binietoglou@1: binietoglou@1: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" binietoglou@1: "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> binietoglou@1: binietoglou@1: binietoglou@1: <html xmlns="http://www.w3.org/1999/xhtml"> binietoglou@1: <head> binietoglou@1: <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> binietoglou@1: binietoglou@1: <title>The SCC netCDF file format — Single Calculus Chain 0.2 documentation</title> binietoglou@1: binietoglou@1: <link rel="stylesheet" href="_static/nature.css" type="text/css" /> binietoglou@1: <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> binietoglou@1: binietoglou@1: <script type="text/javascript"> binietoglou@1: var DOCUMENTATION_OPTIONS = { binietoglou@1: URL_ROOT: '', binietoglou@1: VERSION: '0.2', binietoglou@1: COLLAPSE_INDEX: false, binietoglou@1: FILE_SUFFIX: '.html', binietoglou@1: HAS_SOURCE: true binietoglou@1: }; binietoglou@1: </script> binietoglou@1: <script type="text/javascript" src="_static/jquery.js"></script> binietoglou@1: <script type="text/javascript" src="_static/underscore.js"></script> binietoglou@1: <script type="text/javascript" src="_static/doctools.js"></script> binietoglou@1: <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> binietoglou@1: <link rel="top" title="Single Calculus Chain 0.2 documentation" href="index.html" /> binietoglou@1: <link rel="next" title="User management" href="user_managment.html" /> binietoglou@1: <link rel="prev" title="Processing measurement" href="measurement_upload.html" /> binietoglou@1: </head> binietoglou@1: <body> binietoglou@1: <div class="related"> binietoglou@1: <h3>Navigation</h3> binietoglou@1: <ul> binietoglou@1: <li class="right" style="margin-right: 10px"> binietoglou@1: <a href="genindex.html" title="General Index" binietoglou@1: accesskey="I">index</a></li> binietoglou@1: <li class="right" > binietoglou@1: <a href="user_managment.html" title="User management" binietoglou@1: accesskey="N">next</a> |</li> binietoglou@1: <li class="right" > binietoglou@1: <a href="measurement_upload.html" title="Processing measurement" binietoglou@1: accesskey="P">previous</a> |</li> binietoglou@1: <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> binietoglou@1: </ul> binietoglou@1: </div> binietoglou@1: binietoglou@1: <div class="document"> binietoglou@1: <div class="documentwrapper"> binietoglou@1: <div class="bodywrapper"> binietoglou@1: <div class="body"> binietoglou@1: binietoglou@1: <div class="section" id="the-scc-netcdf-file-format"> binietoglou@1: <h1>The SCC netCDF file format<a class="headerlink" href="#the-scc-netcdf-file-format" title="Permalink to this headline">¶</a></h1> binietoglou@1: <div class="section" id="rationale"> binietoglou@1: <h2>Rationale<a class="headerlink" href="#rationale" title="Permalink to this headline">¶</a></h2> binietoglou@1: <p>The Single Calculus Chain (SCC) is composed by two different modules:</p> binietoglou@1: <ul class="simple"> binietoglou@1: <li>pre-processing module ( scc_preprocessing)</li> binietoglou@1: <li>optical processing module ( ELDA)</li> binietoglou@1: </ul> binietoglou@1: <p>To perfom aerosol optical retrievals the SCC needs not only the raw binietoglou@1: lidar data but also a certain number of parameters to use in both binietoglou@1: pre-processing and optical processing stages. The SCC gets these binietoglou@1: parameters looking at two different locations:</p> binietoglou@1: <ul class="simple"> binietoglou@1: <li>Single Calculus Chain relational database (SCC_DB)</li> binietoglou@1: <li>Input files</li> binietoglou@1: </ul> binietoglou@1: <p>There are some paramenters that can be found only in the input files binietoglou@1: (those ones changing from measurement to measurement), others that can binietoglou@1: be found only in the SCC_DB and other ones that can be found in both binietoglou@1: these locations. In the last case, if a particular parameter is needed, binietoglou@1: the SCC will search first in the input files and then in SCC_DB. If the binietoglou@1: parameter is found in the input files the SCC will keep it without binietoglou@1: looking into SCC_DB.</p> binietoglou@1: <p>The input files have to be submitted to the SCC in NetCDF format. At the binietoglou@1: present the SCC can handle four different types of input files:</p> binietoglou@1: <ol class="arabic simple"> binietoglou@1: <li>Raw Lidar Data</li> binietoglou@1: <li>Sounding Data</li> binietoglou@1: <li>Overlap</li> binietoglou@1: <li>Lidar Ratio</li> binietoglou@1: </ol> binietoglou@1: <p>As already mentioned, the Raw Lidar Data file contains not only the binietoglou@1: raw lidar data but also other parameters to use to perform the binietoglou@1: pre-processing and optical processing. The Sounding Data file binietoglou@1: contains the data coming from a correlative radiosounding and it is used binietoglou@1: by the SCC for molecular density calculation. The Overlap file binietoglou@1: contains the measured overlap function. The Lidar Ratio file contains binietoglou@1: a lidar ratio profile to use in elastic backscatter retrievals. The binietoglou@1: Raw Lidar Data file is of course mandatory and the Sounding Data, binietoglou@1: Overlap and Lidar Ratio files are optional. If Sounding Data file binietoglou@1: is not submitted by the user, the molecular density will be calculated binietoglou@1: by the SCC using the “US Standard Atmosphere 1976â€. If the Overlap binietoglou@1: file is not submitted by the user, the SCC will get the full overlap binietoglou@1: height from SCC_DB and it will produce optical results starting from binietoglou@1: this height. If Lidar Ratio file is not submitted by the user, the binietoglou@1: SCC will consider a fixed value for lidar ratio got from SCC_DB.</p> binietoglou@1: <p>The user can decide to submit all these files or any number of them (of binietoglou@1: course the file Raw Lidar Data is mandatory). For example the user binietoglou@1: can submit together with the Raw Lidar Data file only the Sounding binietoglou@1: Data file or only the Overlap file.</p> binietoglou@1: <p>This document provides a detailed explanation about the structure of the binietoglou@1: NetCDF input files to use for SCC data submission. All Earlinet groups binietoglou@1: should read it carefully because they have to produce such kind of input binietoglou@1: files if they want to use the SCC for their standard lidar retrievals. binietoglou@1: Every comments or suggestions regarding this document can be sent to binietoglou@1: Giuseppe D’Amico by e-mail at <tt class="docutils literal"><span class="pre">damico@imaa.cnr.it</span></tt></p> binietoglou@1: <p>This document is available for downloading at <tt class="docutils literal"><span class="pre">www.earlinetasos.org</span></tt></p> binietoglou@1: <p>In table tab:rawdata is reported a list of dimensions, variables and binietoglou@1: global attributes that can be used in the NetCDF Raw Lidar Data input binietoglou@1: file. For each of them it is indicated:</p> binietoglou@1: <ul class="simple"> binietoglou@1: <li>The name. For the multidimensional variables also the corresponding binietoglou@1: dimensions are reported</li> binietoglou@1: <li>A description explaining the meaning</li> binietoglou@1: <li>The type</li> binietoglou@1: <li>If it is mandatory or optional</li> binietoglou@1: </ul> binietoglou@1: <p>As already mentioned, the SCC can get some parameters looking first in binietoglou@1: the Raw Lidar Data input file and then into SCC_DB. This means that binietoglou@1: to use the parameters stored in SCC_DB the optional variables or binietoglou@1: optional global attributes must not appear within Raw Lidar Data binietoglou@1: file. This is the suggested and recommended way to use the SCC. Please binietoglou@1: include optional parameters in the Raw Lidar Data only as an binietoglou@1: exception.</p> binietoglou@1: <p>In table tab:sounding, tab:overlap and tab:lr are reported all the binietoglou@1: information about the structure of Sounding Data, Overlap and binietoglou@1: Lidar Ratio input files respectively.</p> binietoglou@1: </div> binietoglou@1: <div class="section" id="example"> binietoglou@1: <h2>Example<a class="headerlink" href="#example" title="Permalink to this headline">¶</a></h2> binietoglou@1: <p>Let’s now consider an example of Raw Lidar Data input file. Suppose binietoglou@1: we want to generate NetCDF input file corresponding to a measurement binietoglou@1: with the following properties:</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="34%" /> binietoglou@1: <col width="66%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td>Start Date</td> binietoglou@1: <td><span class="math">\(30^{th}\)</span> January 2009</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Start Time UT</td> binietoglou@1: <td>00:00:01</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>Stop Time UT</td> binietoglou@1: <td>00:05:01</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Station Name</td> binietoglou@1: <td>Dummy station</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>Earlinet call-sign</td> binietoglou@1: <td>cc</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Pointing angle</td> binietoglou@1: <td>5 degrees with respect to the zenith</td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: <p>Moreover suppose that this measurement is composed by the following binietoglou@1: lidar channels:</p> binietoglou@1: <ol class="arabic"> binietoglou@1: <li><p class="first">1064 lidar channel</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="49%" /> binietoglou@1: <col width="51%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td><p class="first last">Emission wavelength=1064nm</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection wavelength=1064nm</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Time resolution=30s</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Number of laser shots=1500</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td><p class="first last">Number of bins=3000</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection mode=analog</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Range resolution=7.5m</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Polarization state=total</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: </li> binietoglou@1: <li><p class="first">532 cross lidar channel</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="47%" /> binietoglou@1: <col width="53%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection wavelength=532nm</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Time resolution=60s</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Number of laser shots=3000</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection mode=photoncounting</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Range resolution=15m</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Polarization state=cross</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: </li> binietoglou@1: <li><p class="first">532 parallel lidar channel</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="47%" /> binietoglou@1: <col width="53%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection wavelength=532nm</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Time resolution=60s</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Number of laser shots=3000</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection mode=photoncounting</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Range resolution=15m</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Polarization state=parallel</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: </li> binietoglou@1: <li><p class="first">607 <span class="math">\(N_2\)</span> vibrational Raman channel</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="47%" /> binietoglou@1: <col width="53%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td><p class="first last">Emission wavelength=532nm</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection wavelength=607nm</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td><p class="first last">Time resolution=60s</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Number of laser shots=3000</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td><p class="first last">Number of bins=5000</p> binietoglou@1: </td> binietoglou@1: <td><p class="first last">Detection mode=photoncounting</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td colspan="2"><p class="first last">Range resolution=15m</p> binietoglou@1: </td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: </li> binietoglou@1: </ol> binietoglou@1: <p>Finally let’s assume we have also performed dark measurements before the binietoglou@1: lidar measurements from the 23:50:01 UT up to 23:53:01 UT of binietoglou@1: 29:math:<cite>^mathrmth</cite> January 2009.</p> binietoglou@1: <div class="section" id="dimensions"> binietoglou@1: <h3>Dimensions<a class="headerlink" href="#dimensions" title="Permalink to this headline">¶</a></h3> binietoglou@1: <p>Looking at table tab:rawdata we have to fix the following dimensions:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span> binietoglou@1: <span class="n">channels</span> binietoglou@1: <span class="n">time</span> binietoglou@1: <span class="n">nb_of_time_scales</span> binietoglou@1: <span class="n">scan_angles</span> binietoglou@1: <span class="n">time_bck</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>The dimension <tt class="docutils literal"><span class="pre">time</span></tt> is unlimited so we don’t have to fix it.</p> binietoglou@1: <p>We have 4 lidar channels so:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">channels</span><span class="o">=</span><span class="mi">4</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>Regarding the dimension <tt class="docutils literal"><span class="pre">points</span></tt> we have only one channel with a binietoglou@1: number of vertical bins equal to 3000 (the 1064nm) and all other binietoglou@1: channels with 5000 vertical bins. In cases like this the dimension binietoglou@1: <tt class="docutils literal"><span class="pre">points</span></tt> has to be fixed to the maximum number of vertical bins so:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">points</span><span class="o">=</span><span class="mi">5000</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>Moreover only one channel (1064nm) is acquired with a time resolution of binietoglou@1: 30 seconds, all the other channels have a time resolution of 60 seconds. binietoglou@1: This means that we have to define two different time scales. We have to binietoglou@1: set:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">nb_of_time_scales</span><span class="o">=</span><span class="mi">2</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>The measurement is performed only at one scan angle (5 degrees with binietoglou@1: respect to the zenith) so:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">scan_angles</span><span class="o">=</span><span class="mi">1</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>We have 3 minutes of dark measurements and two different time scales one binietoglou@1: with 60 seconds time resolution and the other one with 30 seconds time binietoglou@1: resolution. So we will have 3 different dark profiles for the channels binietoglou@1: acquired with the first time scale and 6 for the lidar channels acquired binietoglou@1: with the second time scale. We have to fix the dimension <tt class="docutils literal"><span class="pre">time_bck</span></tt> as binietoglou@1: the maximum between these values:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">time_bck</span><span class="o">=</span><span class="mi">6</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: <div class="section" id="variables"> binietoglou@1: <h3>Variables<a class="headerlink" href="#variables" title="Permalink to this headline">¶</a></h3> binietoglou@1: <p>In this section it will be explained how to fill all the possible binietoglou@1: variables either mandatory or optional of Raw Lidar Data input file.</p> binietoglou@1: <dl class="docutils"> binietoglou@1: <dt>Raw_Data_Start_Time(time, nb_of_time_scales)</dt> binietoglou@1: <dd><p class="first">This 2 dimensional mandatory array has to contain the acquisition binietoglou@1: start time (in seconds from the time given by the global attribute binietoglou@1: <tt class="docutils literal"><span class="pre">RawData_Start_Time_UT</span></tt>) of each lidar profile. In this example we binietoglou@1: have two different time scales: one is characterized by steps of 30 binietoglou@1: seconds (the 1064nm is acquired with this time scale) the other by binietoglou@1: steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the binietoglou@1: measurement start time is 00:00:01 UT and the measurement stop time binietoglou@1: is 00:05:01 UT. In this case we have to define:</p> binietoglou@1: <div class="highlight-python"><pre>Raw_Data_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: _, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270 ;</pre> binietoglou@1: </div> binietoglou@1: <p class="last">The order used to fill this array defines the correspondence between binietoglou@1: the different time scales and the time scale index. In this example binietoglou@1: we have a time scale index of 0 for the time scale with steps of 60 binietoglou@1: seconds and a time scale index of 1 for the other one.</p> binietoglou@1: </dd> binietoglou@1: <dt>Raw_Data_Stop_Time(time, nb_of_time_scales)</dt> binietoglou@1: <dd><p class="first">The same as previous item but for the data acquisition stop time. binietoglou@1: Following a similar procedure we have to define:</p> binietoglou@1: <div class="last highlight-python"><pre>Raw_Data_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: 300, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270, binietoglou@1: _, 300 ;</pre> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Raw_Lidar_Data(time, channels, points)</dt> binietoglou@1: <dd><p class="first">This 3 dimensional mandatory array has to be filled with the binietoglou@1: time-series of raw lidar data. The photoncounting profiles have to binietoglou@1: submitted in counts (so as integers) while the analog ones in mV. The binietoglou@1: order the user chooses to fill this array defines the correspondence binietoglou@1: between channel index and lidar data.</p> binietoglou@1: <p>For example if we fill this array in such way that:</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="38%" /> binietoglou@1: <col width="62%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td>Raw_Lidar_Data(time,0,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> is the time-series of 1064 nm</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Raw_Lidar_Data(time,1,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 cross</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>Raw_Lidar_Data(time,2,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> is the time-series of 532 parallel</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Raw_Lidar_Data(time,3,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> is the time-series of 607 nm</td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: <p class="last">from now on the channel index 0 is associated to the 1064 channel, binietoglou@1: 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.</p> binietoglou@1: </dd> binietoglou@1: <dt>Raw_Bck_Start_Time(time_bck, nb_of_time_scales)</dt> binietoglou@1: <dd><p class="first">This 2 dimensional optional array has to contain the acquisition binietoglou@1: start time (in seconds from the time given by the global attribute binietoglou@1: <tt class="docutils literal"><span class="pre">RawBck_Start_Time_UT</span></tt>) of each dark measurements profile. binietoglou@1: Following the same procedure used for the variable binietoglou@1: <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> we have to define:</p> binietoglou@1: <div class="last highlight-python"><pre>Raw_Bck_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: _, 90, binietoglou@1: _, 120, binietoglou@1: _, 150;</pre> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)</dt> binietoglou@1: <dd><p class="first">The same as previous item but for the dark acquisition stop time. binietoglou@1: Following a similar procedure we have to define:</p> binietoglou@1: <div class="last highlight-python"><pre>Raw_Bck_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: _, 120, binietoglou@1: _, 150, binietoglou@1: _, 180 ;</pre> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Background_Profile(time_bck, channels, points)</dt> binietoglou@1: <dd><p class="first">This 3 dimensional optional array has to be filled with the binietoglou@1: time-series of the dark measurements data. The photoncounting binietoglou@1: profiles have to submitted in counts (so as integers) while the binietoglou@1: analog ones in mV. The user has to fill this array following the same binietoglou@1: order used in filling the array <tt class="docutils literal"><span class="pre">Raw_Lidar_Data</span></tt>:</p> binietoglou@1: <table border="1" class="last docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="44%" /> binietoglou@1: <col width="56%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td>Background_Profile(time_bck,0,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> dark time-series at 1064 nm</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Background_Profile(time_bck,1,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 cross</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>Background_Profile(time_bck,2,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> dark time-series at 532 parallel</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>Background_Profile(time_bck,3,points</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> dark time-series at 607 nm</td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: </dd> binietoglou@1: <dt>channel_ID(channels)</dt> binietoglou@1: <dd><p class="first">This mandatory array provides the link between the channel index binietoglou@1: within the Raw Lidar Data input file and the channel ID in binietoglou@1: SCC_DB. To fill this variable the user has to know which channel IDs binietoglou@1: in SCC_DB correspond to his lidar channels. For this purpose the binietoglou@1: SCC, in its final version will provide to the user a special tool to binietoglou@1: get these channel IDs through a Web interface. At the moment this binietoglou@1: interface is not yet available and these channel IDs will be binietoglou@1: communicated directly to the user by the NA5 people.</p> binietoglou@1: <p>Anyway to continue the example let’s suppose that the four lidar binietoglou@1: channels taken into account are mapped into SCC_DB with the binietoglou@1: following channel IDs:</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="30%" /> binietoglou@1: <col width="70%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td>1064 nm</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> channel ID=7</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>532 cross</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> channel ID=5</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>532 parallel</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> channel ID=6</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>607 nm</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> channel ID=8</td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: <blockquote> binietoglou@1: <div>In this case we have to define:</div></blockquote> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">channel_ID</span> <span class="o">=</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">8</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>id_timescale(channels)</dt> binietoglou@1: <dd><p class="first">This mandatory array is introduced to determine which time scale is binietoglou@1: used for the acquisition of each lidar channel. In particular this binietoglou@1: array defines the link between the channel index and the time scale binietoglou@1: index. In our example we have two different time scales. Filling the binietoglou@1: arrays <tt class="docutils literal"><span class="pre">Raw_Data_Start_Time</span></tt> and <tt class="docutils literal"><span class="pre">Raw_Data_Stop_Time</span></tt> we have binietoglou@1: defined a time scale index of 0 for the time scale with steps of 60 binietoglou@1: seconds and a time scale index of 1 for the other one with steps of binietoglou@1: 30 seconds. In this way this array has to be set as:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">id_timescale</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Laser_Pointing_Angle(scan_angles</dt> binietoglou@1: <dd><p class="first">This mandatory array contains all the scan angles used in the binietoglou@1: measurement. In our example we have only one scan angle of 5 degrees binietoglou@1: with respect to the zenith, so we have to define:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Pointing_Angle</span> <span class="o">=</span> <span class="mi">5</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)</dt> binietoglou@1: <dd><p class="first">This mandatory array is introduced to determine which scan angle is binietoglou@1: used for the acquisition of each lidar profile. In particular this binietoglou@1: array defines the link between the time and time scales indexes and binietoglou@1: the scan angle index. In our example we have a single scan angle that binietoglou@1: has to correspond to the scan angle index 0. So this array has to be binietoglou@1: defined as:</p> binietoglou@1: <div class="last highlight-python"><pre>Laser_Pointing_Angle_of_Profiles = binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0 ;</pre> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Laser_Shots(time, channels)</dt> binietoglou@1: <dd><p class="first">This mandatory array stores the laser shots accumulated at each time binietoglou@1: for each channel. In our example the number of laser shots binietoglou@1: accumulated is 1500 for the 1064nm channels and 3000 for all the binietoglou@1: other channels. Moreover the laser shots do not change with the time. binietoglou@1: So we have to define this array as:</p> binietoglou@1: <div class="last highlight-python"><pre>Laser_Shots = binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _ ;</pre> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Emitted_Wavelength(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the link between the channel index and binietoglou@1: the emission wavelength for each lidar channel. The wavelength has to binietoglou@1: be expressed in nm. This information can be also taken from SCC_DB. binietoglou@1: In our example we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Emitted_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Detected_Wavelength(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the link between the channel index and binietoglou@1: the detected wavelength for each lidar channel. Here detected binietoglou@1: wavelength means the value of center of interferential filter binietoglou@1: expressed in nm. This information can be also taken from SCC_DB. In binietoglou@1: our example we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Detected_Wavelength</span> <span class="o">=</span> <span class="mi">1064</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">532</span><span class="p">,</span> <span class="mi">607</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Raw_Data_Range_Resolution(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the link between the channel index and binietoglou@1: the raw range resolution for each channel. If the scan angle is binietoglou@1: different from zero this quantity is different from the vertical binietoglou@1: resolution. More precisely if <span class="math">\(\alpha\)</span> is the scan angle used binietoglou@1: and <span class="math">\(\Delta z\)</span> is the range resolution the vertical binietoglou@1: resolution is calculated as <span class="math">\(\Delta binietoglou@1: z'=\Delta z \cos\alpha\)</span>. This array has to be filled with binietoglou@1: <span class="math">\(\Delta z\)</span> and not with <span class="math">\(\Delta z'\)</span>. The unit is binietoglou@1: meters. This information can be also taken from SCC_DB. In our binietoglou@1: example we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Raw_Data_Range_Resolution</span> <span class="o">=</span> <span class="mf">7.5</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span><span class="p">,</span> <span class="mf">15.0</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>ID_Range(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines if a particular channel is configured as binietoglou@1: high, low or ultranear range channel. In particular a value 0 binietoglou@1: indicates a low range channel, a value 1 a high range channel and a binietoglou@1: value of 2 an ultranear range channel. If for a particular channel binietoglou@1: you don’t separate between high and low range channel, please set the binietoglou@1: corresponding value to 1. This information can be also taken from binietoglou@1: SCC_DB. In our case we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">ID_Range</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Scattering_Mechanism(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the scattering mechanism involved in binietoglou@1: each lidar channel. In particular the following values are adopted:</p> binietoglou@1: <table border="1" class="docutils"> binietoglou@1: <colgroup> binietoglou@1: <col width="6%" /> binietoglou@1: <col width="94%" /> binietoglou@1: </colgroup> binietoglou@1: <tbody valign="top"> binietoglou@1: <tr class="row-odd"><td>0</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Total elastic backscatter</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>1</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> <span class="math">\(N_2\)</span> vibrational Raman backscatter</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>2</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Cross polarization elastic backscatter</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>3</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Parallel polarization elastic backscatter</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>4</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> <span class="math">\(H_2O\)</span> vibrational Raman backscatter</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>5</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line close to elastic line</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>6</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes line far from elastic line</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>7</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line close to elastic line</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>8</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman anti-Stokes line far from elastic line</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-even"><td>9</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines close to elastic line</td> binietoglou@1: </tr> binietoglou@1: <tr class="row-odd"><td>10</td> binietoglou@1: <td><span class="math">\(\rightarrow\)</span> Rotational Raman Stokes and anti-Stokes lines far from elastic line</td> binietoglou@1: </tr> binietoglou@1: </tbody> binietoglou@1: </table> binietoglou@1: <p>This information can be also taken from SCC_DB. In our example we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Scattering_Mechanism</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Acquisition_Mode(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the acquisition mode (analog or binietoglou@1: photoncounting) involved in each lidar channel. In particular a value binietoglou@1: of 0 means analog mode and 1 photoncounting mode. This information binietoglou@1: can be also taken from SCC_DB. In our example we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Acquisition_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Laser_Repetition_Rate(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the repetition rate in Hz used to binietoglou@1: acquire each lidar channel. This information can be also taken from binietoglou@1: SCC_DB. In our example we are supposing we have only one laser with binietoglou@1: a repetition rate of 50 Hz so we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Laser_Repetition_Rate</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">50</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Dead_Time(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the dead time in ns associated to each binietoglou@1: lidar channel. The SCC will use the values given by this array to binietoglou@1: correct the photoncounting signals for dead time. Of course for binietoglou@1: analog signals no dead time correction will be applied (for analog binietoglou@1: channels the corresponding dead time values have to be set to binietoglou@1: undefined value). This information can be also taken from SCC_DB. In binietoglou@1: our example the 1064 nm channel is acquired in analog mode so the binietoglou@1: corresponding dead time value has to be undefined. If we suppose a binietoglou@1: dead time of 10 ns for all other channels we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">10</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Dead_Time_Corr_Type(channels</dt> binietoglou@1: <dd><p class="first">This optional array defines which kind of dead time correction has binietoglou@1: to be applied on each photoncounting channel. The SCC will correct binietoglou@1: the data supposing a not-paralyzable channel if a value of 0 is found binietoglou@1: while a paralyzable channel is supposed if a value of 1 is found. Of binietoglou@1: course for analog signals no dead time correction will be applied and binietoglou@1: so the corresponding values have to be set to undefined value. This binietoglou@1: information can be also taken from SCC_DB. In our example the 1064 binietoglou@1: nm channel is acquired in analog mode so the corresponding has to be binietoglou@1: undefined. If we want to consider all the photoncounting signals as binietoglou@1: not-paralyzable ones: we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Dead_Time_Corr_Type</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Trigger_Delay(channels)</dt> binietoglou@1: <dd><p class="first">This optional array defines the delay (in ns) of the middle of the binietoglou@1: first rangebin with respect to the output laser pulse for each lidar binietoglou@1: channel. The SCC will use the values given by this array to correct binietoglou@1: for trigger delay. This information can be also taken from SCC_DB. binietoglou@1: Let’s suppose that in our example all the photoncounting channels are binietoglou@1: not affected by this delay and only the analog channel at 1064nm is binietoglou@1: acquired with a delay of 50ns. In this case we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Trigger_Delay</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Background_Mode(channels</dt> binietoglou@1: <dd><p class="first">This optional array defines how the atmospheric background has to be binietoglou@1: subtracted from the lidar channel. Two options are available for the binietoglou@1: calculation of atmospheric background:</p> binietoglou@1: <ol class="arabic simple"> binietoglou@1: <li>Average in the far field of lidar channel. In this case the value binietoglou@1: of this variable has to be 1</li> binietoglou@1: <li>Average within pre-trigger bins. In this case the value of this binietoglou@1: variable has to be 0</li> binietoglou@1: </ol> binietoglou@1: <p>This information can be also taken from SCC_DB. Let’s suppose in our binietoglou@1: example we use the pre-trigger for the 1064nm channel and the far binietoglou@1: field for all other channels. In this case we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Mode</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Background_Low(channels)</dt> binietoglou@1: <dd><p class="first">This mandatory array defines the minimum altitude (in meters) to binietoglou@1: consider in calculating the atmospheric background for each channel. binietoglou@1: In case pre-trigger mode is used the corresponding value has to be binietoglou@1: set to the rangebin to be used as lower limit (within pre-trigger binietoglou@1: region) for background calculation. In our example, if we want to binietoglou@1: calculate the background between 30000 and 50000 meters for all binietoglou@1: photoncounting channels and we want to use the first 500 pre-trigger binietoglou@1: bins for the background calculation for the 1064nm channel we have to binietoglou@1: set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_Low</span><span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span><span class="p">,</span> <span class="mi">30000</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Background_High(channels)</dt> binietoglou@1: <dd><p class="first">This mandatory array defines the maximum altitude (in meters) to binietoglou@1: consider in calculating the atmospheric background for each channel. binietoglou@1: In case pre-trigger mode is used the corresponding value has to be binietoglou@1: set to the rangebin to be used as upper limit (within pre-trigger binietoglou@1: region) for background calculation. In our example, if we want to binietoglou@1: calculate the background between 30000 and 50000 meters for all binietoglou@1: photoncounting channels and we want to use the first 500 pre-trigger binietoglou@1: bins for the background calculation for the 1064nm channel we have to binietoglou@1: set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Background_High</span> <span class="o">=</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">,</span> <span class="mi">50000</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Molecular_Calc</dt> binietoglou@1: <dd><p class="first">This mandatory variable defines the way used by SCC to calculate the binietoglou@1: molecular density profile. At the moment two options are available:</p> binietoglou@1: <ol class="arabic simple"> binietoglou@1: <li>US Standard Atmosphere 1976. In this case the value of this binietoglou@1: variable has to be 0</li> binietoglou@1: <li>Radiosounding. In this case the value of this variable has to be 1</li> binietoglou@1: </ol> binietoglou@1: <p>If we decide to use the option 1. we have to provide also the binietoglou@1: measured pressure and temperature at lidar station level. Indeed if binietoglou@1: we decide to use the option 2. a radiosounding file has to be binietoglou@1: submitted separately in NetCDF format (the structure of this file is binietoglou@1: summarized in table tab:sounding). Let’s suppose we want to use the binietoglou@1: option 1. so:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">0</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Pressure_at_Lidar_Station</dt> binietoglou@1: <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of binietoglou@1: the molecular density profile we have to give the pressure in hPa at binietoglou@1: lidar station level:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Pressure_at_Lidar_Station</span> <span class="o">=</span> <span class="mi">1010</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Temperature_at_Lidar_Station</dt> binietoglou@1: <dd><p class="first">Because we have chosen the US Standard Atmosphere for calculation of binietoglou@1: the molecular density profile we have to give the temperature in C at binietoglou@1: lidar station level:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Temperature_at_Lidar_Station</span> <span class="o">=</span> <span class="mf">19.8</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>Depolarization_Factor(channels)</dt> binietoglou@1: <dd><p class="first">This array is required only for lidar systems that use the two binietoglou@1: depolarization channels for the backscatter retrieval. It represents binietoglou@1: the factor <span class="math">\(f\)</span> to calculate the total backscatter signal binietoglou@1: <span class="math">\(S_t\)</span> combining its cross <span class="math">\(S_c\)</span> and parallel binietoglou@1: <span class="math">\(S_p\)</span> components: <span class="math">\(S_t=S_p+fS_c\)</span>. This factor is binietoglou@1: mandatory only for systems acquiring <span class="math">\(S_c\)</span> and <span class="math">\(S_p\)</span> binietoglou@1: and not <span class="math">\(S_t\)</span>. For systems acquiring <span class="math">\(S_c\)</span>, binietoglou@1: <span class="math">\(S_p\)</span> and <span class="math">\(S_t\)</span> this factor is optional and it will binietoglou@1: be used only for depolarizaton ratio calculation. Moreover only the binietoglou@1: values of the array corresponding to cross polarization channels will binietoglou@1: be considered; all other values will be not taken into account and binietoglou@1: should be set to undefined value. In our example for the wavelength binietoglou@1: 532nm we have only the cross and the parallel components and not the binietoglou@1: total one. So we have to give the value of this factor only in binietoglou@1: correspondence of the 532nm cross polarization channel that binietoglou@1: corresponds to the channel index 1. Suppose that this factor is 0.88. binietoglou@1: Moreover, because we don’t have any other depolarization channels we binietoglou@1: have also to set all other values of the array to undefined value.</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Depolarization_Factor</span> <span class="o">=</span> <span class="n">_</span><span class="p">,</span><span class="mf">0.88</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>LR_Input(channels)</dt> binietoglou@1: <dd><p class="first">This array is required only for lidar channels for which elastic binietoglou@1: backscatter retrieval has to be performed. It defines the lidar ratio binietoglou@1: to be used within this retrieval. Two options are available:</p> binietoglou@1: <ol class="arabic simple"> binietoglou@1: <li>The user can submit a lidar ratio profile. In this case the value binietoglou@1: of this variable has to be 0.</li> binietoglou@1: <li>A fixed value of lidar ratio can be used. In this case the value binietoglou@1: of this variable has to be 1.</li> binietoglou@1: </ol> binietoglou@1: <p>If we decide to use the option 1. a lidar ratio file has to be binietoglou@1: submitted separately in NetCDF format (the structure of this file is binietoglou@1: summarized in table tab:lr). If we decide to use the option 2. the binietoglou@1: fixed value of lidar ratio will be taken from SCC_DB. In our example binietoglou@1: we have to give a value of this array only for the 1064nm lidar binietoglou@1: channel because for the 532nm we will be able to retrieve a Raman binietoglou@1: backscatter coefficient. In case we want to use the fixed value binietoglou@1: stored in SCC_DB we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>DAQ_Range(channels)</dt> binietoglou@1: <dd><p class="first">This array is required only if one or more lidar signals are binietoglou@1: acquired in analog mode. It gives the analog scale in mV used to binietoglou@1: acquire the analog signals. In our example we have only the 1064nm binietoglou@1: channel acquired in analog mode. If we have used a 100mV analog scale binietoglou@1: to acquire this channel we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">DAQ_Range</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: </dl> binietoglou@1: </div> binietoglou@1: <div class="section" id="global-attributes"> binietoglou@1: <h3>Global attributes<a class="headerlink" href="#global-attributes" title="Permalink to this headline">¶</a></h3> binietoglou@1: <dl class="docutils"> binietoglou@1: <dt>Measurement_ID</dt> binietoglou@1: <dd><p class="first">This mandatory global attribute defines the measurement ID binietoglou@1: corresponding to the actual lidar measurement. It is a string binietoglou@1: composed by 12 characters. The first 8 characters give the start date binietoglou@1: of measurement in the format YYYYMMDD. The next 2 characters give the binietoglou@1: Earlinet call-sign of the station. The last 2 characters are used to binietoglou@1: distinguish between different time-series within the same date. In binietoglou@1: our example we have to set:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">Measurement_ID</span><span class="o">=</span> <span class="s">"20090130cc00"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawData_Start_Date</dt> binietoglou@1: <dd><p class="first">This mandatory global attribute defines the start date of lidar binietoglou@1: measurements in the format YYYYMMDD. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Date</span> <span class="o">=</span> <span class="s">"20090130"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawData_Start_Time_UT</dt> binietoglou@1: <dd><p class="first">This mandatory global attribute defines the UT start time of lidar binietoglou@1: measurements in the format HHMMSS. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Start_Time_UT</span> <span class="o">=</span> <span class="s">"000001"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawData_Stop_Time_UT``</dt> binietoglou@1: <dd><p class="first">This mandatory global attribute defines the UT stop time of lidar binietoglou@1: measurements in the format HHMMSS. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawData_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"000501"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawBck_Start_Date</dt> binietoglou@1: <dd><p class="first">This optional global attribute defines the start date of dark binietoglou@1: measurements in the format YYYYMMDD. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Date</span> <span class="o">=</span> <span class="s">"20090129"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawBck_Start_Time_UT</dt> binietoglou@1: <dd><p class="first">This optional global attribute defines the UT start time of dark binietoglou@1: measurements in the format HHMMSS. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Start_Time_UT</span> <span class="o">=</span> <span class="s">"235001"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: <dt>RawBck_Stop_Time_UT</dt> binietoglou@1: <dd><p class="first">This optional global attribute defines the UT stop time of dark binietoglou@1: measurements in the format HHMMSS. In our case we have:</p> binietoglou@1: <div class="last highlight-python"><div class="highlight"><pre><span class="n">RawBck_Stop_Time_UT</span> <span class="o">=</span> <span class="s">"235301"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </dd> binietoglou@1: </dl> binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: <div class="section" id="example-of-file-cdl-format"> binietoglou@1: <h2>Example of file (CDL format)<a class="headerlink" href="#example-of-file-cdl-format" title="Permalink to this headline">¶</a></h2> binietoglou@1: <p>To summarize we have the following NetCDF Raw Lidar Data file (in CDL binietoglou@1: format):</p> binietoglou@1: <div class="highlight-python"><pre>dimensions: binietoglou@1: points = 5000 ; binietoglou@1: channels = 4 ; binietoglou@1: time = UNLIMITED ; // (10 currently) binietoglou@1: nb_of_time_scales = 2 ; binietoglou@1: scan_angles = 1 ; binietoglou@1: time_bck = 6 ; binietoglou@1: variables: binietoglou@1: int channel_ID(channels) ; binietoglou@1: int Laser_Repetition_Rate(channels) ; binietoglou@1: double Laser_Pointing_Angle(scan_angles) ; binietoglou@1: int ID_Range(channels) ; binietoglou@1: int Scattering_Mechanism(channels) ; binietoglou@1: double Emitted_Wavelength(channels) ; binietoglou@1: double Detected_Wavelength(channels) ; binietoglou@1: double Raw_Data_Range_Resolution(channels) ; binietoglou@1: int Background_Mode(channels) ; binietoglou@1: double Background_Low(channels) ; binietoglou@1: double Background_High(channels) ; binietoglou@1: int Molecular_Calc ; binietoglou@1: double Pressure_at_Lidar_Station ; binietoglou@1: double Temperature_at_Lidar_Station ; binietoglou@1: int id_timescale(channels) ; binietoglou@1: double Dead_Time(channels) ; binietoglou@1: int Dead_Time_Corr_Type(channels) ; binietoglou@1: int Acquisition_Mode(channels) ; binietoglou@1: double Trigger_Delay(channels) ; binietoglou@1: int LR_Input(channels) ; binietoglou@1: int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; binietoglou@1: int Raw_Data_Start_Time(time, nb_of_time_scales) ; binietoglou@1: int Raw_Data_Stop_Time(time, nb_of_time_scales) ; binietoglou@1: int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; binietoglou@1: int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; binietoglou@1: int Laser_Shots(time, channels) ; binietoglou@1: double Raw_Lidar_Data(time, channels, points) ; binietoglou@1: double Background_Profile(time_bck, channels, points) ; binietoglou@1: double DAQ_Range(channels) ; binietoglou@1: binietoglou@1: // global attributes: binietoglou@1: :Measurement_ID = "20090130cc00" ; binietoglou@1: :RawData_Start_Date = "20090130" ; binietoglou@1: :RawData_Start_Time_UT = "000001" ; binietoglou@1: :RawData_Stop_Time_UT = "000501" ; binietoglou@1: :RawBck_Start_Date = "20090129" ; binietoglou@1: :RawBck_Start_Time_UT = "235001" ; binietoglou@1: :RawBck_Stop_Time_UT = "235301" ; binietoglou@1: binietoglou@1: data: binietoglou@1: binietoglou@1: channel_ID = 7, 5, 6, 8 ; binietoglou@1: binietoglou@1: Laser_Repetition_Rate = 50, 50, 50, 50 ; binietoglou@1: binietoglou@1: Laser_Pointing_Angle = 5 ; binietoglou@1: binietoglou@1: ID_Range = 1, 1, 1, 1 ; binietoglou@1: binietoglou@1: Scattering_Mechanism = 0, 2, 3, 1 ; binietoglou@1: binietoglou@1: Emitted_Wavelength = 1064, 532, 532, 532 ; binietoglou@1: binietoglou@1: Detected_Wavelength = 1064, 532, 532, 607 ; binietoglou@1: binietoglou@1: Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ; binietoglou@1: binietoglou@1: Background_Mode = 0, 1, 1, 1 ; binietoglou@1: binietoglou@1: Background_Low = 0, 30000, 30000, 30000 ; binietoglou@1: binietoglou@1: Background_High = 500, 50000, 50000, 50000 ; binietoglou@1: binietoglou@1: Molecular_Calc = 0 ; binietoglou@1: binietoglou@1: Pressure_at_Lidar_Station = 1010 ; binietoglou@1: binietoglou@1: Temperature_at_Lidar_Station = 19.8 ; binietoglou@1: binietoglou@1: id_timescale = 1, 0, 0, 0 ; binietoglou@1: binietoglou@1: Dead_Time = _, 10, 10, 10 ; binietoglou@1: binietoglou@1: Dead_Time_Corr_Type = _, 0, 0, 0 ; binietoglou@1: binietoglou@1: Acquisition_Mode = 0, 1, 1, 1 ; binietoglou@1: binietoglou@1: Trigger_Delay = 50, 0, 0, 0 ; binietoglou@1: binietoglou@1: LR_Input = 1,_,_,_ ; binietoglou@1: binietoglou@1: DAQ_Range = 100,_,_,_ ; binietoglou@1: binietoglou@1: Laser_Pointing_Angle_of_Profiles = binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0 ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Data_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: _, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270 ; binietoglou@1: binietoglou@1: Raw_Data_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: 300, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270, binietoglou@1: _, 300 ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Bck_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: _, 90, binietoglou@1: _, 120, binietoglou@1: _, 150; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Bck_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: _, 120, binietoglou@1: _, 150, binietoglou@1: _, 180 ; binietoglou@1: binietoglou@1: binietoglou@1: Laser_Shots = binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _ ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Lidar_Data = ... binietoglou@1: binietoglou@1: Background_Profile = ...</pre> binietoglou@1: </div> binietoglou@1: <p>Please keep in mind that in case you submit a file like the previous one binietoglou@1: all the parameters present in it will be used by the SCC even if you binietoglou@1: have different values for the same parameters within the SCC_DB. If you binietoglou@1: want to use the values already stored in SCC_DB (this should be the binietoglou@1: usual way to use SCC) the Raw Lidar Data input file has to be binietoglou@1: modified as follows:</p> binietoglou@1: <div class="highlight-python"><pre>dimensions: binietoglou@1: points = 5000 ; binietoglou@1: channels = 4 ; binietoglou@1: time = UNLIMITED ; // (10 currently) binietoglou@1: nb_of_time_scales = 2 ; binietoglou@1: scan_angles = 1 ; binietoglou@1: time_bck = 6 ; binietoglou@1: variables: binietoglou@1: int channel_ID(channels) ; binietoglou@1: double Laser_Pointing_Angle(scan_angles) ; binietoglou@1: double Background_Low(channels) ; binietoglou@1: double Background_High(channels) ; binietoglou@1: int Molecular_Calc ; binietoglou@1: double Pressure_at_Lidar_Station ; binietoglou@1: double Temperature_at_Lidar_Station ; binietoglou@1: int id_timescale(channels) ; binietoglou@1: int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ; binietoglou@1: int Raw_Data_Start_Time(time, nb_of_time_scales) ; binietoglou@1: int Raw_Data_Stop_Time(time, nb_of_time_scales) ; binietoglou@1: int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ; binietoglou@1: int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ; binietoglou@1: int LR_Input(channels) ; binietoglou@1: int Laser_Shots(time, channels) ; binietoglou@1: double Raw_Lidar_Data(time, channels, points) ; binietoglou@1: double Background_Profile(time_bck, channels, points) ; binietoglou@1: double DAQ_Range(channels) ; binietoglou@1: binietoglou@1: // global attributes: binietoglou@1: :Measurement_ID = "20090130cc00" ; binietoglou@1: :RawData_Start_Date = "20090130" ; binietoglou@1: :RawData_Start_Time_UT = "000001" ; binietoglou@1: :RawData_Stop_Time_UT = "000501" ; binietoglou@1: :RawBck_Start_Date = "20090129" ; binietoglou@1: :RawBck_Start_Time_UT = "235001" ; binietoglou@1: :RawBck_Stop_Time_UT = "235301" ; binietoglou@1: binietoglou@1: data: binietoglou@1: binietoglou@1: channel_ID = 7, 5, 6, 8 ; binietoglou@1: binietoglou@1: Laser_Pointing_Angle = 5 ; binietoglou@1: binietoglou@1: Background_Low = 0, 30000, 30000, 30000 ; binietoglou@1: binietoglou@1: Background_High = 500, 50000, 50000, 50000 ; binietoglou@1: binietoglou@1: Molecular_Calc = 0 ; binietoglou@1: binietoglou@1: Pressure_at_Lidar_Station = 1010 ; binietoglou@1: binietoglou@1: Temperature_at_Lidar_Station = 19.8 ; binietoglou@1: binietoglou@1: id_timescale = 1, 0, 0, 0 ; binietoglou@1: binietoglou@1: LR_Input = 1,_,_,_ ; binietoglou@1: binietoglou@1: DAQ_Range = 100,_,_,_ ; binietoglou@1: binietoglou@1: Laser_Pointing_Angle_of_Profiles = binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: 0, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0, binietoglou@1: _, 0 ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Data_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: _, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270 ; binietoglou@1: binietoglou@1: Raw_Data_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: 240, 120, binietoglou@1: 300, 150, binietoglou@1: _, 180, binietoglou@1: _, 210, binietoglou@1: _, 240, binietoglou@1: _, 270, binietoglou@1: _, 300 ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Bck_Start_Time = binietoglou@1: 0, 0, binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: _, 90, binietoglou@1: _, 120, binietoglou@1: _, 150; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Bck_Stop_Time = binietoglou@1: 60, 30, binietoglou@1: 120, 60, binietoglou@1: 180, 90, binietoglou@1: _, 120, binietoglou@1: _, 150, binietoglou@1: _, 180 ; binietoglou@1: binietoglou@1: binietoglou@1: Laser_Shots = binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, 3000, 3000, 3000, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _, binietoglou@1: 1500, _, _, _ ; binietoglou@1: binietoglou@1: binietoglou@1: Raw_Lidar_Data = ... binietoglou@1: binietoglou@1: Background_Profile = ...</pre> binietoglou@1: </div> binietoglou@1: <p>This example file contains the minimum collection of mandatory binietoglou@1: information that has to be found within the Raw Lidar Data input binietoglou@1: file. If it is really necessary, the user can decide to add to these binietoglou@1: mandatory parameters any number of additional parameters considered in binietoglou@1: the previous example.</p> binietoglou@1: <p>Finally, suppose we want to make the following changes with respect to binietoglou@1: the previous example:</p> binietoglou@1: <ol class="arabic simple"> binietoglou@1: <li>use a sounding file for molecular density calculation instead of “US binietoglou@1: Standar Atmosphere 1976â€</li> binietoglou@1: <li>supply a lidar ratio profile to use in elastic backscatter retrieval binietoglou@1: instead of a fixed value</li> binietoglou@1: <li>provide a overlap function for overlap correction</li> binietoglou@1: </ol> binietoglou@1: <p>In this case we have to generate the following NetCDF additional files:</p> binietoglou@1: <dl class="docutils"> binietoglou@1: <dt>rs_20090130cc00.nc</dt> binietoglou@1: <dd>The name of Sounding Data file has to be computed as follows: binietoglou@1: <tt class="docutils literal"><span class="pre">"rs_"``+``Measurement_ID</span></tt> binietoglou@1: The structure of this file is summarized in table tab:sounding.</dd> binietoglou@1: <dt>ov_20090130cc00.nc</dt> binietoglou@1: <dd>The name of Overlap file has to be computed as follows: binietoglou@1: <tt class="docutils literal"><span class="pre">"ov_"``+``Measurement_ID</span></tt> binietoglou@1: The structure of this file is summarized in table tab:overlap.</dd> binietoglou@1: <dt>lr_20090130cc00.nc</dt> binietoglou@1: <dd>The name of Lidar Ratio file has to be computed as follows: binietoglou@1: <tt class="docutils literal"><span class="pre">"lr_"``+``Measurement_ID</span></tt> binietoglou@1: The structure of this file is summarized in table tab:lr.</dd> binietoglou@1: </dl> binietoglou@1: <p>Moreover we need to apply the following changes to the Raw Lidar Data binietoglou@1: input file:</p> binietoglou@1: <ol class="arabic"> binietoglou@1: <li><p class="first">Change the value of the variable <tt class="docutils literal"><span class="pre">Molecular_Calc</span></tt> as follows:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">Molecular_Calc</span> <span class="o">=</span> <span class="mi">1</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: <p>Of course the variables <tt class="docutils literal"><span class="pre">Pressure_at_Lidar_Station</span></tt> and binietoglou@1: <tt class="docutils literal"><span class="pre">Temperature_at_Lidar_Station</span></tt> are not necessary anymore.</p> binietoglou@1: </li> binietoglou@1: <li><p class="first">Change the values of the array <tt class="docutils literal"><span class="pre">LR_Input</span></tt> as follows:</p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_Input</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span><span class="p">,</span><span class="n">_</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </li> binietoglou@1: <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Sounding_File_Name</span></tt></p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">Sounding_File_Name</span> <span class="o">=</span> <span class="s">"rs_20090130cc00.nc"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </li> binietoglou@1: </ol> binietoglou@1: <ol class="arabic" start="5"> binietoglou@1: <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">LR_File_Name</span></tt></p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">LR_File_Name</span> <span class="o">=</span> <span class="s">"lr_20090130cc00.nc"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </li> binietoglou@1: <li><p class="first">Add the global attribute <tt class="docutils literal"><span class="pre">Overlap_File_Name</span></tt></p> binietoglou@1: <div class="highlight-python"><div class="highlight"><pre><span class="n">Overlap_File_Name</span> <span class="o">=</span> <span class="s">"ov_20090130cc00.nc"</span> <span class="p">;</span> binietoglou@1: </pre></div> binietoglou@1: </div> binietoglou@1: </li> binietoglou@1: </ol> binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: binietoglou@1: binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: <div class="sphinxsidebar"> binietoglou@1: <div class="sphinxsidebarwrapper"> binietoglou@1: <h3><a href="index.html">Table Of Contents</a></h3> binietoglou@1: <ul> binietoglou@1: <li><a class="reference internal" href="#">The SCC netCDF file format</a><ul> binietoglou@1: <li><a class="reference internal" href="#rationale">Rationale</a></li> binietoglou@1: <li><a class="reference internal" href="#example">Example</a><ul> binietoglou@1: <li><a class="reference internal" href="#dimensions">Dimensions</a></li> binietoglou@1: <li><a class="reference internal" href="#variables">Variables</a></li> binietoglou@1: <li><a class="reference internal" href="#global-attributes">Global attributes</a></li> binietoglou@1: </ul> binietoglou@1: </li> binietoglou@1: <li><a class="reference internal" href="#example-of-file-cdl-format">Example of file (CDL format)</a></li> binietoglou@1: </ul> binietoglou@1: </li> binietoglou@1: </ul> binietoglou@1: binietoglou@1: <h4>Previous topic</h4> binietoglou@1: <p class="topless"><a href="measurement_upload.html" binietoglou@1: title="previous chapter">Processing measurement</a></p> binietoglou@1: <h4>Next topic</h4> binietoglou@1: <p class="topless"><a href="user_managment.html" binietoglou@1: title="next chapter">User management</a></p> binietoglou@1: <h3>This Page</h3> binietoglou@1: <ul class="this-page-menu"> binietoglou@1: <li><a href="_sources/netcdf_file.txt" binietoglou@1: rel="nofollow">Show Source</a></li> binietoglou@1: </ul> binietoglou@1: <div id="searchbox" style="display: none"> binietoglou@1: <h3>Quick search</h3> binietoglou@1: <form class="search" action="search.html" method="get"> binietoglou@1: <input type="text" name="q" /> binietoglou@1: <input type="submit" value="Go" /> binietoglou@1: <input type="hidden" name="check_keywords" value="yes" /> binietoglou@1: <input type="hidden" name="area" value="default" /> binietoglou@1: </form> binietoglou@1: <p class="searchtip" style="font-size: 90%"> binietoglou@1: Enter search terms or a module, class or function name. binietoglou@1: </p> binietoglou@1: </div> binietoglou@1: <script type="text/javascript">$('#searchbox').show(0);</script> binietoglou@1: </div> binietoglou@1: </div> binietoglou@1: <div class="clearer"></div> binietoglou@1: </div> binietoglou@1: <div class="related"> binietoglou@1: <h3>Navigation</h3> binietoglou@1: <ul> binietoglou@1: <li class="right" style="margin-right: 10px"> binietoglou@1: <a href="genindex.html" title="General Index" binietoglou@1: >index</a></li> binietoglou@1: <li class="right" > binietoglou@1: <a href="user_managment.html" title="User management" binietoglou@1: >next</a> |</li> binietoglou@1: <li class="right" > binietoglou@1: <a href="measurement_upload.html" title="Processing measurement" binietoglou@1: >previous</a> |</li> binietoglou@1: <li><a href="index.html">Single Calculus Chain 0.2 documentation</a> »</li> binietoglou@1: </ul> binietoglou@1: </div> binietoglou@1: <div class="footer"> binietoglou@1: © Copyright 2012, SCC team. binietoglou@1: Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.2. binietoglou@1: </div> binietoglou@1: </body> binietoglou@1: </html>