastic backscatter | |
|
506 +-----+---------------------------------------------------+ |
|
507 | 1 | N\ :math:`_2` vibrational Raman backscatter | |
|
508 +-----+---------------------------------------------------+ |
|
509 | 2 | Cross polarization elastic backscatter | |
|
510 +-----+---------------------------------------------------+ |
|
511 | 3 | Parallel polarization elastic backscatter | |
|
512 +-----+---------------------------------------------------+ |
|
513 | 4 | H\ :math:`_2`\ O vibrational Raman backscatter | |
|
514 +-----+---------------------------------------------------+ |
|
515 | 5 | Rotational Raman low quantum number | |
|
516 +-----+---------------------------------------------------+ |
|
517 | 6 | Rotational Raman high quantum number | |
|
518 +-----+---------------------------------------------------+ |
|
519 |
|
520 | |
|
521 | This information can be also taken from SCC\_DB. In our example we |
|
522 have: |
|
523 |
|
524 :: |
|
525 |
|
526 Scattering_Mechanism = 0, 2, 3, 1 ; |
|
527 |
|
528 - | ``Signal_Type(channels)`` |
|
529 | This optional array defines the type of signal involved in each |
|
530 lidar channel. In particular the following values are adopted: |
|
531 |
|
532 +------+--------------------------------------------------------------+ |
|
533 | 0 | Total elastic | |
|
534 +------+--------------------------------------------------------------+ |
|
535 | 1 | Total elastic near range | |
|
536 +------+--------------------------------------------------------------+ |
|
537 | 2 | Total elastic far range | |
|
538 +------+--------------------------------------------------------------+ |
|
539 | 3 | N\ :math:`_2` vibrational Raman | |
|
540 +------+--------------------------------------------------------------+ |
|
541 | 4 | N\ :math:`_2` vibrational Raman near range | |
|
542 +------+--------------------------------------------------------------+ |
|
543 | 5 | N\ :math:`_2` vibrational Raman far range | |
|
544 +------+--------------------------------------------------------------+ |
|
545 | 6 | Elastic polarization reflected | |
|
546 +------+--------------------------------------------------------------+ |
|
547 | 7 | Elastic polarization transmitted | |
|
548 +------+--------------------------------------------------------------+ |
|
549 | 8 | Rotational Raman line close to elastic line | |
|
550 +------+--------------------------------------------------------------+ |
|
551 | 9 | Rotational Raman line far from elastic line | |
|
552 +------+--------------------------------------------------------------+ |
|
553 | 10 | Elastic polarization reflected near range | |
|
554 +------+--------------------------------------------------------------+ |
|
555 | 11 | Elastic polarization reflected far range | |
|
556 +------+--------------------------------------------------------------+ |
|
557 | 12 | Elastic polarization transmitted near range | |
|
558 +------+--------------------------------------------------------------+ |
|
559 | 13 | Elastic polarization transmitted far range | |
|
560 +------+--------------------------------------------------------------+ |
|
561 | 14 | H\ :math:`_2`\ O vibrational Raman backscatter | |
|
562 +------+--------------------------------------------------------------+ |
|
563 | 15 | Rotational Raman line far from elastic line near range | |
|
564 +------+--------------------------------------------------------------+ |
|
565 | 16 | Rotational Raman line far from elastic line far range | |
|
566 +------+--------------------------------------------------------------+ |
|
567 | 17 | Rotational Raman line close to elastic line near range | |
|
568 +------+--------------------------------------------------------------+ |
|
569 | 18 | Rotational Raman line close to elastic line far range | |
|
570 +------+--------------------------------------------------------------+ |
|
571 | 19 | H\ :math:`_2`\ O vibrational Raman backscatter near range | |
|
572 +------+--------------------------------------------------------------+ |
|
573 | 20 | H\ :math:`_2`\ O vibrational Raman backscatter far range | |
|
574 +------+--------------------------------------------------------------+ |
|
575 | 21 | Total elastic ultra near range | |
|
576 +------+--------------------------------------------------------------+ |
|
577 | 22 | +45 rotated elastic polarization transmitted | |
|
578 +------+--------------------------------------------------------------+ |
|
579 | 23 | +45 rotated elastic polarization reflected | |
|
580 +------+--------------------------------------------------------------+ |
|
581 | 24 | -45 rotated elastic polarization transmitted | |
|
582 +------+--------------------------------------------------------------+ |
|
583 | 25 | -45 rotated elastic polarization reflected | |
|
584 +------+--------------------------------------------------------------+ |
|
585 | 26 | +45 rotated elastic polarization transmitted near range | |
|
586 +------+--------------------------------------------------------------+ |
|
587 | 27 | +45 rotated elastic polarization transmitted far range | |
|
588 +------+--------------------------------------------------------------+ |
|
589 | 28 | +45 rotated elastic polarization reflected near range | |
|
590 +------+--------------------------------------------------------------+ |
|
591 | 29 | +45 rotated elastic polarization reflected far range | |
|
592 +------+--------------------------------------------------------------+ |
|
593 | 30 | -45 rotated elastic polarization transmitted near range | |
|
594 +------+--------------------------------------------------------------+ |
|
595 | 31 | -45 rotated elastic polarization transmitted far range | |
|
596 +------+--------------------------------------------------------------+ |
|
597 | 32 | -45 rotated elastic polarization reflected near range | |
|
598 +------+--------------------------------------------------------------+ |
|
599 | 33 | -45 rotated elastic polarization reflected far range | |
|
600 +------+--------------------------------------------------------------+ |
|
601 |
|
602 | |
|
603 | This information can be also taken from SCC\_DB. In our example we |
|
604 have: |
|
605 |
|
606 :: |
|
607 |
|
608 Signal_Type = 0, 7, 6, 3 ; |
|
609 |
|
610 - | ``Acquisition_Mode(channels)`` |
|
611 | This optional array defines the acquisition mode (analog or |
|
612 photoncounting) involved in each lidar channel. In particular a |
|
613 value of 0 means analog mode and 1 photoncounting mode. This |
|
614 information can be also taken from SCC\_DB. In our example we have: |
|
615 |
|
616 :: |
|
617 |
|
618 Acquisition_Mode = 0, 1, 1, 1 ; |
|
619 |
|
620 - | ``Laser_Repetition_Rate(channels)`` |
|
621 | This optional array defines the repetition rate in Hz used to |
|
622 acquire each lidar channel. This information can be also taken from |
|
623 SCC\_DB. In our example we are supposing we have only one laser |
|
624 with a repetition rate of 50 Hz so we have to set: |
|
625 |
|
626 :: |
|
627 |
|
628 Laser_Repetition_Rate = 50, 50, 50, 50 ; |
|
629 |
|
630 - | ``Dead_Time(channels)`` |
|
631 | This optional array defines the dead time in ns associated to each |
|
632 lidar channel. The SCC will use the values given by this array to |
|
633 correct the photoncounting signals for dead time. Of course for |
|
634 analog signals no dead time correction will be applied (for analog |
|
635 channels the corresponding dead time values have to be set to |
|
636 undefined value). This information can be also taken from SCC\_DB. |
|
637 In our example the 1064 nm channel is acquired in analog mode so |
|
638 the corresponding dead time value has to be undefined. If we |
|
639 suppose a dead time of 10 ns for all other channels we have to set: |
|
640 |
|
641 :: |
|
642 |
|
643 Dead_Time = _, 10, 10, 10 ; |
|
644 |
|
645 - | ``Dead_Time_Corr_Type(channels)`` |
|
646 | This optional array defines which kind of dead time correction has |
|
647 to be applied on each photoncounting channel. The SCC will correct |
|
648 the data supposing a not-paralyzable channel if a value of 0 is |
|
649 found while a paralyzable channel is supposed if a value of 1 is |
|
650 found. Of course for analog signals no dead time correction will be |
|
651 applied and so the corresponding values have to be set to undefined |
|
652 value. This information can be also taken from SCC\_DB. In our |
|
653 example the 1064 nm channel is acquired in analog mode so the |
|
654 corresponding has to be undefined. If we want to consider all the |
|
655 photoncounting signals as not-paralyzable ones: we have to set: |
|
656 |
|
657 :: |
|
658 |
|
659 Dead_Time_Corr_Type = _, 0, 0, 0 ; |
|
660 |
|
661 - | ``Trigger_Delay(channels)`` |
|
662 | This optional array defines the delay (in ns) of the middle of the |
|
663 first rangebin with respect to the output laser pulse for each |
|
664 lidar channel. The SCC will use the values given by this array to |
|
665 correct for trigger delay. This information can be also taken from |
|
666 SCC\_DB. Let’s suppose that in our example all the photoncounting |
|
667 channels are not affected by this delay and only the analog channel |
|
668 at 1064nm is acquired with a delay of 50ns. In this case we have to |
|
669 set: |
|
670 |
|
671 :: |
|
672 |
|
673 Trigger_Delay = 50, 0, 0, 0 ; |
|
674 |
|
675 - | ``Background_Mode(channels)`` |
|
676 | This optional array defines how the atmospheric background has to |
|
677 be subtracted from the lidar channel. Two options are available for |
|
678 the calculation of atmospheric background: |
|
679 |
|
680 #. Average in the far field of lidar channel. In this case the value |
|
681 of this variable has to be 1 |
|
682 |
|
683 #. Average within pre-trigger bins. In this case the value of this |
|
684 variable has to be 0 |
|
685 |
|
686 This information can be also taken from SCC\_DB. Let’s suppose in our |
|
687 example we use the pre-trigger for the 1064nm channel and the far |
|
688 field for all other channels. In this case we have to set: |
|
689 |
|
690 :: |
|
691 |
|
692 Background_Mode = 0, 1, 1, 1 ; |
|
693 |
|
694 - | ``Background_Low(channels)`` |
|
695 | This mandatory array defines the minimum altitude (in meters) to |
|
696 consider in calculating the atmospheric background for each |
|
697 channel. In case pre-trigger mode is used the corresponding value |
|
698 has to be set to the rangebin to be used as lower limit (within |
|
699 pre-trigger region) for background calculation. In our example, if |
|
700 we want to calculate the background between 30000 and 50000 meters |
|
701 for all photoncounting channels and we want to use the first 500 |
|
702 pre-trigger bins for the background calculation for the 1064nm |
|
703 channel we have to set: |
|
704 |
|
705 :: |
|
706 |
|
707 Background_Low= 0, 30000, 30000, 30000 ; |
|
708 |
|
709 - | ``Background_High(channels)`` |
|
710 | This mandatory array defines the maximum altitude (in meters) to |
|
711 consider in calculating the atmospheric background for each |
|
712 channel. In case pre-trigger mode is used the corresponding value |
|
713 has to be set to the rangebin to be used as upper limit (within |
|
714 pre-trigger region) for background calculation. In our example, if |
|
715 we want to calculate the background between 30000 and 50000 meters |
|
716 for all photoncounting channels and we want to use the first 500 |
|
717 pre-trigger bins for the background calculation for the 1064nm |
|
718 channel we have to set: |
|
719 |
|
720 :: |
|
721 |
|
722 Background_High = 500, 50000, 50000, 50000 ; |
|
723 |
|
724 - | ``Molecular_Calc`` |
|
725 | This mandatory variable defines the way used by SCC to calculate |
|
726 the molecular density profile. At the moment two options are |
|
727 available: |
|
728 |
|
729 #. US Standard Atmosphere 1976. In this case the value of this |
|
730 variable has to be 0 |
|
731 |
|
732 #. Radiosounding. In this case the value of this variable has to be 1 |
|
733 |
|
734 If we decide to use the option 1. we have to provide also the |
|
735 measured pressure and temperature at lidar station level. Indeed if |
|
736 we decide to use the option 2. a radiosounding file has to be |
|
737 submitted separately in NetCDF format (the structure of this file is |
|
738 summarized in table 2 of the pdf file). Let’s suppose we want to use the |
|
739 option 1. so: |
|
740 |
|
741 :: |
|
742 |
|
743 Molecular_Calc = 0 ; |
|
744 |
|
745 - | ``Pressure_at_Lidar_Station`` |
|
746 | Because we have chosen the US Standard Atmosphere for calculation |
|
747 of the molecular density profile we have to give the pressure in |
|
748 hPa at lidar station level: |
|
749 |
|
750 :: |
|
751 |
|
752 Pressure_at_Lidar_Station = 1010 ; |
|
753 |
|
754 - | ``Temperature_at_Lidar_Station`` |
|
755 | Because we have chosen the US Standard Atmosphere for calculation |
|
756 of the molecular density profile we have to give the temperature in |
|
757 C at lidar station level: |
|
758 |
|
759 :: |
|
760 |
|
761 Temperature_at_Lidar_Station = 19.8 ; |
|
762 |
|
763 - | ``LR_Input(channels)`` |
|
764 | This array is required only for lidar channels for which elastic |
|
765 backscatter retrieval has to be performed. It defines the lidar |
|
766 ratio to be used within this retrieval. Two options are available: |
|
767 |
|
768 #. The user can submit a lidar ratio profile. In this case the value |
|
769 of this variable has to be 0. |
|
770 |
|
771 #. A fixed value of lidar ratio can be used. In this case the value |
|
772 of this variable has to be 1. |
|
773 |
|
774 If we decide to use the option 1. a lidar ratio file has to be |
|
775 submitted separately in NetCDF format (the structure of this file is |
|
776 summarized in table ). If we decide to use the option 2. the |
|
777 fixed value of lidar ratio will be taken from SCC\_DB. In our example |
|
778 we have to give a value of this array only for the 1064nm lidar |
|
779 channel because for the 532nm we will be able to retrieve a Raman |
|
780 backscatter coefficient. In case we want to use the fixed value |
|
781 stored in SCC\_DB we have to set: |
|
782 |
|
783 :: |
|
784 |
|
785 LR_Input = 1,_,_,_ ; |
|
786 |
|
787 - | ``DAQ_Range(channels)`` |
|
788 | This array is required only if one or more lidar signals are |
|
789 acquired in analog mode. It gives the analog scale in mV used to |
|
790 acquire the analog signals. In our example we have only the 1064nm |
|
791 channel acquired in analog mode. If we have used a 100mV analog |
|
792 scale to acquire this channel we have to set: |
|
793 |
|
794 :: |
|
795 |
|
796 DAQ_Range = 100,_,_,_ ; |
|
797 |
|
798 |
|
799 Global attributes |
|
800 ~~~~~~~~~~~~~~~~~ |
|
801 |
|
802 - | ``Measurement_ID`` |
|
803 | This mandatory global attribute defines the measurement ID |
|
804 corresponding to the actual lidar measurement. It is a string |
|
805 composed by 12 characters. The first 8 characters give the start |
|
806 date of measurement in the format YYYYMMDD. The next 2 characters |
|
807 give the Earlinet call-sign of the station. The last 2 characters |
|
808 are used to distinguish between different time-series within the |
|
809 same date. In our example we have to set: |
|
810 |
|
811 :: |
|
812 |
|
813 Measurement_ID= "20090130cc00" ; |
|
814 |
|
815 - | ``RawData_Start_Date`` |
|
816 | This mandatory global attribute defines the start date of lidar |
|
817 measurements in the format YYYYMMDD. In our case we have: |
|
818 |
|
819 :: |
|
820 |
|
821 RawData_Start_Date = "20090130" ; |
|
822 |
|
823 - | ``RawData_Start_Time_UT`` |
|
824 | This mandatory global attribute defines the UT start time of lidar |
|
825 measurements in the format HHMMSS. In our case we have: |
|
826 |
|
827 :: |
|
828 |
|
829 RawData_Start_Time_UT = "000001" ; |
|
830 |
|
831 - | ``RawData_Stop_Time_UT`` |
|
832 | This mandatory global attribute defines the UT stop time of lidar |
|
833 measurements in the format HHMMSS. In our case we have: |
|
834 |
|
835 :: |
|
836 |
|
837 RawData_Stop_Time_UT = "000501" ; |
|
838 |
|
839 - | ``RawBck_Start_Date`` |
|
840 | This optional global attribute defines the start date of dark |
|
841 measurements in the format YYYYMMDD. In our case we have: |
|
842 |
|
843 :: |
|
844 |
|
845 RawBck_Start_Date = "20090129" ; |
|
846 |
|
847 - | ``RawBck_Start_Time_UT`` |
|
848 | This optional global attribute defines the UT start time of dark |
|
849 measurements in the format HHMMSS. In our case we have: |
|
850 |
|
851 :: |
|
852 |
|
853 RawBck_Start_Time_UT = "235001" ; |
|
854 |
|
855 - | ``RawBck_Stop_Time_UT`` |
|
856 | This optional global attribute defines the UT stop time of dark |
|
857 measurements in the format HHMMSS. In our case we have: |
|
858 |
|
859 :: |
|
860 |
|
861 RawBck_Stop_Time_UT = "235301" ; |
|
862 |
|
863 |
|
864 Example of file (CDL format) |
|
865 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
866 |
|
867 To summarize we have the following NetCDF *Raw Lidar Data* file (in CDL |
|
868 format): |
|
869 |
|
870 :: |
|
871 |
|
872 dimensions: |
|
873 points = 5000 ; |
|
874 channels = 4 ; |
|
875 time = UNLIMITED ; // (10 currently) |
|
876 nb_of_time_scales = 2 ; |
|
877 scan_angles = 1 ; |
|
878 time_bck = 6 ; |
|
879 variables: |
|
880 int channel_ID(channels) ; |
|
881 int Laser_Repetition_Rate(channels) ; |
|
882 double Laser_Pointing_Angle(scan_angles) ; |
|
883 int Signal_Type(channels); |
|
884 double Emitted_Wavelength(channels) ; |
|
885 double Detected_Wavelength(channels) ; |
|
886 double Raw_Data_Range_Resolution(channels) ; |
|
887 int Background_Mode(channels) ; |
|
888 double Background_Low(channels) ; |
|
889 double Background_High(channels) ; |
|
890 int Molecular_Calc ; |
|
891 double Pressure_at_Lidar_Station ; |
|
892 double Temperature_at_Lidar_Station ; |
|
893 int id_timescale(channels) ; |
|
894 double Dead_Time(channels) ; |
|
895 int Dead_Time_Corr_Type(channels) ; |
|
896 int Acquisition_Mode(channels) ; |
|
897 double Trigger_Delay(channels) ; |
|
898 int LR_Input(channels) ; |
|
899 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
|
900 int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
|
901 int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
|
902 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
|
903 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
|
904 int Laser_Shots(time, channels) ; |
|
905 double Raw_Lidar_Data(time, channels, points) ; |
|
906 double Background_Profile(time_bck, channels, points) ; |
|
907 double DAQ_Range(channels) ; |
|
908 |
|
909 // global attributes: |
|
910 :Measurement_ID = "20090130cc00" ; |
|
911 :RawData_Start_Date = "20090130" ; |
|
912 :RawData_Start_Time_UT = "000001" ; |
|
913 :RawData_Stop_Time_UT = "000501" ; |
|
914 :RawBck_Start_Date = "20090129" ; |
|
915 :RawBck_Start_Time_UT = "235001" ; |
|
916 :RawBck_Stop_Time_UT = "235301" ; |
|
917 |
|
918 data: |
|
919 |
|
920 channel_ID = 7, 5, 6, 8 ; |
|
921 |
|
922 Laser_Repetition_Rate = 50, 50, 50, 50 ; |
|
923 |
|
924 Laser_Pointing_Angle = 5 ; |
|
925 |
|
926 Signal_Type = 0, 7, 6, 3 ; |
|
927 |
|
928 Emitted_Wavelength = 1064, 532, 532, 532 ; |
|
929 |
|
930 Detected_Wavelength = 1064, 532, 532, 607 ; |
|
931 |
|
932 Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ; |
|
933 |
|
934 Background_Mode = 0, 1, 1, 1 ; |
|
935 |
|
936 Background_Low = 0, 30000, 30000, 30000 ; |
|
937 |
|
938 Background_High = 500, 50000, 50000, 50000 ; |
|
939 |
|
940 Molecular_Calc = 0 ; |
|
941 |
|
942 Pressure_at_Lidar_Station = 1010 ; |
|
943 |
|
944 Temperature_at_Lidar_Station = 19.8 ; |
|
945 |
|
946 id_timescale = 1, 0, 0, 0 ; |
|
947 |
|
948 Dead_Time = _, 10, 10, 10 ; |
|
949 |
|
950 Dead_Time_Corr_Type = _, 0, 0, 0 ; |
|
951 |
|
952 Acquisition_Mode = 0, 1, 1, 1 ; |
|
953 |
|
954 Trigger_Delay = 50, 0, 0, 0 ; |
|
955 |
|
956 LR_Input = 1,_,_,_ ; |
|
957 |
|
958 DAQ_Range = 100,_,_,_ ; |
|
959 |
|
960 Laser_Pointing_Angle_of_Profiles = |
|
961 0, 0, |
|
962 0, 0, |
|
963 0, 0, |
|
964 0, 0, |
|
965 0, 0, |
|
966 _, 0, |
|
967 _, 0, |
|
968 _, 0, |
|
969 _, 0, |
|
970 _, 0 ; |
|
971 |
|
972 |
|
973 Raw_Data_Start_Time = |
|
974 0, 0, |
|
975 60, 30, |
|
976 120, 60, |
|
977 180, 90, |
|
978 240, 120, |
|
979 _, 150, |
|
980 _, 180, |
|
981 _, 210, |
|
982 _, 240, |
|
983 _, 270 ; |
|
984 |
|
985 Raw_Data_Stop_Time = |
|
986 60, 30, |
|
987 120, 60, |
|
988 180, 90, |
|
989 240, 120, |
|
990 300, 150, |
|
991 _, 180, |
|
992 _, 210, |
|
993 _, 240, |
|
994 _, 270, |
|
995 _, 300 ; |
|
996 |
|
997 |
|
998 Raw_Bck_Start_Time = |
|
999 0, 0, |
|
1000 60, 30, |
|
1001 120, 60, |
|
1002 _, 90, |
|
1003 _, 120, |
|
1004 _, 150; |
|
1005 |
|
1006 |
|
1007 Raw_Bck_Stop_Time = |
|
1008 60, 30, |
|
1009 120, 60, |
|
1010 180, 90, |
|
1011 _, 120, |
|
1012 _, 150, |
|
1013 _, 180 ; |
|
1014 |
|
1015 |
|
1016 Laser_Shots = |
|
1017 1500, 3000, 3000, 3000, |
|
1018 1500, 3000, 3000, 3000, |
|
1019 1500, 3000, 3000, 3000, |
|
1020 1500, 3000, 3000, 3000, |
|
1021 1500, 3000, 3000, 3000, |
|
1022 1500, _, _, _, |
|
1023 1500, _, _, _, |
|
1024 1500, _, _, _, |
|
1025 1500, _, _, _, |
|
1026 1500, _, _, _ ; |
|
1027 |
|
1028 |
|
1029 Raw_Lidar_Data = ... |
|
1030 |
|
1031 Background_Profile = ... |
|
1032 |
|
1033 The name of the input file should have the following format: |
|
1034 |
|
1035 :: |
|
1036 |
|
1037 Measurement_ID.nc |
|
1038 |
|
1039 | so in the example the filename should be 20090130cc00.nc. |
|
1040 |
|
1041 Please keep in mind that in case you submit a file like the previous |
|
1042 one all the parameters present in it will be used by the SCC even if |
|
1043 you have different values for the same parameters within the SCC\_DB. |
|
1044 If you want to use the values already stored in SCC\_DB (this should |
|
1045 be the usual way to use SCC) the *Raw Lidar Data* input file has to be |
|
1046 modified as follows: |
|
1047 |
|
1048 :: |
|
1049 |
|
1050 dimensions: |
|
1051 points = 5000 ; |
|
1052 channels = 4 ; |
|
1053 time = UNLIMITED ; // (10 currently) |
|
1054 nb_of_time_scales = 2 ; |
|
1055 scan_angles = 1 ; |
|
1056 time_bck = 6 ; |
|
1057 variables: |
|
1058 int channel_ID(channels) ; |
|
1059 double Laser_Pointing_Angle(scan_angles) ; |
|
1060 double Background_Low(channels) ; |
|
1061 double Background_High(channels) ; |
|
1062 int Molecular_Calc ; |
|
1063 double Pressure_at_Lidar_Station ; |
|
1064 double Temperature_at_Lidar_Station ; |
|
1065 int id_timescale(channels) ; |
|
1066 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; |
|
1067 int Raw_Data_Start_Time(time, nb_of_time_scales) ; |
|
1068 int Raw_Data_Stop_Time(time, nb_of_time_scales) ; |
|
1069 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; |
|
1070 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; |
|
1071 int LR_Input(channels) ; |
|
1072 int Laser_Shots(time, channels) ; |
|
1073 double Raw_Lidar_Data(time, channels, points) ; |
|
1074 double Background_Profile(time_bck, channels, points) ; |
|
1075 double DAQ_Range(channels) ; |
|
1076 |
|
1077 // global attributes: |
|
1078 :Measurement_ID = "20090130cc00" ; |
|
1079 :RawData_Start_Date = "20090130" ; |
|
1080 :RawData_Start_Time_UT = "000001" ; |
|
1081 :RawData_Stop_Time_UT = "000501" ; |
|
1082 :RawBck_Start_Date = "20090129" ; |
|
1083 :RawBck_Start_Time_UT = "235001" ; |
|
1084 :RawBck_Stop_Time_UT = "235301" ; |
|
1085 |
|
1086 data: |
|
1087 |
|
1088 channel_ID = 7, 5, 6, 8 ; |
|
1089 |
|
1090 Laser_Pointing_Angle = 5 ; |
|
1091 |
|
1092 Background_Low = 0, 30000, 30000, 30000 ; |
|
1093 |
|
1094 Background_High = 500, 50000, 50000, 50000 ; |
|
1095 |
|
1096 Molecular_Calc = 0 ; |
|
1097 |
|
1098 Pressure_at_Lidar_Station = 1010 ; |
|
1099 |
|
1100 Temperature_at_Lidar_Station = 19.8 ; |
|
1101 |
|
1102 id_timescale = 1, 0, 0, 0 ; |
|
1103 |
|
1104 LR_Input = 1,_,_,_ ; |
|
1105 |
|
1106 DAQ_Range = 100,_,_,_ ; |
|
1107 |
|
1108 Laser_Pointing_Angle_of_Profiles = |
|
1109 0, 0, |
|
1110 0, 0, |
|
1111 0, 0, |
|
1112 0, 0, |
|
1113 0, 0, |
|
1114 _, 0, |
|
1115 _, 0, |
|
1116 _, 0, |
|
1117 _, 0, |
|
1118 _, 0 ; |
|
1119 |
|
1120 |
|
1121 Raw_Data_Start_Time = |
|
1122 0, 0, |
|
1123 60, 30, |
|
1124 120, 60, |
|
1125 180, 90, |
|
1126 240, 120, |
|
1127 _, 150, |
|
1128 _, 180, |
|
1129 _, 210, |
|
1130 _, 240, |
|
1131 _, 270 ; |
|
1132 |
|
1133 Raw_Data_Stop_Time = |
|
1134 60, 30, |
|
1135 120, 60, |
|
1136 180, 90, |
|
1137 240, 120, |
|
1138 300, 150, |
|
1139 _, 180, |
|
1140 _, 210, |
|
1141 _, 240, |
|
1142 _, 270, |
|
1143 _, 300 ; |
|
1144 |
|
1145 |
|
1146 Raw_Bck_Start_Time = |
|
1147 0, 0, |
|
1148 60, 30, |
|
1149 120, 60, |
|
1150 _, 90, |
|
1151 _, 120, |
|
1152 _, 150; |
|
1153 |
|
1154 |
|
1155 Raw_Bck_Stop_Time = |
|
1156 60, 30, |
|
1157 120, 60, |
|
1158 180, 90, |
|
1159 _, 120, |
|
1160 _, 150, |
|
1161 _, 180 ; |
|
1162 |
|
1163 |
|
1164 Laser_Shots = |
|
1165 1500, 3000, 3000, 3000, |
|
1166 1500, 3000, 3000, 3000, |
|
1167 1500, 3000, 3000, 3000, |
|
1168 1500, 3000, 3000, 3000, |
|
1169 1500, 3000, 3000, 3000, |
|
1170 1500, _, _, _, |
|
1171 1500, _, _, _, |
|
1172 1500, _, _, _, |
|
1173 1500, _, _, _, |
|
1174 1500, _, _, _ ; |
|
1175 |
|
1176 |
|
1177 Raw_Lidar_Data = ... |
|
1178 |
|
1179 Background_Profile = ... |
|
1180 |
|
1181 This example file contains the minimum collection of mandatory |
|
1182 information that has to be found within the *Raw Lidar Data* input file. |
|
1183 If it is really necessary, the user can decide to add to these mandatory |
|
1184 parameters any number of additional parameters considered in the |
|
1185 previous example. |
|
1186 |
|
1187 Finally, suppose we want to make the following changes with respect to |
|
1188 the previous example: |
|
1189 |
|
1190 #. use a sounding file for molecular density calculation instead of “US |
|
1191 Standar Atmosphere 1976” |
|
1192 |
|
1193 #. supply a lidar ratio profile to use in elastic backscatter retrieval |
|
1194 instead of a fixed value |
|
1195 |
|
1196 #. provide a overlap function for overlap correction |
|
1197 |
|
1198 In this case we have to generate the following NetCDF additional files: |
|
1199 |
|
1200 - | ``rs_20090130cc00.nc`` |
|
1201 | The name of *Sounding Data* file has to be computed as follows: |
|
1202 | ``"rs_"``\ +\ ``Measurement_ID`` |
|
1203 | The structure of this file is summarized in table 2 of the pdf. |
|
1204 |
|
1205 - | ``ov_20090130cc00.nc`` |
|
1206 | The name of *Overlap* file has to be computed as follows: |
|
1207 | ``"ov_"``\ +\ ``Measurement_ID`` |
|
1208 | The structure of this file is summarized in table 3 of the pdf. |
|
1209 |
|
1210 - | ``lr_20090130cc00.nc`` |
|
1211 | The name of *Lidar Ratio* file has to be computed as follows: |
|
1212 | ``"lr_"``\ +\ ``Measurement_ID`` |
|
1213 | The structure of this file is summarized in table 4 of the pdf. |
|
1214 |
|
1215 Moreover we need to apply the following changes to the *Raw Lidar Data* |
|
1216 input file: |
|
1217 |
|
1218 #. Change the value of the variable ``Molecular_Calc`` as follows: |
|
1219 |
|
1220 :: |
|
1221 |
|
1222 Molecular_Calc = 1 ; |
|
1223 |
|
1224 Of course the variables ``Pressure_at_Lidar_Station`` and |
|
1225 ``Temperature_at_Lidar_Station`` are not necessary anymore. |
|
1226 |
|
1227 #. Change the values of the array ``LR_Input`` as follows: |
|
1228 |
|
1229 :: |
|
1230 |
|
1231 LR_Input = 0,_,_,_ ; |
|
1232 |
|
1233 #. Add the global attribute ``Sounding_File_Name`` |
|
1234 |
|
1235 :: |
|
1236 |
|
1237 Sounding_File_Name = "rs_20090130cc00.nc" ; |
|
1238 |
|
1239 #. Add the global attribute ``LR_File_Name`` |
|
1240 |
|
1241 :: |
|
1242 |
|
1243 LR_File_Name = "lr_20090130cc00.nc" ; |
|
1244 |
|
1245 #. Add the global attribute ``Overlap_File_Name`` |
|
1246 |
|
1247 :: |
|
1248 |
|
1249 Overlap_File_Name = "ov_20090130cc00.nc" ; |
|
1250 |
|