--- a/docs/depolarization/depolarization.rst Wed Mar 10 10:46:27 2021 +0200 +++ b/docs/depolarization/depolarization.rst Fri Mar 19 13:43:18 2021 +0100 @@ -54,6 +54,7 @@ .. math:: \alpha_s P_s + \alpha_p P_p = P + :label: eq_totsig in two different atmospheric layers with considerably different *VLDR*. So to calibrate in this way the implementation of automatic layer identification in the SCC is required. As at moment this feature is not yet available within the SCC **ONLY** the method b) is considered. @@ -99,26 +100,31 @@ .. math:: \eta^* = \frac{I_R}{I_T}(+45) + :label: eq_eta1 While in case of :math:`\Delta90` calibration method: .. math:: \eta^* = \sqrt{\frac{I_R}{I_T}(+45) \frac{I_R}{I_T}(-45)} + :label: eq_eta2 **ELDA** module calculates the “apparent” *VLDR*: .. math:: \delta^* = \frac{K}{\eta^*} \cdot \frac{I_R}{I_T} + :label: eq_delta1 the *VLDR* .. math:: \delta = \frac{\delta^*(G_T + H_T)-(G_R + H_R)}{(G_R - H_R) - \delta^*(G_T - H_T)} + :label: eq_delta2 and the *PLDR* .. math:: \delta_{\alpha} = \frac{(1 + \delta_m)\delta R - (1 + \delta)\delta_m}{(1 + \delta_m)R - (1 + \delta)} + :label: eq_pldr where: @@ -140,6 +146,7 @@ .. math:: I_{total} \propto \frac{\frac{\eta^*}{K}H_R I_T - H_T I_R}{H_R G_T - H_T G_R} + :label: eq_Itot The formulas above are general and can be adapted to all possible polarization lidar configurations selecting the right polarization cross-talk correction parameters (see Table 1.1).