--- a/docs/_build/html/netcdf_file.html Fri May 11 14:11:05 2012 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1352 +0,0 @@ - -<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" - "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> - - -<html xmlns="http://www.w3.org/1999/xhtml"> - <head> - <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> - - <title>The SCC netCDF file format — Single Calculus Chain 0.2 documentation</title> - - <link rel="stylesheet" href="_static/nature.css" type="text/css" /> - <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> - - <script type="text/javascript"> - var DOCUMENTATION_OPTIONS = { - URL_ROOT: '', - VERSION: '0.2', - COLLAPSE_INDEX: false, - FILE_SUFFIX: '.html', - HAS_SOURCE: true - }; - </script> - <script type="text/javascript" src="_static/jquery.js"></script> - <script type="text/javascript" src="_static/underscore.js"></script> - <script type="text/javascript" src="_static/doctools.js"></script> - <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> - <link rel="top" title="Single Calculus Chain 0.2 documentation" href="index.html" /> - <link rel="next" title="User management" href="user_management.html" /> - <link rel="prev" title="View processing results" href="details/viewing_measurements.html" /> - </head> - <body> - <div class="related"> - <h3>Navigation</h3> - <ul> - <li class="right" style="margin-right: 10px"> - <a href="genindex.html" title="General Index" - accesskey="I">index</a></li> - <li class="right" > - <a href="user_management.html" title="User management" - accesskey="N">next</a> |</li> - <li class="right" > - <a href="details/viewing_measurements.html" title="View processing results" - accesskey="P">previous</a> |</li> - <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> - </ul> - </div> - - <div class="document"> - <div class="documentwrapper"> - <div class="bodywrapper"> - <div class="body"> - - <div class="section" id="the-scc-netcdf-file-format"> -<h1>The SCC netCDF file format<a class="headerlink" href="#the-scc-netcdf-file-format" title="Permalink to this headline">¶</a></h1> -<div class="section" id="rationale"> -<h2>Rationale<a class="headerlink" href="#rationale" title="Permalink to this headline">¶</a></h2> -<p>The Single Calculus Chain (SCC) is composed by two different modules:</p> -<ul class="simple"> -<li>pre-processing module ( scc_preprocessing)</li> -<li>optical processing module ( ELDA)</li> -</ul> -<p>To perfom aerosol optical retrievals the SCC needs not only the raw -lidar data but also a certain number of parameters to use in both -pre-processing and optical processing stages. The SCC gets these -parameters looking at two different locations:</p> -<ul class="simple"> -<li>Single Calculus Chain relational database (SCC_DB)</li> -<li>Input files</li> -</ul> -<p>There are some paramenters that can be found only in the input files -(those ones changing from measurement to measurement), others that can -be found only in the SCC_DB and other ones that can be found in both -these locations. In the last case, if a particular parameter is needed, -the SCC will search first in the input files and then in SCC_DB. If the -parameter is found in the input files the SCC will keep it without -looking into SCC_DB.</p> -<p>The input files have to be submitted to the SCC in NetCDF format. At the -present the SCC can handle four different types of input files:</p> -<ol class="arabic simple"> -<li>Raw Lidar Data</li> -<li>Sounding Data</li> -<li>Overlap</li> -<li>Lidar Ratio</li> -</ol> -<p>As already mentioned, the Raw Lidar Data file contains not only the -raw lidar data but also other parameters to use to perform the -pre-processing and optical processing. The Sounding Data file -contains the data coming from a correlative radiosounding and it is used -by the SCC for molecular density calculation. The Overlap file -contains the measured overlap function. The Lidar Ratio file contains -a lidar ratio profile to use in elastic backscatter retrievals. The -Raw Lidar Data file is of course mandatory and the Sounding Data, -Overlap and Lidar Ratio files are optional. If Sounding Data file -is not submitted by the user, the molecular density will be calculated -by the SCC using the “US Standard Atmosphere 1976”. If the Overlap -file is not submitted by the user, the SCC will get the full overlap -height from SCC_DB and it will produce optical results starting from -this height. If Lidar Ratio file is not submitted by the user, the -SCC will consider a fixed value for lidar ratio got from SCC_DB.</p> -<p>The user can decide to submit all these files or any number of them (of -course the file Raw Lidar Data is mandatory). For example the user -can submit together with the Raw Lidar Data file only the Sounding -Data file or only the Overlap file.</p> -<p>This document provides a detailed explanation about the structure of the -NetCDF input files to use for SCC data submission. All Earlinet groups -should read it carefully because they have to produce such kind of input -files if they want to use the SCC for their standard lidar retrievals. -Every comments or suggestions regarding this document can be sent to -Giuseppe D’Amico by e-mail at <tt class="docutils literal"><span class="pre">damico@imaa.cnr.it</span></tt></p> -<p>This document is available for downloading at <tt class="docutils literal"><span class="pre">www.earlinetasos.org</span></tt></p> -<p>In table tab:rawdata is reported a list of dimensions, variables and -global attributes that can be used in the NetCDF Raw Lidar Data input -file. For each of them it is indicated:</p> -<ul class="simple"> -<li>The name. For the multidimensional variables also the corresponding -dimensions are reported</li> -<li>A description explaining the meaning</li> -<li>The type</li> -<li>If it is mandatory or optional</li> -</ul> -<p>As already mentioned, the SCC can get some parameters looking first in -the Raw Lidar Data input file and then into SCC_DB. This means that -to use the parameters stored in SCC_DB the optional variables or -optional global attributes must not appear within Raw Lidar Data -file. This is the suggested and recommended way to use the SCC. Please -include optional parameters in the Raw Lidar Data only as an -exception.</p> -<p>In table tab:sounding, tab:overlap and tab:lr are reported all the -information about the structure of Sounding Data, Overlap and -Lidar Ratio input files respectively.</p> -</div> -<div class="section" id="example"> -<h2>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h2> -<p>Let’s now consider an example of Raw Lidar Data input file. Suppose -we want to generate NetCDF input file corresponding to a measurement -with the following properties:</p> -<table border="1" class="docutils"> -<colgroup> -<col width="34%" /> -<col width="66%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td>Start Date</td> -<td><span class="math">\(30^{th}\)</span> January 2009</td> -</tr> -<tr class="row-even"><td>Start Time UT</td> -<td>00:00:01</td> -</tr> -<tr class="row-odd"><td>Stop Time UT</td> -<td>00:05:01</td> -</tr> -<tr class="row-even"><td>Station Name</td> -<td>Dummy station</td> -</tr> -<tr class="row-odd"><td>Earlinet call-sign</td> -<td>cc</td> -</tr> -<tr class="row-even"><td>Pointing angle</td> -<td>5 degrees with respect to the zenith</td> -</tr> -</tbody> -</table> -<p>Moreover suppose that this measurement is composed by the following -lidar channels:</p> -<ol class="arabic"> -<li><p class="first">1064 lidar channel</p> -<table border="1" class="docutils"> -<colgroup> -<col width="49%" /> -<col width="51%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td><p class="first last">Emission wavelength=1064nm</p> -</td> -<td><p class="first last">Detection wavelength=1064nm</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Time resolution=30s</p> -</td> -<td><p class="first last">Number of laser shots=1500</p> -</td> -</tr> -<tr class="row-odd"><td><p class="first last">Number of bins=3000</p> -</td> -<td><p class="first last">Detection mode=analog</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Range resolution=7.5m</p> -</td> -<td><p class="first last">Polarization state=total</p> -</td> -</tr> -</tbody> -</table> -</li> -<li><p class="first">532 cross lidar channel</p> -<table border="1" class="docutils"> -<colgroup> -<col width="47%" /> -<col width="53%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> -</td> -<td><p class="first last">Detection wavelength=532nm</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Time resolution=60s</p> -</td> -<td><p class="first last">Number of laser shots=3000</p> -</td> -</tr> -<tr class="row-odd"><td><p class="first last">Number of bins=5000</p> -</td> -<td><p class="first last">Detection mode=photoncounting</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Range resolution=15m</p> -</td> -<td><p class="first last">Polarization state=cross</p> -</td> -</tr> -</tbody> -</table> -</li> -<li><p class="first">532 parallel lidar channel</p> -<table border="1" class="docutils"> -<colgroup> -<col width="47%" /> -<col width="53%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> -</td> -<td><p class="first last">Detection wavelength=532nm</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Time resolution=60s</p> -</td> -<td><p class="first last">Number of laser shots=3000</p> -</td> -</tr> -<tr class="row-odd"><td><p class="first last">Number of bins=5000</p> -</td> -<td><p class="first last">Detection mode=photoncounting</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Range resolution=15m</p> -</td> -<td><p class="first last">Polarization state=parallel</p> -</td> -</tr> -</tbody> -</table> -</li> -<li><p class="first">607 <span class="math">\(N_2\)</span> vibrational Raman channel</p> -<table border="1" class="docutils"> -<colgroup> -<col width="47%" /> -<col width="53%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> -</td> -<td><p class="first last">Detection wavelength=607nm</p> -</td> -</tr> -<tr class="row-even"><td><p class="first last">Time resolution=60s</p> -</td> -<td><p class="first last">Number of laser shots=3000</p> -</td> -</tr> -<tr class="row-odd"><td><p class="first last">Number of bins=5000</p> -</td> -<td><p class="first last">Detection mode=photoncounting</p> -</td> -</tr> -<tr class="row-even"><td colspan="2"><p class="first last">Range resolution=15m</p> -</td> -</tr> -</tbody> -</table> -</li> -</ol> -<p>Finally let’s assume we have also performed dark measurements before the -lidar measurements from the 23:50:01 UT up to 23:53:01 UT of -29:math:<cite>^mathrmth</cite> January 2009.</p> -<div class="section" id="dimensions"> -<h3>Dimensions<a class="headerlink" href="#dimensions" title="Permalink to this headline">¶</a></h3> -<p>Looking at table tab:rawdata we have to fix the following dimensions:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">points</span> -<span class="n">channels</span> -<span class="n">time</span> -<span class="n">nb_of_time_scales</span> -<span class="n">scan_angles</span> -<span class="n">time_bck</span> -</pre></div> -</div> -<p>The dimension <tt class="docutils literal"><span class="pre">time</span></tt> is unlimited so we don’t have to fix it.</p> -<p>We have 4 lidar channels so:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">channels</span><span class="o">=</span><span class="mi">4</span> -</pre></div> -</div> -<p>Regarding the dimension <tt class="docutils literal"><span class="pre">points</span></tt> we have only one channel with a -number of vertical bins equal to 3000 (the 1064nm) and all other -channels with 5000 vertical bins. In cases like this the dimension -<tt class="docutils literal"><span class="pre">points</span></tt> has to be fixed to the maximum number of vertical bins so:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">points</span><span class="o">=</span><span class="mi">5000</span> -</pre></div> -</div> -<p>Moreover only one channel (1064nm) is acquired with a time resolution of -30 seconds, all the other channels have a time resolution of 60 seconds. -This means that we have to define two different time scales. We have to -set:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">nb_of_time_scales</span><span class="o">=</span><span class="mi">2</span> -</pre></div> -</div> -<p>The measurement is performed only at one scan angle (5 degrees with -respect to the zenith) so:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">scan_angles</span><span class="o">=</span><span class="mi">1</span> -</pre></div> -</div> -<p>We have 3 minutes of dark measurements and two different time scales one -with 60 seconds time resolution and the other one with 30 seconds time -resolution. So we will have 3 different dark profiles for the channels -acquired with the first time scale and 6 for the lidar channels acquired -with the second time scale. We have to fix the dimension <tt class="docutils literal"><span class="pre">time_bck</span></tt> as -the maximum between these values:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">time_bck</span><span class="o">=</span><span class="mi">6</span> -</pre></div> -</div> -</div> -<div class="section" id="variables"> -<h3>Variables<a class="headerlink" href="#variables" title="Permalink to this headline">¶</a></h3> -<p>In this section it will be explained how to fill all the possible -variables either mandatory or optional of Raw Lidar Data input file.</p> -<dl class="docutils"> -<dt>Raw_Data_Start_Time(time, nb_of_time_scales)</dt> -<dd><p class="first">This 2 dimensional mandatory array has to contain the acquisition -start time (in seconds from the time given by the global attribute -<tt class="docutils literal"><span class="pre">RawData_Start_Time_UT</span></tt>) of each lidar profile. In this example we -have two different time scales: one is characterized by steps of 30 -seconds (the 1064nm is acquired with this time scale) the other by -steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the -measurement start time is 00:00:01 UT and the measurement stop time -is 00:05:01 UT. In this case we have to define:</p> -<div class="highlight-python"><pre>Raw_Data_Start_Time = - 0, 0, - 60, 30, - 120, 60, - 180, 90, - 240, 120, - _, 150, - _, 180, - _, 210, - _, 240, - _, 270 ;</pre> -</div> -<p class="last">The order used to fill this array defines the correspondence between -the different time scales and the time scale index. In this example -we have a time scale index of 0 for the time scale with steps of 60 -seconds and a time scale index of 1 for the other one.</p> -</dd> -<dt>Raw_Data_Stop_Time(time, nb_of_time_scales)</dt> -<dd><p class="first">The same as previous item but for the data acquisition stop time. -Following a similar procedure we have to define:</p> -<div class="last highlight-python"><pre>Raw_Data_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - 240, 120, - 300, 150, - _, 180, - _, 210, - _, 240, - _, 270, - _, 300 ;</pre> -</div> -</dd> -<dt>Raw_Lidar_Data(time, channels, points)</dt> -<dd><p class="first">This 3 dimensional mandatory array has to be filled with the -time-series of raw lidar data. The photoncounting profiles have to -submitted in counts (so as integers) while the analog ones in mV. The -order the user chooses to fill this array defines the correspondence -between channel index and lidar data.</p> -<p>For example if we fill this array in such way that:</p> -<table border="1" class="docutils"> -<colgroup> -<col width="38%" /> -<col width="62%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td>Raw_Lidar_Data(time,0,points</td> -<td><span class="math">\(\rightarrow\)</span> is the time-series of 1064 nm</td> -</tr> -<tr class="row-even"><td>Raw_Lidar_Data(time,1,points</td> -<td><span class="math">\(\rightarrow\)</span> is the time-series of 532 cross</td> -</tr> -<tr class="row-odd"><td>Raw_Lidar_Data(time,2,points</td> -<td><span class="math">\(\rightarrow\)</span> is the time-series of 532 parallel</td> -</tr> -<tr class="row-even"><td>Raw_Lidar_Data(time,3,points</td> -<td><span class="math">\(\rightarrow\)</span> is the time-series of 607 nm</td> -</tr> -</tbody> -</table> -<p class="last">from now on the channel index 0 is associated to the 1064 channel, -1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.</p> -</dd> -<dt>Raw_Bck_Start_Time(time_bck, nb_of_time_scales)</dt> -<dd><p class="first">This 2 dimensional optional array has to contain the acquisition -start time (in seconds from the time given by the global attribute -<tt class="docutils literal"><span class="pre">RawBck_Start_Time_UT</span></tt>) of each dark measurements profile. -Following the same procedure used for the variable -<tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> we have to define:</p> -<div class="last highlight-python"><pre>Raw_Bck_Start_Time = - 0, 0, - 60, 30, - 120, 60, - _, 90, - _, 120, - _, 150;</pre> -</div> -</dd> -<dt>Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)</dt> -<dd><p class="first">The same as previous item but for the dark acquisition stop time. -Following a similar procedure we have to define:</p> -<div class="last highlight-python"><pre>Raw_Bck_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - _, 120, - _, 150, - _, 180 ;</pre> -</div> -</dd> -<dt>Background_Profile(time_bck, channels, points)</dt> -<dd><p class="first">This 3 dimensional optional array has to be filled with the -time-series of the dark measurements data. The photoncounting -profiles have to submitted in counts (so as integers) while the -analog ones in mV. The user has to fill this array following the same -order used in filling the array <tt class="docutils literal"><span class="pre">Raw_Lidar_Data</span></tt>:</p> -<table border="1" class="last docutils"> -<colgroup> -<col width="44%" /> -<col width="56%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td>Background_Profile(time_bck,0,points</td> -<td><span class="math">\(\rightarrow\)</span> dark time-series at 1064 nm</td> -</tr> -<tr class="row-even"><td>Background_Profile(time_bck,1,points</td> -<td><span class="math">\(\rightarrow\)</span> dark time-series at 532 cross</td> -</tr> -<tr class="row-odd"><td>Background_Profile(time_bck,2,points</td> -<td><span class="math">\(\rightarrow\)</span> dark time-series at 532 parallel</td> -</tr> -<tr class="row-even"><td>Background_Profile(time_bck,3,points</td> -<td><span class="math">\(\rightarrow\)</span> dark time-series at 607 nm</td> -</tr> -</tbody> -</table> -</dd> -<dt>channel_ID(channels)</dt> -<dd><p class="first">This mandatory array provides the link between the channel index -within the Raw Lidar Data input file and the channel ID in -SCC_DB. To fill this variable the user has to know which channel IDs -in SCC_DB correspond to his lidar channels. For this purpose the -SCC, in its final version will provide to the user a special tool to -get these channel IDs through a Web interface. At the moment this -interface is not yet available and these channel IDs will be -communicated directly to the user by the NA5 people.</p> -<p>Anyway to continue the example let’s suppose that the four lidar -channels taken into account are mapped into SCC_DB with the -following channel IDs:</p> -<table border="1" class="docutils"> -<colgroup> -<col width="30%" /> -<col width="70%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td>1064 nm</td> -<td><span class="math">\(\rightarrow\)</span> channel ID=7</td> -</tr> -<tr class="row-even"><td>532 cross</td> -<td><span class="math">\(\rightarrow\)</span> channel ID=5</td> -</tr> -<tr class="row-odd"><td>532 parallel</td> -<td><span class="math">\(\rightarrow\)</span> channel ID=6</td> -</tr> -<tr class="row-even"><td>607 nm</td> -<td><span class="math">\(\rightarrow\)</span> channel ID=8</td> -</tr> -</tbody> -</table> -<blockquote> -<div>In this case we have to define:</div></blockquote> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">channel_ID</span> <span class="o">=</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>id_timescale(channels)</dt> -<dd><p class="first">This mandatory array is introduced to determine which time scale is -used for the acquisition of each lidar channel. In particular this -array defines the link between the channel index and the time scale -index. In our example we have two different time scales. Filling the -arrays <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> and <tt class="docutils literal"><span class="pre">Raw_Data_Stop_Time</span></tt> we have -defined a time scale index of 0 for the time scale with steps of 60 -seconds and a time scale index of 1 for the other one with steps of -30 seconds. In this way this array has to be set as:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">id_timescale</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Laser_Pointing_Angle(scan_angles</dt> -<dd><p class="first">This mandatory array contains all the scan angles used in the -measurement. In our example we have only one scan angle of 5 degrees -with respect to the zenith, so we have to define:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Pointing_Angle</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)</dt> -<dd><p class="first">This mandatory array is introduced to determine which scan angle is -used for the acquisition of each lidar profile. In particular this -array defines the link between the time and time scales indexes and -the scan angle index. In our example we have a single scan angle that -has to correspond to the scan angle index 0. So this array has to be -defined as:</p> -<div class="last highlight-python"><pre>Laser_Pointing_Angle_of_Profiles = - 0, 0, - 0, 0, - 0, 0, - 0, 0, - 0, 0, - _, 0, - _, 0, - _, 0, - _, 0, - _, 0 ;</pre> -</div> -</dd> -<dt>Laser_Shots(time, channels)</dt> -<dd><p class="first">This mandatory array stores the laser shots accumulated at each time -for each channel. In our example the number of laser shots -accumulated is 1500 for the 1064nm channels and 3000 for all the -other channels. Moreover the laser shots do not change with the time. -So we have to define this array as:</p> -<div class="last highlight-python"><pre>Laser_Shots = - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _ ;</pre> -</div> -</dd> -<dt>Emitted_Wavelength(channels)</dt> -<dd><p class="first">This optional array defines the link between the channel index and -the emission wavelength for each lidar channel. The wavelength has to -be expressed in nm. This information can be also taken from SCC_DB. -In our example we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Emitted_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Detected_Wavelength(channels)</dt> -<dd><p class="first">This optional array defines the link between the channel index and -the detected wavelength for each lidar channel. Here detected -wavelength means the value of center of interferential filter -expressed in nm. This information can be also taken from SCC_DB. In -our example we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Detected_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">607</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Raw_Data_Range_Resolution(channels)</dt> -<dd><p class="first">This optional array defines the link between the channel index and -the raw range resolution for each channel. If the scan angle is -different from zero this quantity is different from the vertical -resolution. More precisely if <span class="math">\(\alpha\)</span> is the scan angle used -and <span class="math">\(\Delta z\)</span> is the range resolution the vertical -resolution is calculated as <span class="math">\(\Delta -z'=\Delta z \cos\alpha\)</span>. This array has to be filled with -<span class="math">\(\Delta z\)</span> and not with <span class="math">\(\Delta z'\)</span>. The unit is -meters. This information can be also taken from SCC_DB. In our -example we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Raw_Data_Range_Resolution</span> <span class="o">=</span> <span class="mf">7.5</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>ID_Range(channels)</dt> -<dd><p class="first">This optional array defines if a particular channel is configured as -high, low or ultranear range channel. In particular a value 0 -indicates a low range channel, a value 1 a high range channel and a -value of 2 an ultranear range channel. If for a particular channel -you don’t separate between high and low range channel, please set the -corresponding value to 1. This information can be also taken from -SCC_DB. In our case we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">ID_Range</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Scattering_Mechanism(channels)</dt> -<dd><p class="first">This optional array defines the scattering mechanism involved in -each lidar channel. In particular the following values are adopted:</p> -<table border="1" class="docutils"> -<colgroup> -<col width="6%" /> -<col width="94%" /> -</colgroup> -<tbody valign="top"> -<tr class="row-odd"><td>0</td> -<td><span class="math">\(\rightarrow\)</span> Total elastic backscatter</td> -</tr> -<tr class="row-even"><td>1</td> -<td><span class="math">\(\rightarrow\)</span> <span class="math">\(N_2\)</span> vibrational Raman backscatter</td> -</tr> -<tr class="row-odd"><td>2</td> -<td><span class="math">\(\rightarrow\)</span> Cross polarization elastic backscatter</td> -</tr> -<tr class="row-even"><td>3</td> -<td><span class="math">\(\rightarrow\)</span> Parallel polarization elastic backscatter</td> -</tr> -<tr class="row-odd"><td>4</td> -<td><span class="math">\(\rightarrow\)</span> <span class="math">\(H_2O\)</span> vibrational Raman backscatter</td> -</tr> -<tr class="row-even"><td>5</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line close to elastic line</td> -</tr> -<tr class="row-odd"><td>6</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line far from elastic line</td> -</tr> -<tr class="row-even"><td>7</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line close to elastic line</td> -</tr> -<tr class="row-odd"><td>8</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line far from elastic line</td> -</tr> -<tr class="row-even"><td>9</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines close to elastic line</td> -</tr> -<tr class="row-odd"><td>10</td> -<td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines far from elastic line</td> -</tr> -</tbody> -</table> -<p>This information can be also taken from SCC_DB. In our example we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Scattering_Mechanism</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Acquisition_Mode(channels)</dt> -<dd><p class="first">This optional array defines the acquisition mode (analog or -photoncounting) involved in each lidar channel. In particular a value -of 0 means analog mode and 1 photoncounting mode. This information -can be also taken from SCC_DB. In our example we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Acquisition_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Laser_Repetition_Rate(channels)</dt> -<dd><p class="first">This optional array defines the repetition rate in Hz used to -acquire each lidar channel. This information can be also taken from -SCC_DB. In our example we are supposing we have only one laser with -a repetition rate of 50 Hz so we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Repetition_Rate</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Dead_Time(channels)</dt> -<dd><p class="first">This optional array defines the dead time in ns associated to each -lidar channel. The SCC will use the values given by this array to -correct the photoncounting signals for dead time. Of course for -analog signals no dead time correction will be applied (for analog -channels the corresponding dead time values have to be set to -undefined value). This information can be also taken from SCC_DB. In -our example the 1064 nm channel is acquired in analog mode so the -corresponding dead time value has to be undefined. If we suppose a -dead time of 10 ns for all other channels we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Dead_Time_Corr_Type(channels</dt> -<dd><p class="first">This optional array defines which kind of dead time correction has -to be applied on each photoncounting channel. The SCC will correct -the data supposing a not-paralyzable channel if a value of 0 is found -while a paralyzable channel is supposed if a value of 1 is found. Of -course for analog signals no dead time correction will be applied and -so the corresponding values have to be set to undefined value. This -information can be also taken from SCC_DB. In our example the 1064 -nm channel is acquired in analog mode so the corresponding has to be -undefined. If we want to consider all the photoncounting signals as -not-paralyzable ones: we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time_Corr_Type</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Trigger_Delay(channels)</dt> -<dd><p class="first">This optional array defines the delay (in ns) of the middle of the -first rangebin with respect to the output laser pulse for each lidar -channel. The SCC will use the values given by this array to correct -for trigger delay. This information can be also taken from SCC_DB. -Let’s suppose that in our example all the photoncounting channels are -not affected by this delay and only the analog channel at 1064nm is -acquired with a delay of 50ns. In this case we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Trigger_Delay</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Background_Mode(channels</dt> -<dd><p class="first">This optional array defines how the atmospheric background has to be -subtracted from the lidar channel. Two options are available for the -calculation of atmospheric background:</p> -<ol class="arabic simple"> -<li>Average in the far field of lidar channel. In this case the value -of this variable has to be 1</li> -<li>Average within pre-trigger bins. In this case the value of this -variable has to be 0</li> -</ol> -<p>This information can be also taken from SCC_DB. Let’s suppose in our -example we use the pre-trigger for the 1064nm channel and the far -field for all other channels. In this case we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Background_Low(channels)</dt> -<dd><p class="first">This mandatory array defines the minimum altitude (in meters) to -consider in calculating the atmospheric background for each channel. -In case pre-trigger mode is used the corresponding value has to be -set to the rangebin to be used as lower limit (within pre-trigger -region) for background calculation. In our example, if we want to -calculate the background between 30000 and 50000 meters for all -photoncounting channels and we want to use the first 500 pre-trigger -bins for the background calculation for the 1064nm channel we have to -set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Low</span><span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Background_High(channels)</dt> -<dd><p class="first">This mandatory array defines the maximum altitude (in meters) to -consider in calculating the atmospheric background for each channel. -In case pre-trigger mode is used the corresponding value has to be -set to the rangebin to be used as upper limit (within pre-trigger -region) for background calculation. In our example, if we want to -calculate the background between 30000 and 50000 meters for all -photoncounting channels and we want to use the first 500 pre-trigger -bins for the background calculation for the 1064nm channel we have to -set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_High</span> <span class="o">=</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Molecular_Calc</dt> -<dd><p class="first">This mandatory variable defines the way used by SCC to calculate the -molecular density profile. At the moment two options are available:</p> -<ol class="arabic simple"> -<li>US Standard Atmosphere 1976. In this case the value of this -variable has to be 0</li> -<li>Radiosounding. In this case the value of this variable has to be 1</li> -</ol> -<p>If we decide to use the option 1. we have to provide also the -measured pressure and temperature at lidar station level. Indeed if -we decide to use the option 2. a radiosounding file has to be -submitted separately in NetCDF format (the structure of this file is -summarized in table tab:sounding). Let’s suppose we want to use the -option 1. so:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">0</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Pressure_at_Lidar_Station</dt> -<dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of -the molecular density profile we have to give the pressure in hPa at -lidar station level:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Pressure_at_Lidar_Station</span> <span class="o">=</span> <span class="mi">1010</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Temperature_at_Lidar_Station</dt> -<dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of -the molecular density profile we have to give the temperature in C at -lidar station level:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Temperature_at_Lidar_Station</span> <span class="o">=</span> <span class="mf">19.8</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>Depolarization_Factor(channels)</dt> -<dd><p class="first">This array is required only for lidar systems that use the two -depolarization channels for the backscatter retrieval. It represents -the factor <span class="math">\(f\)</span> to calculate the total backscatter signal -<span class="math">\(S_t\)</span> combining its cross <span class="math">\(S_c\)</span> and parallel -<span class="math">\(S_p\)</span> components: <span class="math">\(S_t=S_p+fS_c\)</span>. This factor is -mandatory only for systems acquiring <span class="math">\(S_c\)</span> and <span class="math">\(S_p\)</span> -and not <span class="math">\(S_t\)</span>. For systems acquiring <span class="math">\(S_c\)</span>, -<span class="math">\(S_p\)</span> and <span class="math">\(S_t\)</span> this factor is optional and it will -be used only for depolarizaton ratio calculation. Moreover only the -values of the array corresponding to cross polarization channels will -be considered; all other values will be not taken into account and -should be set to undefined value. In our example for the wavelength -532nm we have only the cross and the parallel components and not the -total one. So we have to give the value of this factor only in -correspondence of the 532nm cross polarization channel that -corresponds to the channel index 1. Suppose that this factor is 0.88. -Moreover, because we don’t have any other depolarization channels we -have also to set all other values of the array to undefined value.</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Depolarization_Factor</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span><span class="mf">0.88</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>LR_Input(channels)</dt> -<dd><p class="first">This array is required only for lidar channels for which elastic -backscatter retrieval has to be performed. It defines the lidar ratio -to be used within this retrieval. Two options are available:</p> -<ol class="arabic simple"> -<li>The user can submit a lidar ratio profile. In this case the value -of this variable has to be 0.</li> -<li>A fixed value of lidar ratio can be used. In this case the value -of this variable has to be 1.</li> -</ol> -<p>If we decide to use the option 1. a lidar ratio file has to be -submitted separately in NetCDF format (the structure of this file is -summarized in table tab:lr). If we decide to use the option 2. the -fixed value of lidar ratio will be taken from SCC_DB. In our example -we have to give a value of this array only for the 1064nm lidar -channel because for the 532nm we will be able to retrieve a Raman -backscatter coefficient. In case we want to use the fixed value -stored in SCC_DB we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>DAQ_Range(channels)</dt> -<dd><p class="first">This array is required only if one or more lidar signals are -acquired in analog mode. It gives the analog scale in mV used to -acquire the analog signals. In our example we have only the 1064nm -channel acquired in analog mode. If we have used a 100mV analog scale -to acquire this channel we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">DAQ_Range</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -</dl> -</div> -<div class="section" id="global-attributes"> -<h3>Global attributes<a class="headerlink" href="#global-attributes" title="Permalink to this headline">¶</a></h3> -<dl class="docutils"> -<dt>Measurement_ID</dt> -<dd><p class="first">This mandatory global attribute defines the measurement ID -corresponding to the actual lidar measurement. It is a string -composed by 12 characters. The first 8 characters give the start date -of measurement in the format YYYYMMDD. The next 2 characters give the -Earlinet call-sign of the station. The last 2 characters are used to -distinguish between different time-series within the same date. In -our example we have to set:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">Measurement_ID</span><span class="o">=</span> <span class="s">"20090130cc00"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawData_Start_Date</dt> -<dd><p class="first">This mandatory global attribute defines the start date of lidar -measurements in the format YYYYMMDD. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Date</span> <span class="o">=</span> <span class="s">"20090130"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawData_Start_Time_UT</dt> -<dd><p class="first">This mandatory global attribute defines the UT start time of lidar -measurements in the format HHMMSS. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Time_UT</span> <span class="o">=</span> <span class="s">"000001"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawData_Stop_Time_UT``</dt> -<dd><p class="first">This mandatory global attribute defines the UT stop time of lidar -measurements in the format HHMMSS. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"000501"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawBck_Start_Date</dt> -<dd><p class="first">This optional global attribute defines the start date of dark -measurements in the format YYYYMMDD. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Date</span> <span class="o">=</span> <span class="s">"20090129"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawBck_Start_Time_UT</dt> -<dd><p class="first">This optional global attribute defines the UT start time of dark -measurements in the format HHMMSS. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Time_UT</span> <span class="o">=</span> <span class="s">"235001"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -<dt>RawBck_Stop_Time_UT</dt> -<dd><p class="first">This optional global attribute defines the UT stop time of dark -measurements in the format HHMMSS. In our case we have:</p> -<div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"235301"</span> <span class="p">;</span> -</pre></div> -</div> -</dd> -</dl> -</div> -</div> -<div class="section" id="example-of-file-cdl-format"> -<h2>Example of file (CDL format)<a class="headerlink" href="#example-of-file-cdl-format" title="Permalink to this headline">¶</a></h2> -<p>To summarize we have the following NetCDF Raw Lidar Data file (in CDL -format):</p> -<div class="highlight-python"><pre>dimensions: - points = 5000 ; - channels = 4 ; - time = UNLIMITED ; // (10 currently) - nb_of_time_scales = 2 ; - scan_angles = 1 ; - time_bck = 6 ; -variables: - int channel_ID(channels) ; - int Laser_Repetition_Rate(channels) ; - double Laser_Pointing_Angle(scan_angles) ; - int ID_Range(channels) ; - int Scattering_Mechanism(channels) ; - double Emitted_Wavelength(channels) ; - double Detected_Wavelength(channels) ; - double Raw_Data_Range_Resolution(channels) ; - int Background_Mode(channels) ; - double Background_Low(channels) ; - double Background_High(channels) ; - int Molecular_Calc ; - double Pressure_at_Lidar_Station ; - double Temperature_at_Lidar_Station ; - int id_timescale(channels) ; - double Dead_Time(channels) ; - int Dead_Time_Corr_Type(channels) ; - int Acquisition_Mode(channels) ; - double Trigger_Delay(channels) ; - int LR_Input(channels) ; - int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; - int Raw_Data_Start_Time(time, nb_of_time_scales) ; - int Raw_Data_Stop_Time(time, nb_of_time_scales) ; - int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; - int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; - int Laser_Shots(time, channels) ; - double Raw_Lidar_Data(time, channels, points) ; - double Background_Profile(time_bck, channels, points) ; - double DAQ_Range(channels) ; - -// global attributes: - :Measurement_ID = "20090130cc00" ; - :RawData_Start_Date = "20090130" ; - :RawData_Start_Time_UT = "000001" ; - :RawData_Stop_Time_UT = "000501" ; - :RawBck_Start_Date = "20090129" ; - :RawBck_Start_Time_UT = "235001" ; - :RawBck_Stop_Time_UT = "235301" ; - -data: - - channel_ID = 7, 5, 6, 8 ; - - Laser_Repetition_Rate = 50, 50, 50, 50 ; - - Laser_Pointing_Angle = 5 ; - - ID_Range = 1, 1, 1, 1 ; - - Scattering_Mechanism = 0, 2, 3, 1 ; - - Emitted_Wavelength = 1064, 532, 532, 532 ; - - Detected_Wavelength = 1064, 532, 532, 607 ; - - Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ; - - Background_Mode = 0, 1, 1, 1 ; - - Background_Low = 0, 30000, 30000, 30000 ; - - Background_High = 500, 50000, 50000, 50000 ; - - Molecular_Calc = 0 ; - - Pressure_at_Lidar_Station = 1010 ; - - Temperature_at_Lidar_Station = 19.8 ; - - id_timescale = 1, 0, 0, 0 ; - - Dead_Time = _, 10, 10, 10 ; - - Dead_Time_Corr_Type = _, 0, 0, 0 ; - - Acquisition_Mode = 0, 1, 1, 1 ; - - Trigger_Delay = 50, 0, 0, 0 ; - - LR_Input = 1,_,_,_ ; - - DAQ_Range = 100,_,_,_ ; - - Laser_Pointing_Angle_of_Profiles = - 0, 0, - 0, 0, - 0, 0, - 0, 0, - 0, 0, - _, 0, - _, 0, - _, 0, - _, 0, - _, 0 ; - - - Raw_Data_Start_Time = - 0, 0, - 60, 30, - 120, 60, - 180, 90, - 240, 120, - _, 150, - _, 180, - _, 210, - _, 240, - _, 270 ; - - Raw_Data_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - 240, 120, - 300, 150, - _, 180, - _, 210, - _, 240, - _, 270, - _, 300 ; - - - Raw_Bck_Start_Time = - 0, 0, - 60, 30, - 120, 60, - _, 90, - _, 120, - _, 150; - - -Raw_Bck_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - _, 120, - _, 150, - _, 180 ; - - - Laser_Shots = - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _ ; - - - Raw_Lidar_Data = ... - - Background_Profile = ...</pre> -</div> -<p>Please keep in mind that in case you submit a file like the previous one -all the parameters present in it will be used by the SCC even if you -have different values for the same parameters within the SCC_DB. If you -want to use the values already stored in SCC_DB (this should be the -usual way to use SCC) the Raw Lidar Data input file has to be -modified as follows:</p> -<div class="highlight-python"><pre>dimensions: - points = 5000 ; - channels = 4 ; - time = UNLIMITED ; // (10 currently) - nb_of_time_scales = 2 ; - scan_angles = 1 ; - time_bck = 6 ; -variables: - int channel_ID(channels) ; - double Laser_Pointing_Angle(scan_angles) ; - double Background_Low(channels) ; - double Background_High(channels) ; - int Molecular_Calc ; - double Pressure_at_Lidar_Station ; - double Temperature_at_Lidar_Station ; - int id_timescale(channels) ; - int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; - int Raw_Data_Start_Time(time, nb_of_time_scales) ; - int Raw_Data_Stop_Time(time, nb_of_time_scales) ; - int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; - int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; - int LR_Input(channels) ; - int Laser_Shots(time, channels) ; - double Raw_Lidar_Data(time, channels, points) ; - double Background_Profile(time_bck, channels, points) ; - double DAQ_Range(channels) ; - -// global attributes: - :Measurement_ID = "20090130cc00" ; - :RawData_Start_Date = "20090130" ; - :RawData_Start_Time_UT = "000001" ; - :RawData_Stop_Time_UT = "000501" ; - :RawBck_Start_Date = "20090129" ; - :RawBck_Start_Time_UT = "235001" ; - :RawBck_Stop_Time_UT = "235301" ; - -data: - - channel_ID = 7, 5, 6, 8 ; - - Laser_Pointing_Angle = 5 ; - - Background_Low = 0, 30000, 30000, 30000 ; - - Background_High = 500, 50000, 50000, 50000 ; - - Molecular_Calc = 0 ; - - Pressure_at_Lidar_Station = 1010 ; - - Temperature_at_Lidar_Station = 19.8 ; - - id_timescale = 1, 0, 0, 0 ; - - LR_Input = 1,_,_,_ ; - - DAQ_Range = 100,_,_,_ ; - - Laser_Pointing_Angle_of_Profiles = - 0, 0, - 0, 0, - 0, 0, - 0, 0, - 0, 0, - _, 0, - _, 0, - _, 0, - _, 0, - _, 0 ; - - - Raw_Data_Start_Time = - 0, 0, - 60, 30, - 120, 60, - 180, 90, - 240, 120, - _, 150, - _, 180, - _, 210, - _, 240, - _, 270 ; - - Raw_Data_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - 240, 120, - 300, 150, - _, 180, - _, 210, - _, 240, - _, 270, - _, 300 ; - - - Raw_Bck_Start_Time = - 0, 0, - 60, 30, - 120, 60, - _, 90, - _, 120, - _, 150; - - - Raw_Bck_Stop_Time = - 60, 30, - 120, 60, - 180, 90, - _, 120, - _, 150, - _, 180 ; - - - Laser_Shots = - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, 3000, 3000, 3000, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _, - 1500, _, _, _ ; - - - Raw_Lidar_Data = ... - - Background_Profile = ...</pre> -</div> -<p>This example file contains the minimum collection of mandatory -information that has to be found within the Raw Lidar Data input -file. If it is really necessary, the user can decide to add to these -mandatory parameters any number of additional parameters considered in -the previous example.</p> -<p>Finally, suppose we want to make the following changes with respect to -the previous example:</p> -<ol class="arabic simple"> -<li>use a sounding file for molecular density calculation instead of “US -Standar Atmosphere 1976”</li> -<li>supply a lidar ratio profile to use in elastic backscatter retrieval -instead of a fixed value</li> -<li>provide a overlap function for overlap correction</li> -</ol> -<p>In this case we have to generate the following NetCDF additional files:</p> -<dl class="docutils"> -<dt>rs_20090130cc00.nc</dt> -<dd>The name of Sounding Data file has to be computed as follows: -<tt class="docutils literal"><span class="pre">"rs_"``+``Measurement_ID</span></tt> -The structure of this file is summarized in table tab:sounding.</dd> -<dt>ov_20090130cc00.nc</dt> -<dd>The name of Overlap file has to be computed as follows: -<tt class="docutils literal"><span class="pre">"ov_"``+``Measurement_ID</span></tt> -The structure of this file is summarized in table tab:overlap.</dd> -<dt>lr_20090130cc00.nc</dt> -<dd>The name of Lidar Ratio file has to be computed as follows: -<tt class="docutils literal"><span class="pre">"lr_"``+``Measurement_ID</span></tt> -The structure of this file is summarized in table tab:lr.</dd> -</dl> -<p>Moreover we need to apply the following changes to the Raw Lidar Data -input file:</p> -<ol class="arabic"> -<li><p class="first">Change the value of the variable <tt class="docutils literal"><span class="pre">Molecular_Calc</span></tt> as follows:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">1</span> <span class="p">;</span> -</pre></div> -</div> -<p>Of course the variables <tt class="docutils literal"><span class="pre">Pressure_at_Lidar_Station</span></tt> and -<tt class="docutils literal"><span class="pre">Temperature_at_Lidar_Station</span></tt> are not necessary anymore.</p> -</li> -<li><p class="first">Change the values of the array <tt class="docutils literal"><span class="pre">LR_Input</span></tt> as follows:</p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> -</pre></div> -</div> -</li> -<li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Sounding_File_Name</span></tt></p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">Sounding_File_Name</span> <span class="o">=</span> <span class="s">"rs_20090130cc00.nc"</span> <span class="p">;</span> -</pre></div> -</div> -</li> -</ol> -<ol class="arabic" start="5"> -<li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">LR_File_Name</span></tt></p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">LR_File_Name</span> <span class="o">=</span> <span class="s">"lr_20090130cc00.nc"</span> <span class="p">;</span> -</pre></div> -</div> -</li> -<li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Overlap_File_Name</span></tt></p> -<div class="highlight-python"><div class="highlight"><pre><span class="n">Overlap_File_Name</span> <span class="o">=</span> <span class="s">"ov_20090130cc00.nc"</span> <span class="p">;</span> -</pre></div> -</div> -</li> -</ol> -</div> -</div> - - - </div> - </div> - </div> - <div class="sphinxsidebar"> - <div class="sphinxsidebarwrapper"> - <h3><a href="index.html">Table Of Contents</a></h3> - <ul> -<li><a class="reference internal" href="#">The SCC netCDF file format</a><ul> -<li><a class="reference internal" href="#rationale">Rationale</a></li> -<li><a class="reference internal" href="#example">Example</a><ul> -<li><a class="reference internal" href="#dimensions">Dimensions</a></li> -<li><a class="reference internal" href="#variables">Variables</a></li> -<li><a class="reference internal" href="#global-attributes">Global attributes</a></li> -</ul> -</li> -<li><a class="reference internal" href="#example-of-file-cdl-format">Example of file (CDL format)</a></li> -</ul> -</li> -</ul> - - <h4>Previous topic</h4> - <p class="topless"><a href="details/viewing_measurements.html" - title="previous chapter">View processing results</a></p> - <h4>Next topic</h4> - <p class="topless"><a href="user_management.html" - title="next chapter">User management</a></p> - <h3>This Page</h3> - <ul class="this-page-menu"> - <li><a href="_sources/netcdf_file.txt" - rel="nofollow">Show Source</a></li> - </ul> -<div id="searchbox" style="display: none"> - <h3>Quick search</h3> - <form class="search" action="search.html" method="get"> - <input type="text" name="q" /> - <input type="submit" value="Go" /> - <input type="hidden" name="check_keywords" value="yes" /> - <input type="hidden" name="area" value="default" /> - </form> - <p class="searchtip" style="font-size: 90%"> - Enter search terms or a module, class or function name. - </p> -</div> -<script type="text/javascript">$('#searchbox').show(0);</script> - </div> - </div> - <div class="clearer"></div> - </div> - <div class="related"> - <h3>Navigation</h3> - <ul> - <li class="right" style="margin-right: 10px"> - <a href="genindex.html" title="General Index" - >index</a></li> - <li class="right" > - <a href="user_management.html" title="User management" - >next</a> |</li> - <li class="right" > - <a href="details/viewing_measurements.html" title="View processing results" - >previous</a> |</li> - <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> - </ul> - </div> - <div class="footer"> - © Copyright 2012, SCC team. - Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.2. - </div> - </body> -</html> \ No newline at end of file