generic.py

Tue, 12 Feb 2013 16:57:39 +0100

author
ulalume3 <binietoglou@imaa.cnr.it>
date
Tue, 12 Feb 2013 16:57:39 +0100
changeset 14
a267a7564570
parent 1
82b144ee09b2
child 15
a0b073b1f684
permissions
-rw-r--r--

Corrected the background data variable from 'time' to 'time_bck'.

binietoglou@0 1 # General imports
binietoglou@0 2 import datetime
binietoglou@0 3 from operator import itemgetter
binietoglou@0 4
binietoglou@0 5 # Science imports
binietoglou@0 6 import numpy as np
binietoglou@0 7 import matplotlib as mpl
binietoglou@0 8 from matplotlib import pyplot as plt
binietoglou@0 9 import netCDF4 as netcdf
binietoglou@0 10
binietoglou@1 11 netcdf_format = 'NETCDF3_CLASSIC' # choose one of 'NETCDF3_CLASSIC', 'NETCDF3_64BIT', 'NETCDF4_CLASSIC' and 'NETCDF4'
binietoglou@0 12
binietoglou@0 13
binietoglou@0 14 class BaseLidarMeasurement():
binietoglou@0 15 """ This is the general measurement object.
binietoglou@0 16 It is meant to become a general measurement object
binietoglou@0 17 independent of the input files.
binietoglou@0 18
binietoglou@0 19 Each subclass should implement the following:
binietoglou@0 20 * the import_file method.
binietoglou@0 21 * set the "extra_netcdf_parameters" variable to a dictionary that includes the appropriate parameters.
binietoglou@0 22
binietoglou@0 23 You can override the get_PT method to define a custom procedure to get ground temperature and pressure.
binietoglou@0 24 The one implemented by default is by using the MILOS meteorological station data.
binietoglou@0 25
binietoglou@0 26 """
binietoglou@0 27
binietoglou@0 28 def __init__(self, filelist= None):
binietoglou@0 29 self.info = {}
binietoglou@0 30 self.dimensions = {}
binietoglou@0 31 self.variables = {}
binietoglou@0 32 self.channels = {}
binietoglou@0 33 self.attributes = {}
binietoglou@0 34 self.files = []
binietoglou@0 35 self.dark_measurement = None
binietoglou@0 36 if filelist:
binietoglou@0 37 self.import_files(filelist)
binietoglou@0 38
binietoglou@0 39 def import_files(self,filelist):
binietoglou@0 40 for f in filelist:
binietoglou@0 41 self.import_file(f)
binietoglou@0 42 self.update()
binietoglou@0 43
binietoglou@0 44 def import_file(self,filename):
binietoglou@0 45 raise NotImplementedError('Importing files should be defined in the instrument-specific subclass.')
binietoglou@0 46
binietoglou@0 47 def update(self):
binietoglou@0 48 '''
binietoglou@0 49 Update the the info, variables and dimensions of the lidar measurement based
binietoglou@0 50 on the information found in the channels.
binietoglou@0 51
binietoglou@0 52 Reading of the scan_angles parameter is not implemented.
binietoglou@0 53 '''
binietoglou@0 54
binietoglou@0 55 # Initialize
binietoglou@0 56 start_time =[]
binietoglou@0 57 stop_time = []
binietoglou@0 58 points = []
binietoglou@0 59 all_time_scales = []
binietoglou@0 60 channel_name_list = []
binietoglou@0 61
binietoglou@0 62 # Get the information from all the channels
binietoglou@0 63 for channel_name, channel in self.channels.items():
binietoglou@0 64 channel.update()
binietoglou@0 65 start_time.append(channel.start_time)
binietoglou@0 66 stop_time.append(channel.stop_time)
binietoglou@0 67 points.append(channel.points)
binietoglou@0 68 all_time_scales.append(channel.time)
binietoglou@0 69 channel_name_list.append(channel_name)
binietoglou@0 70
binietoglou@0 71 # Find the unique time scales used in the channels
binietoglou@0 72 time_scales = set(all_time_scales)
binietoglou@0 73
binietoglou@0 74 # Update the info dictionary
binietoglou@0 75 self.info['start_time'] = min(start_time)
binietoglou@0 76 self.info['stop_time'] = max(stop_time)
binietoglou@0 77 self.info['duration'] = self.info['stop_time'] - self.info['start_time']
binietoglou@0 78
binietoglou@0 79 # Update the dimensions dictionary
binietoglou@0 80 self.dimensions['points'] = max(points)
binietoglou@0 81 self.dimensions['channels'] = len(self.channels)
binietoglou@0 82 # self.dimensions['scan angles'] = 1
binietoglou@0 83 self.dimensions['nb_of_time_scales'] = len(time_scales)
binietoglou@0 84
binietoglou@0 85 # Update the variables dictionary
binietoglou@0 86 # Write time scales in seconds
binietoglou@0 87 raw_Data_Start_Time = []
binietoglou@0 88 raw_Data_Stop_Time = []
binietoglou@0 89
binietoglou@0 90 for current_time_scale in list(time_scales):
binietoglou@0 91 raw_start_time = np.array(current_time_scale) - min(start_time) # Time since start_time
binietoglou@0 92 raw_start_in_seconds = np.array([t.seconds for t in raw_start_time]) # Convert in seconds
binietoglou@0 93 raw_Data_Start_Time.append(raw_start_in_seconds) # And add to the list
binietoglou@0 94 # Check if this time scale has measurements every 30 or 60 seconds.
binietoglou@0 95
binietoglou@0 96 duration = self._get_duration(raw_start_in_seconds)
binietoglou@0 97
binietoglou@0 98 raw_stop_in_seconds = raw_start_in_seconds + duration
binietoglou@0 99 raw_Data_Stop_Time.append(raw_stop_in_seconds)
binietoglou@0 100
binietoglou@0 101 self.variables['Raw_Data_Start_Time']= raw_Data_Start_Time
binietoglou@0 102 self.variables['Raw_Data_Stop_Time']= raw_Data_Stop_Time
binietoglou@0 103
binietoglou@0 104 # Make a dictionary to match time scales and channels
binietoglou@0 105 channel_timescales = []
binietoglou@0 106 for (channel_name, current_time_scale) in zip(channel_name_list, all_time_scales):
binietoglou@0 107 # The following lines are PEARL specific. The reason they are here is not clear.
binietoglou@0 108 # if channel_name =='1064BLR':
binietoglou@0 109 # channel_name = '1064'
binietoglou@0 110 for (ts,n) in zip(time_scales, range(len(time_scales))):
binietoglou@0 111 if current_time_scale == ts:
binietoglou@0 112 channel_timescales.append([channel_name,n])
binietoglou@0 113 self.variables['id_timescale'] = dict(channel_timescales)
binietoglou@0 114
binietoglou@0 115 def _get_duration(self, raw_start_in_seconds):
binietoglou@0 116 ''' Return the duration for a given time scale. In some files (ex. Licel) this
binietoglou@0 117 can be specified from the files themselves. In others this must be guessed.
binietoglou@0 118
binietoglou@0 119 '''
binietoglou@0 120 # The old method, kept here for reference
binietoglou@0 121 #dt = np.mean(np.diff(raw_start_in_seconds))
binietoglou@0 122 #for d in duration_list:
binietoglou@0 123 # if abs(dt - d) <15: #If the difference of measuremetns is 10s near the(30 or 60) seconds
binietoglou@0 124 # duration = d
binietoglou@0 125
binietoglou@0 126 duration = np.diff(raw_start_in_seconds)[0]
binietoglou@0 127
binietoglou@0 128 return duration
binietoglou@0 129
binietoglou@0 130 def subset_by_channels(self, channel_subset):
binietoglou@0 131 ''' Get a measurement object containing only the channels with names
binietoglou@0 132 contained in the channel_sublet list '''
binietoglou@0 133
binietoglou@0 134 m = self.__class__() # Create an object of the same type as this one.
binietoglou@0 135 m.channels = dict([(channel, self.channels[channel]) for channel
binietoglou@0 136 in channel_subset])
binietoglou@0 137 m.update()
binietoglou@0 138 return m
binietoglou@0 139
binietoglou@0 140 def subset_by_time(self, start_time, stop_time):
binietoglou@0 141
binietoglou@0 142 if start_time > stop_time:
binietoglou@0 143 raise ValueError('Stop time should be after start time')
binietoglou@0 144
binietoglou@0 145 if (start_time < self.info['start_time']) or (stop_time > self.info['stop_time']):
binietoglou@0 146 raise ValueError('The time interval specified is not part of the measurement')
binietoglou@0 147
binietoglou@0 148 m = self.__class__() # Create an object of the same type as this one.
binietoglou@0 149 for (channel_name, channel) in self.channels.items():
binietoglou@0 150 m.channels[channel_name] = channel.subset_by_time(start_time, stop_time)
binietoglou@0 151 m.update()
binietoglou@0 152 return m
binietoglou@0 153
binietoglou@0 154 def r_plot(self):
binietoglou@0 155 #Make a basic plot of the data.
binietoglou@0 156 #Should include some dictionary with params to make plot stable.
binietoglou@0 157 pass
binietoglou@0 158
binietoglou@0 159 def r_pdf(self):
binietoglou@0 160 # Create a pdf report using a basic plot and meta-data.
binietoglou@0 161 pass
binietoglou@0 162
binietoglou@0 163 def save(self):
binietoglou@0 164 #Save the current state of the object to continue the analysis later.
binietoglou@0 165 pass
binietoglou@0 166
binietoglou@0 167 def get_PT(self):
binietoglou@0 168 ''' Sets the pressure and temperature at station level .
binietoglou@0 169 The results are stored in the info dictionary.
binietoglou@0 170 '''
binietoglou@0 171
binietoglou@0 172 self.info['Temperature'] = 10.0
binietoglou@0 173 self.info['Pressure'] = 930.0
binietoglou@0 174
binietoglou@0 175
binietoglou@0 176 def save_as_netcdf(self, filename):
binietoglou@0 177 """Saves the measurement in the netcdf format as required by the SCC.
binietoglou@0 178 Input: filename
binietoglou@0 179 """
binietoglou@0 180 params = self.extra_netcdf_parameters
binietoglou@0 181 needed_parameters = ['Measurement_ID', 'Temperature', 'Pressure']
binietoglou@0 182
binietoglou@0 183 for parameter in needed_parameters:
binietoglou@0 184 stored_value = self.info.get(parameter, None)
binietoglou@0 185 if stored_value is None:
binietoglou@0 186 raise ValueError('A value needs to be specified for %s' % parameter)
binietoglou@0 187
binietoglou@0 188
binietoglou@0 189 dimensions = {'points': 1,
binietoglou@0 190 'channels': 1,
binietoglou@0 191 'time': None,
binietoglou@0 192 'nb_of_time_scales': 1,
binietoglou@0 193 'scan_angles': 1,} # Mandatory dimensions. Time bck not implemented
binietoglou@0 194
binietoglou@0 195 global_att = {'Measurement_ID': None,
binietoglou@0 196 'RawData_Start_Date': None,
binietoglou@0 197 'RawData_Start_Time_UT': None,
binietoglou@0 198 'RawData_Stop_Time_UT': None,
binietoglou@0 199 'RawBck_Start_Date': None,
binietoglou@0 200 'RawBck_Start_Time_UT': None,
binietoglou@0 201 'RawBck_Stop_Time_UT': None,
binietoglou@0 202 'Sounding_File_Name': None,
binietoglou@0 203 'LR_File_Name': None,
binietoglou@0 204 'Overlap_File_Name': None,
binietoglou@0 205 'Location': None,
binietoglou@0 206 'System': None,
binietoglou@0 207 'Latitude_degrees_north': None,
binietoglou@0 208 'Longitude_degrees_east': None,
binietoglou@0 209 'Altitude_meter_asl': None}
binietoglou@0 210
binietoglou@0 211 channel_variables = \
binietoglou@0 212 {'channel_ID': (('channels', ), 'i'),
binietoglou@0 213 'Background_Low': (('channels', ), 'd'),
binietoglou@0 214 'Background_High': (('channels', ), 'd'),
binietoglou@0 215 'LR_Input': (('channels', ), 'i'),
binietoglou@0 216 'DAQ_Range': (('channels', ), 'd'),
binietoglou@0 217 'Depolarization_Factor': (('channels', ), 'd'), }
binietoglou@0 218
binietoglou@0 219
binietoglou@0 220 channels = self.channels.keys()
binietoglou@0 221
binietoglou@0 222 input_values = dict(self.dimensions, **self.variables)
binietoglou@0 223
binietoglou@0 224 # Add some mandatory global attributes
binietoglou@0 225 input_values['Measurement_ID'] = self.info['Measurement_ID']
binietoglou@0 226 input_values['RawData_Start_Date'] = '\'%s\'' % self.info['start_time'].strftime('%Y%m%d')
binietoglou@0 227 input_values['RawData_Start_Time_UT'] = '\'%s\'' % self.info['start_time'].strftime('%H%M%S')
binietoglou@0 228 input_values['RawData_Stop_Time_UT'] = '\'%s\'' % self.info['stop_time'].strftime('%H%M%S')
binietoglou@0 229
binietoglou@0 230 # Add some optional global attributes
binietoglou@0 231 input_values['System'] = params.general_parameters['System']
binietoglou@0 232 input_values['Latitude_degrees_north'] = params.general_parameters['Latitude_degrees_north']
binietoglou@0 233 input_values['Longitude_degrees_east'] = params.general_parameters['Longitude_degrees_east']
binietoglou@0 234 input_values['Altitude_meter_asl'] = params.general_parameters['Altitude_meter_asl']
binietoglou@0 235
binietoglou@0 236 # Open a netCDF4 file
binietoglou@0 237 f = netcdf.Dataset(filename,'w', format = netcdf_format) # the format is specified in the begining of the file
binietoglou@0 238
binietoglou@0 239 # Create the dimensions in the file
binietoglou@0 240 for (d,v) in dimensions.iteritems():
binietoglou@0 241 v = input_values.pop(d, v)
binietoglou@0 242 f.createDimension(d,v)
binietoglou@0 243
binietoglou@0 244 # Create global attributes
binietoglou@0 245 for (attrib,value) in global_att.iteritems():
binietoglou@0 246 val = input_values.pop(attrib,value)
binietoglou@0 247 if val:
binietoglou@0 248 exec('f.%s = %s' % (attrib,val))
binietoglou@0 249
binietoglou@0 250 """ Variables """
binietoglou@0 251 # Write the values of fixes channel parameters
binietoglou@0 252 for (var,t) in channel_variables.iteritems():
binietoglou@0 253 temp_v = f.createVariable(var,t[1],t[0])
binietoglou@0 254 for (channel, n) in zip(channels, range(len(channels))):
binietoglou@0 255 temp_v[n] = params.channel_parameters[channel][var]
binietoglou@0 256
binietoglou@0 257 # Write the id_timescale values
binietoglou@0 258 temp_id_timescale = f.createVariable('id_timescale','i',('channels',))
binietoglou@0 259 for (channel, n) in zip(channels, range(len(channels))):
binietoglou@0 260 temp_id_timescale[n] = self.variables['id_timescale'][channel]
binietoglou@0 261
binietoglou@0 262 # Laser pointing angle
binietoglou@0 263 temp_v = f.createVariable('Laser_Pointing_Angle','d',('scan_angles',))
binietoglou@0 264 temp_v[:] = params.general_parameters['Laser_Pointing_Angle']
binietoglou@0 265
binietoglou@0 266 # Molecular calculation
binietoglou@0 267 temp_v = f.createVariable('Molecular_Calc','i')
binietoglou@0 268 temp_v[:] = params.general_parameters['Molecular_Calc']
binietoglou@0 269
binietoglou@0 270 # Laser pointing angles of profiles
binietoglou@0 271 temp_v = f.createVariable('Laser_Pointing_Angle_of_Profiles','i',('time','nb_of_time_scales'))
binietoglou@0 272 for (time_scale,n) in zip(self.variables['Raw_Data_Start_Time'],
binietoglou@0 273 range(len(self.variables['Raw_Data_Start_Time']))):
binietoglou@0 274 temp_v[:len(time_scale), n] = 0 # The lidar has only one laser pointing angle
binietoglou@0 275
binietoglou@0 276 # Raw data start/stop time
binietoglou@0 277 temp_raw_start = f.createVariable('Raw_Data_Start_Time','i',('time','nb_of_time_scales'))
binietoglou@0 278 temp_raw_stop = f.createVariable('Raw_Data_Stop_Time','i',('time','nb_of_time_scales'))
binietoglou@0 279 for (start_time, stop_time,n) in zip(self.variables['Raw_Data_Start_Time'],
binietoglou@0 280 self.variables['Raw_Data_Stop_Time'],
binietoglou@0 281 range(len(self.variables['Raw_Data_Start_Time']))):
binietoglou@0 282 temp_raw_start[:len(start_time),n] = start_time
binietoglou@0 283 temp_raw_stop[:len(stop_time),n] = stop_time
binietoglou@0 284
binietoglou@0 285 #Laser shots
binietoglou@0 286 temp_v = f.createVariable('Laser_Shots','i',('time','channels'))
binietoglou@0 287 for (channel,n) in zip(channels, range(len(channels))):
binietoglou@0 288 time_length = len(self.variables['Raw_Data_Start_Time'][self.variables['id_timescale'][channel]])
binietoglou@0 289 temp_v[:time_length, n] = params.channel_parameters[channel]['Laser_Shots']
binietoglou@0 290
binietoglou@0 291 #Raw lidar data
binietoglou@0 292 temp_v = f.createVariable('Raw_Lidar_Data','d',('time', 'channels','points'))
binietoglou@0 293 for (channel,n) in zip(channels, range(len(channels))):
binietoglou@0 294 c = self.channels[channel]
binietoglou@0 295 temp_v[:len(c.time),n, :c.points] = c.matrix
binietoglou@0 296
binietoglou@0 297 self.add_dark_measurements_to_netcdf(f, channels)
binietoglou@0 298
binietoglou@0 299 #Pressure at lidar station
binietoglou@0 300 temp_v = f.createVariable('Pressure_at_Lidar_Station','d')
binietoglou@0 301 temp_v[:] = self.info['Pressure']
binietoglou@0 302
binietoglou@0 303 #Temperature at lidar station
binietoglou@0 304 temp_v = f.createVariable('Temperature_at_Lidar_Station','d')
binietoglou@0 305 temp_v[:] = self.info['Temperature']
binietoglou@0 306
binietoglou@0 307 self.save_netcdf_extra(f)
binietoglou@0 308 f.close()
binietoglou@0 309
binietoglou@0 310 def add_dark_measurements_to_netcdf(self, f, channels):
binietoglou@0 311
binietoglou@0 312 # Get dark measurements. If it is not given in self.dark_measurement
binietoglou@0 313 # try to get it using the get_dark_measurements method. If none is found
binietoglou@0 314 # return without adding something.
binietoglou@0 315 if self.dark_measurement is None:
binietoglou@0 316 self.dark_measurement = self.get_dark_measurements()
binietoglou@0 317
binietoglou@0 318 if self.dark_measurement is None:
binietoglou@0 319 return
binietoglou@0 320
binietoglou@0 321 dark_measurement = self.dark_measurement
binietoglou@0 322
binietoglou@0 323 # Calculate the length of the time_bck dimensions
binietoglou@0 324 number_of_profiles = [len(c.time) for c in dark_measurement.channels.values()]
binietoglou@0 325 max_number_of_profiles = np.max(number_of_profiles)
binietoglou@0 326
binietoglou@0 327 # Create the dimension
binietoglou@0 328 f.createDimension('time_bck', max_number_of_profiles)
binietoglou@0 329
binietoglou@0 330 # Save the dark measurement data
binietoglou@0 331 temp_v = f.createVariable('Background_Profile','d',('time_bck', 'channels', 'points'))
binietoglou@0 332 for (channel,n) in zip(channels, range(len(channels))):
binietoglou@0 333 c = dark_measurement.channels[channel]
binietoglou@0 334 temp_v[:len(c.time),n, :c.points] = c.matrix
binietoglou@0 335
binietoglou@0 336 # Dark profile start/stop time
binietoglou@14 337 temp_raw_start = f.createVariable('Raw_Bck_Start_Time','i',('time_bck','nb_of_time_scales'))
binietoglou@14 338 temp_raw_stop = f.createVariable('Raw_Bck_Stop_Time','i',('time_bck','nb_of_time_scales'))
binietoglou@0 339 for (start_time, stop_time,n) in zip(dark_measurement.variables['Raw_Data_Start_Time'],
binietoglou@0 340 dark_measurement.variables['Raw_Data_Stop_Time'],
binietoglou@0 341 range(len(dark_measurement.variables['Raw_Data_Start_Time']))):
binietoglou@0 342 temp_raw_start[:len(start_time),n] = start_time
binietoglou@0 343 temp_raw_stop[:len(stop_time),n] = stop_time
binietoglou@0 344
binietoglou@0 345 # Dark measurement start/stop time
binietoglou@0 346 f.RawBck_Start_Date = dark_measurement.info['start_time'].strftime('%Y%m%d')
binietoglou@0 347 f.RawBck_Start_Time_UT = dark_measurement.info['start_time'].strftime('%H%M%S')
binietoglou@0 348 f.RawBck_Stop_Time_UT = dark_measurement.info['stop_time'].strftime('%H%M%S')
binietoglou@0 349
binietoglou@0 350
binietoglou@0 351
binietoglou@0 352 def save_netcdf_extra(self, f):
binietoglou@0 353 pass
binietoglou@0 354
binietoglou@0 355 def _gettime(self, date_str, time_str):
binietoglou@0 356 t = datetime.datetime.strptime(date_str+time_str,'%d/%m/%Y%H.%M.%S')
binietoglou@0 357 return t
binietoglou@0 358
binietoglou@0 359 def plot(self):
binietoglou@0 360 for channel in self.channels:
binietoglou@0 361 self.channels[channel].plot(show_plot = False)
binietoglou@0 362 plt.show()
binietoglou@0 363
binietoglou@0 364 def get_dark_measurements(self):
binietoglou@0 365 return None
binietoglou@0 366
binietoglou@0 367
binietoglou@0 368 class Lidar_channel:
binietoglou@0 369
binietoglou@0 370 def __init__(self,channel_parameters):
binietoglou@0 371 c = 299792458 #Speed of light
binietoglou@0 372 self.wavelength = channel_parameters['name']
binietoglou@0 373 self.name = str(self.wavelength)
binietoglou@0 374 self.binwidth = float(channel_parameters['binwidth']) # in microseconds
binietoglou@0 375 self.data = {}
binietoglou@0 376 self.resolution = self.binwidth * c / 2
binietoglou@0 377 self.z = np.arange(len(channel_parameters['data'])) * self.resolution + self.resolution/2.0 # Change: add half bin in the z
binietoglou@0 378 self.points = len(channel_parameters['data'])
binietoglou@0 379 self.rc = []
binietoglou@0 380 self.duration = 60
binietoglou@0 381
binietoglou@0 382 def calculate_rc(self):
binietoglou@0 383 background = np.mean(self.matrix[:,4000:], axis = 1) #Calculate the background from 30000m and above
binietoglou@0 384 self.rc = (self.matrix.transpose()- background).transpose() * (self.z **2)
binietoglou@0 385
binietoglou@0 386
binietoglou@0 387 def update(self):
binietoglou@0 388 self.start_time = min(self.data.keys())
binietoglou@0 389 self.stop_time = max(self.data.keys()) + datetime.timedelta(seconds = self.duration)
binietoglou@0 390 self.time = tuple(sorted(self.data.keys()))
binietoglou@0 391 sorted_data = sorted(self.data.iteritems(), key=itemgetter(0))
binietoglou@0 392 self.matrix = np.array(map(itemgetter(1),sorted_data))
binietoglou@0 393
binietoglou@0 394 def _nearest_dt(self,dtime):
binietoglou@0 395 margin = datetime.timedelta(seconds = 300)
binietoglou@0 396 if ((dtime + margin) < self.start_time)| ((dtime - margin) > self.stop_time):
binietoglou@0 397 print "Requested date not covered in this file"
binietoglou@0 398 raise
binietoglou@0 399 dt = abs(self.time - np.array(dtime))
binietoglou@0 400 dtmin = min(dt)
binietoglou@0 401
binietoglou@0 402 if dtmin > datetime.timedelta(seconds = 60):
binietoglou@0 403 print "Nearest profile more than 60 seconds away. dt = %s." % dtmin
binietoglou@0 404 ind_t = np.where(dt == dtmin)
binietoglou@0 405 ind_a= ind_t[0]
binietoglou@0 406 if len(ind_a) > 1:
binietoglou@0 407 ind_a = ind_a[0]
binietoglou@0 408 chosen_time = self.time[ind_a]
binietoglou@0 409 return chosen_time, ind_a
binietoglou@0 410
binietoglou@0 411 def subset_by_time(self, start_time, stop_time):
binietoglou@0 412
binietoglou@0 413 time_array = np.array(self.time)
binietoglou@0 414 condition = (time_array >= start_time) & (time_array <= stop_time)
binietoglou@0 415
binietoglou@0 416 subset_time = time_array[condition]
binietoglou@0 417 subset_data = dict([(c_time, self.data[c_time]) for c_time in subset_time])
binietoglou@0 418
binietoglou@0 419 #Create a list with the values needed by channel's __init__()
binietoglou@0 420 parameters_values = {'name': self.wavelength,
binietoglou@0 421 'binwidth': self.binwidth,
binietoglou@0 422 'data': subset_data[subset_time[0]],}
binietoglou@0 423
binietoglou@0 424 c = Lidar_channel(parameters_values)
binietoglou@0 425 c.data = subset_data
binietoglou@0 426 c.update()
binietoglou@0 427 return c
binietoglou@0 428
binietoglou@0 429
binietoglou@0 430 def profile(self,dtime, signal_type = 'rc'):
binietoglou@0 431 t, idx = self._nearest_dt(dtime)
binietoglou@0 432 if signal_type == 'rc':
binietoglou@0 433 data = self.rc
binietoglou@0 434 else:
binietoglou@0 435 data = self.matrix
binietoglou@0 436
binietoglou@0 437 prof = data[idx,:][0]
binietoglou@0 438 return prof, t
binietoglou@0 439
binietoglou@0 440 def get_slice(self, starttime, endtime, signal_type = 'rc'):
binietoglou@0 441 if signal_type == 'rc':
binietoglou@0 442 data = self.rc
binietoglou@0 443 else:
binietoglou@0 444 data = self.matrix
binietoglou@0 445 tim = np.array(self.time)
binietoglou@0 446 starttime = self._nearest_dt(starttime)[0]
binietoglou@0 447 endtime = self._nearest_dt(endtime)[0]
binietoglou@0 448 condition = (tim >= starttime) & (tim <= endtime)
binietoglou@0 449 sl = data[condition, :]
binietoglou@0 450 t = tim[condition]
binietoglou@0 451 return sl,t
binietoglou@0 452
binietoglou@0 453 def av_profile(self, tim, duration = datetime.timedelta(seconds = 0), signal_type = 'rc'):
binietoglou@0 454 starttime = tim - duration/2
binietoglou@0 455 endtime = tim + duration/2
binietoglou@0 456 d,t = self.get_slice(starttime, endtime, signal_type = signal_type)
binietoglou@0 457 prof = np.mean(d, axis = 0)
binietoglou@0 458 tmin = min(t)
binietoglou@0 459 tmax = max(t)
binietoglou@0 460 tav = tmin + (tmax-tmin)/2
binietoglou@0 461 return prof,(tav, tmin,tmax)
binietoglou@0 462
binietoglou@0 463 def plot(self, signal_type = 'rc', filename = None, zoom = [0,12000,0,-1], show_plot = True, cmap = plt.cm.jet):
binietoglou@0 464 #if filename is not None:
binietoglou@0 465 # matplotlib.use('Agg')
binietoglou@0 466
binietoglou@0 467 fig = plt.figure()
binietoglou@0 468 ax1 = fig.add_subplot(111)
binietoglou@0 469 self.draw_plot(ax1, cmap = cmap, signal_type = signal_type, zoom = zoom)
binietoglou@0 470 ax1.set_title("%s signal - %s" % (signal_type.upper(), self.name))
binietoglou@0 471
binietoglou@0 472 if filename is not None:
binietoglou@0 473 pass
binietoglou@0 474 #plt.savefig(filename)
binietoglou@0 475 else:
binietoglou@0 476 if show_plot:
binietoglou@0 477 plt.show()
binietoglou@0 478 #plt.close() ???
binietoglou@0 479
binietoglou@0 480 def draw_plot(self,ax1, cmap = plt.cm.jet, signal_type = 'rc', zoom = [0,12000,0,-1]):
binietoglou@0 481
binietoglou@0 482 if signal_type == 'rc':
binietoglou@0 483 if len(self.rc) == 0:
binietoglou@0 484 self.calculate_rc()
binietoglou@0 485 data = self.rc
binietoglou@0 486 else:
binietoglou@0 487 data = self.matrix
binietoglou@0 488
binietoglou@0 489 hmax_idx = self.index_at_height(zoom[1])
binietoglou@0 490
binietoglou@0 491 ax1.set_ylabel('Altitude (km)')
binietoglou@0 492 ax1.set_xlabel('Time UTC')
binietoglou@0 493 #y axis in km, xaxis /2 to make 30s measurements in minutes. Only for 1064
binietoglou@0 494 #dateFormatter = mpl.dates.DateFormatter('%H.%M')
binietoglou@0 495 #hourlocator = mpl.dates.HourLocator()
binietoglou@0 496
binietoglou@0 497 #dayFormatter = mpl.dates.DateFormatter('\n\n%d/%m')
binietoglou@0 498 #daylocator = mpl.dates.DayLocator()
binietoglou@0 499 hourFormatter = mpl.dates.DateFormatter('%H.%M')
binietoglou@0 500 hourlocator = mpl.dates.AutoDateLocator(interval_multiples=True)
binietoglou@0 501
binietoglou@0 502
binietoglou@0 503 #ax1.axes.xaxis.set_major_formatter(dayFormatter)
binietoglou@0 504 #ax1.axes.xaxis.set_major_locator(daylocator)
binietoglou@0 505 ax1.axes.xaxis.set_major_formatter(hourFormatter)
binietoglou@0 506 ax1.axes.xaxis.set_major_locator(hourlocator)
binietoglou@0 507
binietoglou@0 508
binietoglou@0 509 ts1 = mpl.dates.date2num(self.start_time)
binietoglou@0 510 ts2 = mpl.dates.date2num(self.stop_time)
binietoglou@0 511
binietoglou@0 512
binietoglou@0 513 im1 = ax1.imshow(data.transpose()[zoom[0]:hmax_idx,zoom[2]:zoom[3]],
binietoglou@0 514 aspect = 'auto',
binietoglou@0 515 origin = 'lower',
binietoglou@0 516 cmap = cmap,
binietoglou@0 517 #vmin = 0,
binietoglou@0 518 vmin = data[:,10:400].max() * 0.1,
binietoglou@0 519 #vmax = 1.4*10**7,
binietoglou@0 520 vmax = data[:,10:400].max() * 0.9,
binietoglou@0 521 extent = [ts1,ts2,self.z[zoom[0]]/1000.0, self.z[hmax_idx]/1000.0],
binietoglou@0 522 )
binietoglou@0 523
binietoglou@0 524 cb1 = plt.colorbar(im1)
binietoglou@0 525 cb1.ax.set_ylabel('a.u.')
binietoglou@0 526
binietoglou@0 527 def index_at_height(self, height):
binietoglou@0 528 idx = np.array(np.abs(self.z - height).argmin())
binietoglou@0 529 if idx.size >1:
binietoglou@0 530 idx =idx[0]
binietoglou@0 531 return idx
binietoglou@0 532
binietoglou@0 533 def netcdf_from_files(LidarClass, filename, files, channels, measurement_ID):
binietoglou@0 534 #Read the lidar files and select channels
binietoglou@0 535 temp_m = LidarClass(files)
binietoglou@0 536 m = temp_m.subset_by_channels(channels)
binietoglou@0 537 m.get_PT()
binietoglou@0 538 m.info['Measurement_ID'] = measurement_ID
binietoglou@0 539 m.save_as_netcdf(filename)
binietoglou@0 540

mercurial