docs/depolarization/depolarization.rst

changeset 125
003aa42747f5
parent 117
e648de2b917e
child 144
72f0d92af2d1
--- a/docs/depolarization/depolarization.rst	Wed Mar 10 10:46:27 2021 +0200
+++ b/docs/depolarization/depolarization.rst	Fri Mar 19 13:43:18 2021 +0100
@@ -54,6 +54,7 @@
 
 .. math::
    \alpha_s P_s + \alpha_p P_p = P
+   :label: eq_totsig
 
 in two different atmospheric layers with considerably different *VLDR*. So to calibrate in this way the implementation of automatic layer identification in the SCC is required. As at moment this feature is not yet available within the SCC **ONLY** the method b) is considered.
 
@@ -99,26 +100,31 @@
 
 .. math::
    \eta^* = \frac{I_R}{I_T}(+45)
+   :label: eq_eta1
 
 While in case of :math:`\Delta90` calibration method:
 
 .. math::
    \eta^* = \sqrt{\frac{I_R}{I_T}(+45) \frac{I_R}{I_T}(-45)}
+   :label: eq_eta2
 
 **ELDA** module calculates the “apparent” *VLDR*:
 
 .. math::
    \delta^* = \frac{K}{\eta^*} \cdot \frac{I_R}{I_T}
+   :label: eq_delta1
 
 the *VLDR*
 
 .. math::
    \delta = \frac{\delta^*(G_T + H_T)-(G_R + H_R)}{(G_R - H_R) - \delta^*(G_T - H_T)}
+   :label: eq_delta2
 
 and the *PLDR*
 
 .. math::
    \delta_{\alpha} = \frac{(1 + \delta_m)\delta R - (1 + \delta)\delta_m}{(1 + \delta_m)R - (1 + \delta)}
+   :label: eq_pldr
 
 where:
 
@@ -140,6 +146,7 @@
 
 .. math::
    I_{total} \propto \frac{\frac{\eta^*}{K}H_R I_T - H_T I_R}{H_R G_T - H_T G_R}
+   :label: eq_Itot
 
 The formulas above are general and can be adapted to all possible polarization lidar configurations selecting the right polarization cross-talk correction parameters (see Table 1.1).
 

mercurial