lidar_correction_ghk.py

Mon, 28 Nov 2016 16:45:48 +0200

author
Ioannis Binietoglou <binietoglou@noa.gr>
date
Mon, 28 Nov 2016 16:45:48 +0200
changeset 20
161490e56a2c
parent 19
40d55af749b6
child 21
857c95060313
permissions
-rw-r--r--

New ignore list.

ulalume3@0 1 # -*- coding: utf-8 -*-
ulalume3@0 2 """
ulalume3@0 3 Copyright 2016 Volker Freudenthaler
ulalume3@0 4
ulalume3@0 5 Licensed under the EUPL, Version 1.1 only (the "Licence").
ulalume3@0 6
ulalume3@0 7 You may not use this work except in compliance with the Licence.
ulalume3@0 8 A copy of the licence is distributed with the code. Alternatively, you may obtain
ulalume3@0 9 a copy of the Licence at:
ulalume3@0 10
ulalume3@0 11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl
ulalume3@0 12
ulalume3@0 13 Unless required by applicable law or agreed to in writing, software distributed
ulalume3@0 14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS
ulalume3@0 15 OF ANY KIND, either express or implied. See the Licence for the specific language governing
ulalume3@0 16 permissions and limitations under the Licence.
ulalume3@0 17
ulalume3@0 18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf
ulalume3@0 19 With equations code from Appendix C
volker@11 20 Python 3.4.2
ulalume3@0 21 """
binietoglou@19 22 # !/usr/bin/env python3
volker@11 23
volker@11 24 # Comment: The code works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements.
ulalume3@0 25 from __future__ import print_function
binietoglou@19 26
binietoglou@19 27 import os
binietoglou@19 28 import sys
binietoglou@19 29
ulalume3@0 30 import numpy as np
ulalume3@0 31
volker@11 32 # Comment: the seaborn library makes nicer plots, but the code works also without it.
volker@11 33 try:
volker@11 34 import seaborn as sns
binietoglou@19 35
volker@11 36 sns_loaded = True
volker@11 37 except ImportError:
volker@11 38 sns_loaded = False
volker@11 39
ulalume3@0 40 import matplotlib.pyplot as plt
ulalume3@0 41 from time import clock
ulalume3@0 42
binietoglou@19 43 # from matplotlib.backends.backend_pdf import PdfPages
binietoglou@19 44 # pdffile = '{}.pdf'.format('path')
binietoglou@19 45 # pp = PdfPages(pdffile)
ulalume3@0 46 ## pp.savefig can be called multiple times to save to multiple pages
binietoglou@19 47 # pp.savefig()
binietoglou@19 48 # pp.close()
ulalume3@0 49
ulalume3@0 50 from contextlib import contextmanager
binietoglou@19 51
binietoglou@19 52
ulalume3@0 53 @contextmanager
ulalume3@0 54 def redirect_stdout(new_target):
binietoglou@19 55 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout
ulalume3@0 56 try:
binietoglou@19 57 yield new_target # run some code with the replaced stdout
ulalume3@0 58 finally:
ulalume3@0 59 sys.stdout.flush()
binietoglou@19 60 sys.stdout = old_target # restore to the previous value
binietoglou@19 61
binietoglou@19 62
ulalume3@0 63 '''
ulalume3@0 64 real_raw_input = vars(__builtins__).get('raw_input',input)
ulalume3@0 65 '''
ulalume3@0 66 try:
ulalume3@0 67 import __builtin__
binietoglou@19 68
ulalume3@0 69 input = getattr(__builtin__, 'raw_input')
ulalume3@0 70 except (ImportError, AttributeError):
ulalume3@0 71 pass
ulalume3@0 72
ulalume3@0 73 from distutils.util import strtobool
binietoglou@19 74
binietoglou@19 75
ulalume3@0 76 def user_yes_no_query(question):
ulalume3@0 77 sys.stdout.write('%s [y/n]\n' % question)
ulalume3@0 78 while True:
ulalume3@0 79 try:
ulalume3@0 80 return strtobool(input().lower())
ulalume3@0 81 except ValueError:
ulalume3@0 82 sys.stdout.write('Please respond with \'y\' or \'n\'.\n')
ulalume3@0 83
binietoglou@19 84
binietoglou@19 85 # if user_yes_no_query('want to exit?') == 1: sys.exit()
ulalume3@0 86
ulalume3@0 87 abspath = os.path.abspath(__file__)
ulalume3@0 88 dname = os.path.dirname(abspath)
ulalume3@0 89 fname = os.path.basename(abspath)
ulalume3@0 90 os.chdir(dname)
ulalume3@0 91
binietoglou@19 92 # PrintToOutputFile = True
ulalume3@0 93
binietoglou@19 94 sqr05 = 0.5 ** 0.5
ulalume3@0 95
volker@16 96 # Do you want to calculate the errors? If not, just the GHK-parameters are determined.
volker@16 97 Error_Calc = True
ulalume3@0 98 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below
ulalume3@0 99 LID = "internal"
ulalume3@0 100 EID = "internal"
ulalume3@0 101 # --- IL Laser IL and +-Uncertainty
binietoglou@19 102 bL = 1. # degree of linear polarization; default 1
binietoglou@19 103 RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0
ulalume3@0 104 # --- ME Emitter and +-Uncertainty
binietoglou@19 105 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation
binietoglou@19 106 TiE = 1. # Unpolarized transmittance
binietoglou@19 107 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees
binietoglou@19 108 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees
ulalume3@0 109 # --- MO Receiver Optics including telescope
binietoglou@19 110 DiO, dDiO, nDiO = -0.055, 0.003, 1
binietoglou@19 111 TiO = 0.9
binietoglou@19 112 RetO, dRetO, nRetO = 0., 180.0, 2
binietoglou@19 113 RotO, dRotO, nRotO = 0., 0.1, 1 # gamma
ulalume3@0 114 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty
binietoglou@19 115 TP, dTP, nTP = 0.98, 0.02, 1
binietoglou@19 116 TS, dTS, nTS = 0.001, 0.001, 1
ulalume3@0 117 TiT = 0.5 * (TP + TS)
binietoglou@19 118 DiT = (TP - TS) / (TP + TS)
ulalume3@0 119 # PolFilter
binietoglou@19 120 RetT, dRetT, nRetT = 0., 180., 0
binietoglou@19 121 ERaT, dERaT, nERaT = 0.001, 0.001, 1
binietoglou@19 122 RotaT, dRotaT, nRotaT = 0., 3., 1
binietoglou@19 123 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 124 TaT = 0.5 * (1 + ERaT)
ulalume3@0 125 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty
volker@13 126 RS_RP_depend_on_TS_TP = False
binietoglou@19 127 if (RS_RP_depend_on_TS_TP):
binietoglou@19 128 RP, dRP, nRP = 1 - TP, 0.00, 0
binietoglou@19 129 RS, dRS, nRS = 1 - TS, 0.00, 0
volker@13 130 else:
binietoglou@19 131 RP, dRP, nRP = 0.05, 0.01, 1
binietoglou@19 132 RS, dRS, nRS = 0.98, 0.01, 1
ulalume3@0 133 TiR = 0.5 * (RP + RS)
binietoglou@19 134 DiR = (RP - RS) / (RP + RS)
ulalume3@0 135 # PolFilter
binietoglou@19 136 RetR, dRetR, nRetR = 0., 180., 0
binietoglou@19 137 ERaR, dERaR, nERaR = 0.001, 0.001, 1
binietoglou@19 138 RotaR, dRotaR, nRotaR = 90., 3., 1
binietoglou@19 139 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 140 TaR = 0.5 * (1 + ERaR)
ulalume3@0 141
ulalume3@0 142 # Parellel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1
ulalume3@0 143 Y = -1.
ulalume3@0 144
ulalume3@0 145 # Calibrator = type defined by matrix values
binietoglou@19 146 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4
ulalume3@0 147
binietoglou@19 148 TypeC = 3 # linear polarizer calibrator
ulalume3@0 149 # example with extinction ratio 0.001
binietoglou@19 150 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0
binietoglou@19 151 TiC = 0.5 # ideal 0.5
binietoglou@19 152 RetC, dRetC, nRetC = 0., 0., 0
binietoglou@19 153 RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon
binietoglou@19 154 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
ulalume3@0 155
ulalume3@0 156 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
ulalume3@0 157 RotationErrorEpsilonForNormalMeasurements = True
ulalume3@0 158
ulalume3@0 159 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess)
binietoglou@19 160 LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1
ulalume3@0 161 LDRCal = LDRCal0
ulalume3@0 162 # measured LDRm will be corrected with calculated parameters
ulalume3@0 163 LDRmeas = 0.015
ulalume3@0 164 # LDRtrue for simulation of measurement => LDRsim
ulalume3@0 165 LDRtrue = 0.5
ulalume3@0 166 LDRtrue2 = 0.004
ulalume3@0 167
ulalume3@0 168 # Initialize other values to 0
ulalume3@0 169 ER, nER, dER = 0.001, 0, 0.001
ulalume3@0 170 K = 0.
ulalume3@0 171 Km = 0.
ulalume3@0 172 Kp = 0.
ulalume3@0 173 LDRcorr = 0.
ulalume3@0 174 Eta = 0.
ulalume3@0 175 Ir = 0.
ulalume3@0 176 It = 0.
ulalume3@0 177 h = 1.
ulalume3@0 178
ulalume3@0 179 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS']
binietoglou@19 180 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer',
binietoglou@19 181 'real HWP +-22.5°']
ulalume3@0 182 dY = ['reflected channel', '', 'transmitted channel']
ulalume3@0 183
ulalume3@0 184 # end of initial definition of variables
ulalume3@0 185 # *******************************************************************************************************************************
ulalume3@0 186
ulalume3@0 187 # --- Read actual lidar system parameters from ./optic_input.py (must be in the same directory)
volker@11 188 InputFile = 'optic_input_example_lidar.py'
binietoglou@19 189 # InputFile = 'optic_input_ver6e_POLIS_355.py'
binietoglou@19 190 # InputFile = 'optic_input_ver6e_POLIS_355_JA.py'
binietoglou@19 191 # InputFile = 'optic_input_ver6c_POLIS_532.py'
binietoglou@19 192 # InputFile = 'optic_input_ver6e_POLIS_532.py'
binietoglou@19 193 # InputFile = 'optic_input_ver8c_POLIS_532.py'
binietoglou@19 194 # InputFile = 'optic_input_ver6e_MUSA.py'
binietoglou@19 195 # InputFile = 'optic_input_ver6e_MUSA_JA.py'
binietoglou@19 196 # InputFile = 'optic_input_ver6e_PollyXTSea.py'
binietoglou@19 197 # InputFile = 'optic_input_ver6e_PollyXTSea_JA.py'
binietoglou@19 198 # InputFile = 'optic_input_ver6e_PollyXT_RALPH.py'
binietoglou@19 199 # InputFile = 'optic_input_ver8c_PollyXT_RALPH.py'
binietoglou@19 200 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_2.py'
binietoglou@19 201 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_3.py'
binietoglou@19 202 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_4.py'
binietoglou@19 203 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_5.py'
binietoglou@19 204 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_6.py'
binietoglou@19 205 # InputFile = 'optic_input_ver8c_PollyXT_RALPH_7.py'
binietoglou@19 206 # InputFile = 'optic_input_ver8a_MOHP_DPL_355.py'
binietoglou@19 207 # InputFile = 'optic_input_ver9_MOHP_DPL_355.py'
binietoglou@19 208 # InputFile = 'optic_input_ver6e_RALI.py'
binietoglou@19 209 # InputFile = 'optic_input_ver6e_RALI_JA.py'
binietoglou@19 210 # InputFile = 'optic_input_ver6e_RALI_new.py'
binietoglou@19 211 # InputFile = 'optic_input_ver6e_RALI_act.py'
binietoglou@19 212 # InputFile = 'optic_input_ver6e_MULHACEN.py'
binietoglou@19 213 # InputFile = 'optic_input_ver6e_MULHACEN_JA.py'
binietoglou@19 214 # InputFile = 'optic_input_ver6e-IPRAL.py'
binietoglou@19 215 # InputFile = 'optic_input_ver6e-IPRAL_JA.py'
binietoglou@19 216 # InputFile = 'optic_input_ver6e-LB21.py'
binietoglou@19 217 # InputFile = 'optic_input_ver6e-LB21_JA.py'
binietoglou@19 218 # InputFile = 'optic_input_ver6e_Bertha_b_355.py'
binietoglou@19 219 # InputFile = 'optic_input_ver6e_Bertha_b_532.py'
binietoglou@19 220 # InputFile = 'optic_input_ver6e_Bertha_b_1064.py'
ulalume3@0 221
ulalume3@0 222 '''
ulalume3@0 223 print("From ", dname)
ulalume3@0 224 print("Running ", fname)
ulalume3@0 225 print("Reading input file ", InputFile, " for")
ulalume3@0 226 '''
ulalume3@0 227 input_path = os.path.join('.', 'system_settings', InputFile)
ulalume3@0 228 # this works with Python 2 - and 3?
binietoglou@19 229 exec (open(input_path).read(), globals())
ulalume3@0 230 # end of read actual system parameters
ulalume3@0 231
ulalume3@0 232 # --- Manual Parameter Change ---
ulalume3@0 233 # (use for quick parameter changes without changing the input file )
binietoglou@19 234 # DiO = 0.
binietoglou@19 235 # LDRtrue = 0.45
binietoglou@19 236 # LDRtrue2 = 0.004
binietoglou@19 237 # Y = -1
binietoglou@19 238 # LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
ulalume3@0 239 ##TypeC = 6 Don't change the TypeC here
binietoglou@19 240 # RotationErrorEpsilonForNormalMeasurements = True
binietoglou@19 241 # LDRCal = 0.25
binietoglou@19 242 # bL = 0.8
ulalume3@0 243 ## --- Errors
ulalume3@0 244 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
ulalume3@0 245
binietoglou@19 246 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
ulalume3@0 247 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
ulalume3@0 248 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
ulalume3@0 249
binietoglou@19 250 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
ulalume3@0 251 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
ulalume3@0 252 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
ulalume3@0 253
binietoglou@19 254 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
ulalume3@0 255 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
ulalume3@0 256 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
ulalume3@0 257
binietoglou@19 258 TP0, dTP, nTP = TP, dTP, nTP
binietoglou@19 259 TS0, dTS, nTS = TS, dTS, nTS
ulalume3@0 260 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
ulalume3@0 261
ulalume3@0 262 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
binietoglou@19 263 RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT
ulalume3@0 264
binietoglou@19 265 RP0, dRP, nRP = RP, dRP, nRP
binietoglou@19 266 RS0, dRS, nRS = RS, dRS, nRS
ulalume3@0 267 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
ulalume3@0 268
ulalume3@0 269 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
binietoglou@19 270 RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR
ulalume3@0 271
binietoglou@19 272 LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal
binietoglou@19 273 # LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,0
ulalume3@0 274 # ---------- End of manual parameter change
ulalume3@0 275
ulalume3@0 276 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0
binietoglou@19 277 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0
ulalume3@0 278 LDRCal = LDRCal0
binietoglou@19 279 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0, 0, 0, 0, 0, 0
ulalume3@0 280
ulalume3@0 281 TiT = 0.5 * (TP + TS)
binietoglou@19 282 DiT = (TP - TS) / (TP + TS)
binietoglou@19 283 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 284 TiR = 0.5 * (RP + RS)
binietoglou@19 285 DiR = (RP - RS) / (RP + RS)
binietoglou@19 286 ZiR = (1. - DiR ** 2) ** 0.5
binietoglou@19 287
ulalume3@0 288
volker@13 289 # --- this subroutine is for the calculation with certain fixed parameters -----------------------------------------------------
binietoglou@19 290 def Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR,
binietoglou@19 291 LDRCal):
ulalume3@0 292 # ---- Do the calculations of bra-ket vectors
ulalume3@0 293 h = -1. if TypeC == 2 else 1
ulalume3@0 294 # from input file: assumed LDRCal for calibration measurements
binietoglou@19 295 aCal = (1. - LDRCal) / (1 + LDRCal)
ulalume3@0 296 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 297 # ameas = (1.-LDRmeas)/(1+LDRmeas)
binietoglou@19 298 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 299 # atrue2 = (1.-LDRtrue2)/(1+LDRtrue2)
ulalume3@0 300
ulalume3@0 301 # angles of emitter and laser and calibrator and receiver optics
ulalume3@0 302 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 303 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 304 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 305 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 306 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 307 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 308 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 309 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 310 C2g = np.cos(np.deg2rad(2 * RotO))
ulalume3@0 311
ulalume3@0 312 # Laser with Degree of linear polarization DOLP = bL
ulalume3@0 313 IinL = 1.
ulalume3@0 314 QinL = bL
ulalume3@0 315 UinL = 0.
binietoglou@19 316 VinL = (1. - bL ** 2) ** 0.5
ulalume3@0 317
ulalume3@0 318 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 319 A = C2a * QinL - S2a * UinL
binietoglou@19 320 B = S2a * QinL + C2a * UinL
ulalume3@0 321 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 322 C = C2ab * QinL - S2ab * UinL
binietoglou@19 323 D = S2ab * QinL + C2ab * UinL
ulalume3@0 324
ulalume3@0 325 # emitter optics
ulalume3@0 326 CosE = np.cos(np.deg2rad(RetE))
ulalume3@0 327 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 328 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 329 WiE = (1. - ZiE * CosE)
ulalume3@0 330
ulalume3@0 331 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
ulalume3@0 332 # b = beta
binietoglou@19 333 IinE = (IinL + DiE * C)
binietoglou@19 334 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 335 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 336 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 337
ulalume3@0 338 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 339 IinF = IinE
binietoglou@19 340 QinF = aCal * QinE
binietoglou@19 341 UinF = -aCal * UinE
binietoglou@19 342 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 343
ulalume3@0 344 # receiver optics
ulalume3@0 345 CosO = np.cos(np.deg2rad(RetO))
ulalume3@0 346 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 347 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 348 WiO = (1. - ZiO * CosO)
ulalume3@0 349
ulalume3@0 350 # calibrator
ulalume3@0 351 CosC = np.cos(np.deg2rad(RetC))
ulalume3@0 352 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 353 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 354 WiC = (1. - ZiC * CosC)
ulalume3@0 355
ulalume3@0 356 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 357 A = C2g * QinE - S2g * UinE
binietoglou@19 358 B = S2g * QinE + C2g * UinE
ulalume3@0 359
binietoglou@19 360 IinP = (IinE + DiO * aCal * A)
binietoglou@19 361 QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 362 UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 363 VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1 - 2 * aCal) * VinE)
ulalume3@0 364
binietoglou@19 365 # -------------------------
ulalume3@0 366 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 367 # F11sim = TiO*(IinE + DiO*atrue*A)/IinE
binietoglou@19 368 # -------------------------
ulalume3@0 369
ulalume3@0 370 # analyser
binietoglou@19 371 # For POLLY_XTs
binietoglou@19 372 if (RS_RP_depend_on_TS_TP):
volker@13 373 RS = 1 - TS
volker@13 374 RP = 1 - TP
ulalume3@0 375 TiT = 0.5 * (TP + TS)
binietoglou@19 376 DiT = (TP - TS) / (TP + TS)
binietoglou@19 377 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 378 TiR = 0.5 * (RP + RS)
binietoglou@19 379 DiR = (RP - RS) / (RP + RS)
binietoglou@19 380 ZiR = (1. - DiR ** 2) ** 0.5
ulalume3@0 381 CosT = np.cos(np.deg2rad(RetT))
ulalume3@0 382 SinT = np.sin(np.deg2rad(RetT))
ulalume3@0 383 CosR = np.cos(np.deg2rad(RetR))
ulalume3@0 384 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 385
binietoglou@19 386 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 387 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 388 TaT = 0.5 * (1 + ERaT)
binietoglou@19 389 TaR = 0.5 * (1 + ERaR)
ulalume3@0 390
binietoglou@19 391 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 392 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 393 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 394 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 395
ulalume3@0 396 # Aanalyzer As before the PBS Eq. D.5
binietoglou@19 397 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 398 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 399 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 400 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 401 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 402
binietoglou@19 403 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 404 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 405 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 406 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 407 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 408
binietoglou@19 409 DTa = ATP2 * Y / ATP1
binietoglou@19 410 DRa = ARP2 * Y / ARP1
ulalume3@0 411
ulalume3@0 412 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
ulalume3@0 413 if LocC == 4: # Calibrator before the PBS
binietoglou@19 414 # print("Calibrator location not implemented yet")
ulalume3@0 415
binietoglou@19 416 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 417 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 418 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 419 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 420 # rotated AinP by epsilon Eq. C.3
binietoglou@19 421 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 422 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 423 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 424 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 425 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 426 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
ulalume3@0 427 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 428 A = C2g * QinE - S2g * UinE
binietoglou@19 429 B = S2g * QinE + C2g * UinE
binietoglou@19 430 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 431 Co = ZiO * SinO * VinE
binietoglou@19 432 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 433 # C = Co + aCal*Ca
binietoglou@19 434 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 435 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 436 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 437 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 438 IinPo = IinE
binietoglou@19 439 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 440 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 441 VinPo = ZiO * CosO * VinE
ulalume3@0 442
binietoglou@19 443 IinPa = DiO * A
binietoglou@19 444 QinPa = QinE - S2g * Ca
binietoglou@19 445 UinPa = -UinE + C2g * Ca
binietoglou@19 446 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 447
binietoglou@19 448 IinP = IinPo + aCal * IinPa
binietoglou@19 449 QinP = QinPo + aCal * QinPa
binietoglou@19 450 UinP = UinPo + aCal * UinPa
binietoglou@19 451 VinP = VinPo + aCal * VinPa
ulalume3@0 452 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 453 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 454 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 455 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 456 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 457 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 458 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 459 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 460 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 461
ulalume3@0 462 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 463 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 464 # parameters for calibration with aCal
binietoglou@19 465 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 466 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 467 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 468 BR = ARP3e * QinP - h * ARP2e * UinP
ulalume3@0 469 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 470 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 471 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 472 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 473 GT = np.dot(ATP, IS1)
binietoglou@19 474 GR = np.dot(ARP, IS1)
binietoglou@19 475 HT = np.dot(ATP, IS2)
binietoglou@19 476 HR = np.dot(ARP, IS2)
ulalume3@0 477 else:
binietoglou@19 478 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 479 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 480 GT = np.dot(ATPe, IS1)
binietoglou@19 481 GR = np.dot(ARPe, IS1)
binietoglou@19 482 HT = np.dot(ATPe, IS2)
binietoglou@19 483 HR = np.dot(ARPe, IS2)
ulalume3@0 484 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 485 # parameters for calibration with aCal
binietoglou@19 486 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 487 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 488 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 489 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
ulalume3@0 490 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 491 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 492 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 493 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 494 GT = np.dot(ATP, IS1)
binietoglou@19 495 GR = np.dot(ARP, IS1)
binietoglou@19 496 HT = np.dot(ATP, IS2)
binietoglou@19 497 HR = np.dot(ARP, IS2)
ulalume3@0 498 else:
binietoglou@19 499 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 500 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 501 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 502 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 503 GT = np.dot(ATPe, IS1e)
binietoglou@19 504 GR = np.dot(ARPe, IS1e)
binietoglou@19 505 HT = np.dot(ATPe, IS2e)
binietoglou@19 506 HR = np.dot(ARPe, IS2e)
ulalume3@0 507 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 508 # parameters for calibration with aCal
binietoglou@19 509 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 510 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 511 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 512 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 513 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 514 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 515 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 516 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
ulalume3@0 517 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 518 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 519 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 520 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 521 GT = np.dot(ATP, IS1)
binietoglou@19 522 GR = np.dot(ARP, IS1)
binietoglou@19 523 HT = np.dot(ATP, IS2)
binietoglou@19 524 HR = np.dot(ARP, IS2)
ulalume3@0 525 else:
binietoglou@19 526 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 527 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 528 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 529 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 530 GT = np.dot(ATPe, IS1e)
binietoglou@19 531 GR = np.dot(ARPe, IS1e)
binietoglou@19 532 HT = np.dot(ATPe, IS2e)
binietoglou@19 533 HR = np.dot(ARPe, IS2e)
ulalume3@0 534 else:
ulalume3@0 535 print("Calibrator not implemented yet")
ulalume3@0 536 sys.exit()
ulalume3@0 537
ulalume3@0 538 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 539
binietoglou@19 540 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 541 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 542 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 543 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 544
ulalume3@0 545 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt)
binietoglou@19 546 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 547 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 548 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 549 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 550
binietoglou@19 551 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 552 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 553 ATF2 = ATF[1]
ulalume3@0 554 ATF3 = ATF[2]
ulalume3@0 555 ARF2 = ARF[1]
ulalume3@0 556 ARF3 = ARF[2]
ulalume3@0 557
ulalume3@0 558 # rotated AinF by epsilon
ulalume3@0 559 ATF1 = ATF[0]
ulalume3@0 560 ATF4 = ATF[3]
binietoglou@19 561 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 562 ATF3e = C2e * ATF[2] - S2e * ATF[1]
ulalume3@0 563 ARF1 = ARF[0]
ulalume3@0 564 ARF4 = ARF[3]
binietoglou@19 565 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 566 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 567
binietoglou@19 568 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 569 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 570
binietoglou@19 571 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 572 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 573
ulalume3@0 574 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 575 IinF = IinE
binietoglou@19 576 QinF = aCal * QinE
binietoglou@19 577 UinF = -aCal * UinE
binietoglou@19 578 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 579
ulalume3@0 580 IinFo = IinE
ulalume3@0 581 QinFo = 0.
ulalume3@0 582 UinFo = 0.
ulalume3@0 583 VinFo = VinE
ulalume3@0 584
ulalume3@0 585 IinFa = 0.
ulalume3@0 586 QinFa = QinE
ulalume3@0 587 UinFa = -UinE
binietoglou@19 588 VinFa = -2. * VinE
ulalume3@0 589
ulalume3@0 590 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 591 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 592 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 593 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 594 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 595 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 596 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 597
ulalume3@0 598 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 599 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 600 # parameters for calibration with aCal
binietoglou@19 601 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 602 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 603 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 604 BR = ARF3e * QinF - ARF2e * h * UinF
ulalume3@0 605 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 606 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 607 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 608 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 609 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 610 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
ulalume3@0 611 else:
binietoglou@19 612 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 613 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 614 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 615 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 616 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 617 # p = +45°, m = -45°
binietoglou@19 618 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 619 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
binietoglou@19 620 AT = np.dot(ATFe, IF1e)
binietoglou@19 621 AR = np.dot(ARFe, IF1e)
binietoglou@19 622 BT = np.dot(ATFe, IF2e)
binietoglou@19 623 BR = np.dot(ARFe, IF2e)
ulalume3@0 624
ulalume3@0 625 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 626 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 627 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 628 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
binietoglou@19 629 GT = np.dot(ATF, IS1)
binietoglou@19 630 GR = np.dot(ARF, IS1)
binietoglou@19 631 HT = np.dot(ATF, IS2)
binietoglou@19 632 HR = np.dot(ARF, IS2)
ulalume3@0 633 else:
binietoglou@19 634 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 635 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 636 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 637 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 638 GT = np.dot(ATFe, IS1e)
binietoglou@19 639 GR = np.dot(ARFe, IS1e)
binietoglou@19 640 HT = np.dot(ATFe, IS2e)
binietoglou@19 641 HR = np.dot(ARFe, IS2e)
ulalume3@0 642
ulalume3@0 643 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 644 # parameters for calibration with aCal
binietoglou@19 645 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 646 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 647 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 648 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 649 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
binietoglou@19 650 AT = np.dot(ATFe, IF1e)
binietoglou@19 651 AR = np.dot(ARFe, IF1e)
binietoglou@19 652 BT = np.dot(ATFe, IF2e)
binietoglou@19 653 BR = np.dot(ARFe, IF2e)
ulalume3@0 654
ulalume3@0 655 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 656 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 657 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 658 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 659 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 660 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 661 GT = np.dot(ATF, IS1)
binietoglou@19 662 GR = np.dot(ARF, IS1)
binietoglou@19 663 HT = np.dot(ATF, IS2)
binietoglou@19 664 HR = np.dot(ARF, IS2)
ulalume3@0 665 else:
binietoglou@19 666 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 667 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 668 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 669 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 670 # IS1e = np.array([IinFo,0,0,VinFo])
binietoglou@19 671 # IS2e = np.array([0,QinFae,UinFae,VinFa])
binietoglou@19 672 GT = np.dot(ATFe, IS1e)
binietoglou@19 673 GR = np.dot(ARFe, IS1e)
binietoglou@19 674 HT = np.dot(ATFe, IS2e)
binietoglou@19 675 HR = np.dot(ARFe, IS2e)
ulalume3@0 676
ulalume3@0 677 else:
ulalume3@0 678 print('Calibrator not implemented yet')
ulalume3@0 679 sys.exit()
ulalume3@0 680
ulalume3@0 681 elif LocC == 2: # C behind emitter optics Eq.57 -------------------------------------------------------
binietoglou@19 682 # print("Calibrator location not implemented yet")
binietoglou@19 683 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 684 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 685
ulalume3@0 686 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 687 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 688 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 689 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 690 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 691
binietoglou@19 692 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 693 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 694 ATF1 = ATF[0]
ulalume3@0 695 ATF2 = ATF[1]
ulalume3@0 696 ATF3 = ATF[2]
ulalume3@0 697 ATF4 = ATF[3]
ulalume3@0 698 ARF1 = ARF[0]
ulalume3@0 699 ARF2 = ARF[1]
ulalume3@0 700 ARF3 = ARF[2]
ulalume3@0 701 ARF4 = ARF[3]
ulalume3@0 702
ulalume3@0 703 # AS with C behind the emitter
ulalume3@0 704 # terms without aCal
ulalume3@0 705 ATE1o, ARE1o = ATF1, ARF1
ulalume3@0 706 ATE2o, ARE2o = 0., 0.
ulalume3@0 707 ATE3o, ARE3o = 0., 0.
ulalume3@0 708 ATE4o, ARE4o = ATF4, ARF4
ulalume3@0 709 # terms with aCal
binietoglou@19 710 ATE1a, ARE1a = 0., 0.
ulalume3@0 711 ATE2a, ARE2a = ATF2, ARF2
ulalume3@0 712 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 713 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
ulalume3@0 714 # rotated AinEa by epsilon
binietoglou@19 715 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 716 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 717 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 718 ARE3ae = -S2e * ARF2 - C2e * ARF3
ulalume3@0 719
ulalume3@0 720 ATE1 = ATE1o
binietoglou@19 721 ATE2e = aCal * ATE2ae
binietoglou@19 722 ATE3e = aCal * ATE3ae
binietoglou@19 723 ATE4 = (1 - 2 * aCal) * ATF4
ulalume3@0 724 ARE1 = ARE1o
binietoglou@19 725 ARE2e = aCal * ARE2ae
binietoglou@19 726 ARE3e = aCal * ARE3ae
binietoglou@19 727 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 728
ulalume3@0 729 # rotated IinE
binietoglou@19 730 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 731 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 732
ulalume3@0 733 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 734 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 735 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 736 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 737 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 738 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 739
ulalume3@0 740 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 741 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 742 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 743 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 744 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 745 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 746 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
ulalume3@0 747 else:
binietoglou@19 748 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 749 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 750 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 751 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
ulalume3@0 752
ulalume3@0 753 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
ulalume3@0 754 # p = +45°, m = -45°
binietoglou@19 755 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 756 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 757 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 758 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 759
ulalume3@0 760 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 761 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 762 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 763 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 764 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 765 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 766 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 767 else:
binietoglou@19 768 D = IinE + DiC * QinEe
binietoglou@19 769 A = DiC * IinE + QinEe
binietoglou@19 770 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 771 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 772 GT = ATE1o * D + ATE4o * C
binietoglou@19 773 GR = ARE1o * D + ARE4o * C
binietoglou@19 774 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 775 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 776
ulalume3@0 777 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 778 # p = +22.5°, m = -22.5°
binietoglou@19 779 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 780 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 781 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 782 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 783 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 784 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 785 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 786 AT = np.dot(ATEe, IE1e)
binietoglou@19 787 AR = np.dot(AREe, IE1e)
binietoglou@19 788 BT = np.dot(ATEe, IE2e)
binietoglou@19 789 BR = np.dot(AREe, IE2e)
ulalume3@0 790
ulalume3@0 791 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 792 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 793 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 794 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 795 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 796 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 797 else:
binietoglou@19 798 D = IinE + DiC * QinEe
binietoglou@19 799 A = DiC * IinE + QinEe
binietoglou@19 800 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 801 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 802 GT = ATE1o * D + ATE4o * C
binietoglou@19 803 GR = ARE1o * D + ARE4o * C
binietoglou@19 804 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 805 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 806
ulalume3@0 807 else:
ulalume3@0 808 print('Calibrator not implemented yet')
ulalume3@0 809 sys.exit()
ulalume3@0 810
ulalume3@0 811 else:
ulalume3@0 812 print("Calibrator location not implemented yet")
ulalume3@0 813 sys.exit()
ulalume3@0 814
ulalume3@0 815 # Determination of the correction K of the calibration factor
binietoglou@19 816 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 817 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 818 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 819 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
ulalume3@0 820
ulalume3@0 821 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 822 Etapx = IoutRp / IoutTp
binietoglou@19 823 Etamx = IoutRm / IoutTm
binietoglou@19 824 Etax = (Etapx * Etamx) ** 0.5
ulalume3@0 825
binietoglou@19 826 Eta = (TaR * TiR) / (TaT * TiT) # Eta = Eta*/K Eq. 84
ulalume3@0 827 K = Etax / Eta
ulalume3@0 828
ulalume3@0 829 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 830 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 831 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 832 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
ulalume3@0 833
ulalume3@0 834 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 835 It = TaT * TiT * TiO * TiE * (GT + atrue * HT)
binietoglou@19 836 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR)
ulalume3@0 837 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 838 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
ulalume3@0 839 # Corrected LDRsimCorr from forward simulated LDRsim (atrue)
ulalume3@0 840 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT))
ulalume3@0 841 if Y == -1.:
binietoglou@19 842 LDRsimx = 1. / LDRsim
ulalume3@0 843 else:
ulalume3@0 844 LDRsimx = LDRsim
ulalume3@0 845
ulalume3@0 846 # The following is correct without doubt
binietoglou@19 847 # LDRCorr = (LDRsim*K/Etax*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT))
ulalume3@0 848
ulalume3@0 849 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent
binietoglou@19 850 LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim * K / Etax * (GT - HT))
ulalume3@0 851
binietoglou@19 852 TTa = TiT * TaT # *ATP1
binietoglou@19 853 TRa = TiR * TaR # *ARP1
ulalume3@0 854
binietoglou@19 855 F11sim = 1 / (TiO * TiE) * (
binietoglou@19 856 (HR * Etax / K * It / TTa - HT * Ir / TRa) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1
ulalume3@0 857
ulalume3@0 858 return (GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim)
binietoglou@19 859
binietoglou@19 860
ulalume3@0 861 # *******************************************************************************************************************************
ulalume3@0 862
ulalume3@0 863 # --- CALC truth
binietoglou@19 864 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0,
binietoglou@19 865 RetO0, DiO0, RotC0, RetC0, DiC0,
binietoglou@19 866 TP0, TS0, RP0, RS0, ERaT0,
binietoglou@19 867 RotaT0, RetT0, ERaR0, RotaR0,
binietoglou@19 868 RetR0, LDRCal0)
ulalume3@0 869
volker@13 870 # --- Print parameters to console and output file
volker@13 871 with open('output_files\output_' + LID + '.dat', 'w') as f:
ulalume3@0 872 with redirect_stdout(f):
ulalume3@0 873 print("From ", dname)
ulalume3@0 874 print("Running ", fname)
binietoglou@19 875 print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID)
ulalume3@0 876 print("for Lidar system: ", EID, ", ", LID)
ulalume3@0 877 # --- Print iput information*********************************
ulalume3@0 878 print(" --- Input parameters: value ±error / ±steps ----------------------")
binietoglou@19 879 print("{0:8} {1:8} {2:8.5f}; {3:8} {4:7.4f}±{5:7.4f}/{6:2d}".format("Laser: ", "DOLP = ", bL,
binietoglou@19 880 " rotation alpha = ", RotL0, dRotL,
binietoglou@19 881 nRotL))
ulalume3@0 882 print(" Diatt., Tunpol, Retard., Rotation (deg)")
binietoglou@19 883 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 884 "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE))
binietoglou@19 885 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 886 "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO))
binietoglou@19 887 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 888 "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC))
ulalume3@0 889 print("{0:12}".format(" --- Pol.-filter ---"))
binietoglou@19 890 print(
binietoglou@19 891 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERT, RotT :", ERaT0, dERaT, nERaT,
binietoglou@19 892 RotaT0, dRotaT, nRotaT))
binietoglou@19 893 print(
binietoglou@19 894 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERR, RotR :", ERaR0, dERaR, nERaR,
binietoglou@19 895 RotaR0, dRotaR, nRotaR))
ulalume3@0 896 print("{0:12}".format(" --- PBS ---"))
binietoglou@19 897 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("TP,TS :", TP0, dTP, nTP, TS0,
binietoglou@19 898 dTS, nTS))
binietoglou@19 899 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("RP,RS :", RP0, dRP, nRP, RS0,
binietoglou@19 900 dRS, nRS))
ulalume3@0 901 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format("DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y))
ulalume3@0 902 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---"))
volker@13 903 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format("DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0))
ulalume3@0 904 print()
ulalume3@0 905 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements)
volker@13 906 print(Type[TypeC], Loc[LocC])
binietoglou@19 907 print("Parallel signal detected in", dY[int(Y + 1)])
volker@13 908 print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP)
ulalume3@0 909 # end of print actual system parameters
ulalume3@0 910 # ******************************************************************************
ulalume3@0 911
binietoglou@19 912 # print()
binietoglou@19 913 # print(" --- LDRCal during calibration | simulated and corrected LDRs -------------")
binietoglou@19 914 # print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr"))
binietoglou@19 915 # print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr))
binietoglou@19 916 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 917 # print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr))
binietoglou@19 918 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 919 # print(" --- LDRCal during calibration")
binietoglou@19 920 print("{0:26}: {1:6.3f}±{2:5.3f}/{3:2d}".format("LDRCal during calibration in calibration range", LDRCal0,
binietoglou@19 921 dLDRCal, nLDRCal))
ulalume3@0 922
binietoglou@19 923 # print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim))
ulalume3@0 924 print()
ulalume3@0 925
ulalume3@0 926 K0List = np.zeros(3)
ulalume3@0 927 LDRsimxList = np.zeros(3)
ulalume3@0 928 LDRCalList = 0.004, 0.2, 0.45
binietoglou@19 929 for i, LDRCal in enumerate(LDRCalList):
binietoglou@19 930 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0,
binietoglou@19 931 DiE0, RotO0, RetO0,
binietoglou@19 932 DiO0, RotC0, RetC0,
binietoglou@19 933 DiC0, TP0, TS0, RP0,
binietoglou@19 934 RS0, ERaT0, RotaT0,
binietoglou@19 935 RetT0, ERaR0, RotaR0,
binietoglou@19 936 RetR0, LDRCal)
ulalume3@0 937 K0List[i] = K0
ulalume3@0 938 LDRsimxList[i] = LDRsimx
ulalume3@0 939
volker@13 940 print('========================================================================')
binietoglou@19 941 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9}".format(" GR", " GT", " HR", " HT", " K(0.004)", " K(0.2)",
binietoglou@19 942 " K(0.45)"))
binietoglou@19 943 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f}".format(GR0, GT0, HR0, HT0, K0List[0],
binietoglou@19 944 K0List[1], K0List[2]))
ulalume3@0 945 print('========================================================================')
ulalume3@0 946
ulalume3@0 947 print("{0:9},{1:9},{2:9}".format(" LDRtrue", " LDRsimx", " LDRCorr"))
ulalume3@0 948 LDRtrueList = 0.004, 0.02, 0.2, 0.45
binietoglou@19 949 for i, LDRtrue in enumerate(LDRtrueList):
binietoglou@19 950 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0,
binietoglou@19 951 DiE0, RotO0, RetO0,
binietoglou@19 952 DiO0, RotC0, RetC0,
binietoglou@19 953 DiC0, TP0, TS0, RP0,
binietoglou@19 954 RS0, ERaT0, RotaT0,
binietoglou@19 955 RetT0, ERaR0, RotaR0,
binietoglou@19 956 RetR0, LDRCal0)
ulalume3@0 957 print("{0:9.5f},{1:9.5f},{2:9.5f}".format(LDRtrue, LDRsimx, LDRCorr))
ulalume3@0 958
volker@13 959 file = open('output_files\output_' + LID + '.dat', 'r')
binietoglou@19 960 print(file.read())
ulalume3@0 961 file.close()
ulalume3@0 962
ulalume3@0 963 '''
ulalume3@0 964 if(PrintToOutputFile):
ulalume3@0 965 f = open('output_ver7.dat', 'w')
ulalume3@0 966 old_target = sys.stdout
ulalume3@0 967 sys.stdout = f
ulalume3@0 968
ulalume3@0 969 print("something")
ulalume3@0 970
ulalume3@0 971 if(PrintToOutputFile):
ulalume3@0 972 sys.stdout.flush()
ulalume3@0 973 f.close
ulalume3@0 974 sys.stdout = old_target
ulalume3@0 975 '''
binietoglou@19 976 if (Error_Calc):
volker@16 977 # --- CALC again truth with LDRCal0 to reset all 0-values
binietoglou@19 978 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0,
binietoglou@19 979 RotO0, RetO0, DiO0, RotC0,
binietoglou@19 980 RetC0, DiC0, TP0, TS0, RP0,
binietoglou@19 981 RS0, ERaT0, RotaT0, RetT0,
binietoglou@19 982 ERaR0, RotaR0, RetR0,
binietoglou@19 983 LDRCal0)
ulalume3@0 984
volker@16 985 # --- Start Errors calculation with variable parameters ------------------------------------------------------------------
ulalume3@0 986
volker@16 987 iN = -1
binietoglou@19 988 N = ((nRotL * 2 + 1) *
binietoglou@19 989 (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) *
binietoglou@19 990 (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) *
binietoglou@19 991 (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) *
binietoglou@19 992 (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) *
binietoglou@19 993 (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1))
binietoglou@19 994 print("N = ", N, " ", end="")
ulalume3@0 995
volker@16 996 if N > 1e6:
binietoglou@19 997 if user_yes_no_query('Warning: processing ' + str(
binietoglou@19 998 N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
volker@16 999 if N > 5e6:
binietoglou@19 1000 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format(
binietoglou@19 1001 N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit()
ulalume3@0 1002
binietoglou@19 1003 # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
ulalume3@0 1004
volker@16 1005 # --- Arrays for plotting ------
volker@16 1006 LDRmin = np.zeros(5)
volker@16 1007 LDRmax = np.zeros(5)
volker@16 1008 F11min = np.zeros(5)
volker@16 1009 F11max = np.zeros(5)
ulalume3@0 1010
volker@16 1011 LDRrange = np.zeros(5)
volker@16 1012 LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
binietoglou@19 1013 # aLDRsimx = np.zeros(N)
binietoglou@19 1014 # aLDRsimx2 = np.zeros(N)
binietoglou@19 1015 # aLDRcorr = np.zeros(N)
binietoglou@19 1016 # aLDRcorr2 = np.zeros(N)
volker@16 1017 aERaT = np.zeros(N)
volker@16 1018 aERaR = np.zeros(N)
volker@16 1019 aRotaT = np.zeros(N)
volker@16 1020 aRotaR = np.zeros(N)
volker@16 1021 aRetT = np.zeros(N)
volker@16 1022 aRetR = np.zeros(N)
volker@16 1023 aTP = np.zeros(N)
volker@16 1024 aTS = np.zeros(N)
volker@16 1025 aRP = np.zeros(N)
volker@16 1026 aRS = np.zeros(N)
volker@16 1027 aDiE = np.zeros(N)
volker@16 1028 aDiO = np.zeros(N)
volker@16 1029 aDiC = np.zeros(N)
volker@16 1030 aRotC = np.zeros(N)
volker@16 1031 aRetC = np.zeros(N)
volker@16 1032 aRotL = np.zeros(N)
volker@16 1033 aRetE = np.zeros(N)
volker@16 1034 aRotE = np.zeros(N)
volker@16 1035 aRetO = np.zeros(N)
volker@16 1036 aRotO = np.zeros(N)
volker@16 1037 aLDRCal = np.zeros(N)
binietoglou@19 1038 aA = np.zeros((5, N))
binietoglou@19 1039 aX = np.zeros((5, N))
binietoglou@19 1040 aF11corr = np.zeros((5, N))
ulalume3@0 1041
volker@16 1042 atime = clock()
volker@16 1043 dtime = clock()
ulalume3@0 1044
volker@16 1045 # --- Calc Error signals
binietoglou@19 1046 # GT, HT, GR, HR, K, Eta, LDRsim = Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS)
volker@16 1047 # ---- Do the calculations of bra-ket vectors
volker@16 1048 h = -1. if TypeC == 2 else 1
ulalume3@0 1049
volker@16 1050 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 1051 ameas = (1. - LDRmeas) / (1 + LDRmeas)
binietoglou@19 1052 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 1053 atrue2 = (1. - LDRtrue2) / (1 + LDRtrue2)
ulalume3@0 1054
binietoglou@19 1055 for iLDRCal in range(-nLDRCal, nLDRCal + 1):
volker@16 1056 # from input file: assumed LDRCal for calibration measurements
volker@16 1057 LDRCal = LDRCal0
binietoglou@19 1058 if nLDRCal > 0: LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal
ulalume3@0 1059
binietoglou@19 1060 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0,
binietoglou@19 1061 DiE0, RotO0, RetO0, DiO0,
binietoglou@19 1062 RotC0, RetC0, DiC0, TP0,
binietoglou@19 1063 TS0, RP0, RS0, ERaT0,
binietoglou@19 1064 RotaT0, RetT0, ERaR0,
binietoglou@19 1065 RotaR0, RetR0, LDRCal)
binietoglou@19 1066 aCal = (1. - LDRCal) / (1 + LDRCal)
volker@16 1067 for iRotL, iRotE, iRetE, iDiE \
binietoglou@19 1068 in [(iRotL, iRotE, iRetE, iDiE)
binietoglou@19 1069 for iRotL in range(-nRotL, nRotL + 1)
binietoglou@19 1070 for iRotE in range(-nRotE, nRotE + 1)
binietoglou@19 1071 for iRetE in range(-nRetE, nRetE + 1)
binietoglou@19 1072 for iDiE in range(-nDiE, nDiE + 1)]:
ulalume3@0 1073
binietoglou@19 1074 if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL
binietoglou@19 1075 if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE
binietoglou@19 1076 if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE
binietoglou@19 1077 if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE
ulalume3@0 1078
volker@16 1079 # angles of emitter and laser and calibrator and receiver optics
volker@16 1080 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 1081 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 1082 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 1083 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 1084 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 1085 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 1086 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
ulalume3@0 1087
volker@16 1088 # Laser with Degree of linear polarization DOLP = bL
volker@16 1089 IinL = 1.
volker@16 1090 QinL = bL
volker@16 1091 UinL = 0.
binietoglou@19 1092 VinL = (1. - bL ** 2) ** 0.5
ulalume3@0 1093
volker@16 1094 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 1095 A = C2a * QinL - S2a * UinL
binietoglou@19 1096 B = S2a * QinL + C2a * UinL
volker@16 1097 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 1098 C = C2ab * QinL - S2ab * UinL
binietoglou@19 1099 D = S2ab * QinL + C2ab * UinL
ulalume3@0 1100
volker@16 1101 # emitter optics
volker@16 1102 CosE = np.cos(np.deg2rad(RetE))
volker@16 1103 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 1104 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 1105 WiE = (1. - ZiE * CosE)
ulalume3@0 1106
volker@16 1107 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
volker@16 1108 # b = beta
binietoglou@19 1109 IinE = (IinL + DiE * C)
binietoglou@19 1110 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1111 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1112 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 1113
binietoglou@19 1114 # -------------------------
volker@16 1115 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 1116 # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE
binietoglou@19 1117 # -------------------------
ulalume3@0 1118
volker@16 1119 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \
binietoglou@19 1120 in [
binietoglou@19 1121 (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR)
binietoglou@19 1122 for iRotO in range(-nRotO, nRotO + 1)
binietoglou@19 1123 for iRetO in range(-nRetO, nRetO + 1)
binietoglou@19 1124 for iDiO in range(-nDiO, nDiO + 1)
binietoglou@19 1125 for iRotC in range(-nRotC, nRotC + 1)
binietoglou@19 1126 for iRetC in range(-nRetC, nRetC + 1)
binietoglou@19 1127 for iDiC in range(-nDiC, nDiC + 1)
binietoglou@19 1128 for iTP in range(-nTP, nTP + 1)
binietoglou@19 1129 for iTS in range(-nTS, nTS + 1)
binietoglou@19 1130 for iRP in range(-nRP, nRP + 1)
binietoglou@19 1131 for iRS in range(-nRS, nRS + 1)
binietoglou@19 1132 for iERaT in range(-nERaT, nERaT + 1)
binietoglou@19 1133 for iRotaT in range(-nRotaT, nRotaT + 1)
binietoglou@19 1134 for iRetT in range(-nRetT, nRetT + 1)
binietoglou@19 1135 for iERaR in range(-nERaR, nERaR + 1)
binietoglou@19 1136 for iRotaR in range(-nRotaR, nRotaR + 1)
binietoglou@19 1137 for iRetR in range(-nRetR, nRetR + 1)]:
ulalume3@0 1138
volker@16 1139 iN = iN + 1
volker@16 1140 if (iN == 10001):
volker@16 1141 ctime = clock()
binietoglou@19 1142 print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="")
binietoglou@19 1143 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
ulalume3@0 1144 ctime = clock()
volker@16 1145 if ((ctime - dtime) > 10):
binietoglou@19 1146 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
volker@16 1147 dtime = ctime
ulalume3@0 1148
binietoglou@19 1149 if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO
binietoglou@19 1150 if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO
binietoglou@19 1151 if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO
binietoglou@19 1152 if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC
binietoglou@19 1153 if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC
binietoglou@19 1154 if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC
binietoglou@19 1155 if nTP > 0: TP = TP0 + iTP * dTP / nTP
binietoglou@19 1156 if nTS > 0: TS = TS0 + iTS * dTS / nTS
binietoglou@19 1157 if nRP > 0: RP = RP0 + iRP * dRP / nRP
binietoglou@19 1158 if nRS > 0: RS = RS0 + iRS * dRS / nRS
binietoglou@19 1159 if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT
binietoglou@19 1160 if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT
binietoglou@19 1161 if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT
binietoglou@19 1162 if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR
binietoglou@19 1163 if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR
binietoglou@19 1164 if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR
ulalume3@0 1165
binietoglou@19 1166 # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN))
ulalume3@0 1167
volker@16 1168 # receiver optics
volker@16 1169 CosO = np.cos(np.deg2rad(RetO))
volker@16 1170 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 1171 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 1172 WiO = (1. - ZiO * CosO)
binietoglou@19 1173 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 1174 C2g = np.cos(np.deg2rad(2 * RotO))
volker@16 1175 # calibrator
volker@16 1176 CosC = np.cos(np.deg2rad(RetC))
volker@16 1177 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 1178 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 1179 WiC = (1. - ZiC * CosC)
ulalume3@0 1180
volker@16 1181 # analyser
binietoglou@19 1182 # For POLLY_XTs
binietoglou@19 1183 if (RS_RP_depend_on_TS_TP):
volker@16 1184 RS = 1 - TS
volker@16 1185 RP = 1 - TP
volker@16 1186 TiT = 0.5 * (TP + TS)
binietoglou@19 1187 DiT = (TP - TS) / (TP + TS)
binietoglou@19 1188 ZiT = (1. - DiT ** 2) ** 0.5
volker@16 1189 TiR = 0.5 * (RP + RS)
binietoglou@19 1190 DiR = (RP - RS) / (RP + RS)
binietoglou@19 1191 ZiR = (1. - DiR ** 2) ** 0.5
volker@16 1192 CosT = np.cos(np.deg2rad(RetT))
volker@16 1193 SinT = np.sin(np.deg2rad(RetT))
volker@16 1194 CosR = np.cos(np.deg2rad(RetR))
volker@16 1195 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 1196
binietoglou@19 1197 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 1198 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 1199 TaT = 0.5 * (1 + ERaT)
binietoglou@19 1200 TaR = 0.5 * (1 + ERaR)
ulalume3@0 1201
binietoglou@19 1202 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 1203 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 1204 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 1205 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 1206
volker@16 1207 # Aanalyzer As before the PBS Eq. D.5
binietoglou@19 1208 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 1209 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 1210 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 1211 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 1212 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 1213
binietoglou@19 1214 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 1215 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 1216 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 1217 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 1218 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 1219
binietoglou@19 1220 TTa = TiT * TaT # *ATP1
binietoglou@19 1221 TRa = TiR * TaR # *ARP1
ulalume3@0 1222
volker@16 1223 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
volker@16 1224 if LocC == 4: # Calibrator before the PBS
binietoglou@19 1225 # print("Calibrator location not implemented yet")
ulalume3@0 1226
binietoglou@19 1227 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1228 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1229 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 1230 C2e = np.cos(np.deg2rad(2 * RotC))
volker@16 1231 # rotated AinP by epsilon Eq. C.3
binietoglou@19 1232 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 1233 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 1234 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 1235 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 1236 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 1237 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
volker@16 1238 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 1239 A = C2g * QinE - S2g * UinE
binietoglou@19 1240 B = S2g * QinE + C2g * UinE
binietoglou@19 1241 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 1242 Co = ZiO * SinO * VinE
binietoglou@19 1243 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 1244 # C = Co + aCal*Ca
binietoglou@19 1245 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 1246 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 1247 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 1248 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
volker@16 1249 IinPo = IinE
binietoglou@19 1250 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 1251 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 1252 VinPo = ZiO * CosO * VinE
ulalume3@0 1253
binietoglou@19 1254 IinPa = DiO * A
binietoglou@19 1255 QinPa = QinE - S2g * Ca
binietoglou@19 1256 UinPa = -UinE + C2g * Ca
binietoglou@19 1257 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 1258
binietoglou@19 1259 IinP = IinPo + aCal * IinPa
binietoglou@19 1260 QinP = QinPo + aCal * QinPa
binietoglou@19 1261 UinP = UinPo + aCal * UinPa
binietoglou@19 1262 VinP = VinPo + aCal * VinPa
volker@16 1263 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 1264 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 1265 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 1266 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 1267 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 1268 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 1269 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 1270 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 1271 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 1272
volker@16 1273 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
volker@16 1274 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
volker@16 1275 # parameters for calibration with aCal
binietoglou@19 1276 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 1277 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 1278 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 1279 BR = ARP3e * QinP - h * ARP2e * UinP
volker@16 1280 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1281 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1282 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1283 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1284 GT = np.dot(ATP, IS1)
binietoglou@19 1285 GR = np.dot(ARP, IS1)
binietoglou@19 1286 HT = np.dot(ATP, IS2)
binietoglou@19 1287 HR = np.dot(ARP, IS2)
volker@16 1288 else:
binietoglou@19 1289 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1290 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1291 GT = np.dot(ATPe, IS1)
binietoglou@19 1292 GR = np.dot(ARPe, IS1)
binietoglou@19 1293 HT = np.dot(ATPe, IS2)
binietoglou@19 1294 HR = np.dot(ARPe, IS2)
volker@16 1295 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1296 # parameters for calibration with aCal
binietoglou@19 1297 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 1298 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1299 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 1300 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@16 1301 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1302 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1303 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1304 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1305 GT = np.dot(ATP, IS1)
binietoglou@19 1306 GR = np.dot(ARP, IS1)
binietoglou@19 1307 HT = np.dot(ATP, IS2)
binietoglou@19 1308 HR = np.dot(ARP, IS2)
volker@16 1309 else:
binietoglou@19 1310 IS1e = np.array(
binietoglou@19 1311 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1312 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1313 IS2e = np.array(
binietoglou@19 1314 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1315 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1316 GT = np.dot(ATPe, IS1e)
binietoglou@19 1317 GR = np.dot(ARPe, IS1e)
binietoglou@19 1318 HT = np.dot(ATPe, IS2e)
binietoglou@19 1319 HR = np.dot(ARPe, IS2e)
volker@16 1320 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1321 # parameters for calibration with aCal
binietoglou@19 1322 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1323 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (
binietoglou@19 1324 sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 1325 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1326 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1327 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1328 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (
binietoglou@19 1329 sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 1330 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1331 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@16 1332 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1333 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1334 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1335 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1336 GT = np.dot(ATP, IS1)
binietoglou@19 1337 GR = np.dot(ARP, IS1)
binietoglou@19 1338 HT = np.dot(ATP, IS2)
binietoglou@19 1339 HR = np.dot(ARP, IS2)
volker@16 1340 else:
binietoglou@19 1341 IS1e = np.array(
binietoglou@19 1342 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1343 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1344 IS2e = np.array(
binietoglou@19 1345 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1346 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1347 GT = np.dot(ATPe, IS1e)
binietoglou@19 1348 GR = np.dot(ARPe, IS1e)
binietoglou@19 1349 HT = np.dot(ATPe, IS2e)
binietoglou@19 1350 HR = np.dot(ARPe, IS2e)
ulalume3@0 1351 else:
volker@16 1352 print("Calibrator not implemented yet")
volker@16 1353 sys.exit()
volker@16 1354
volker@16 1355 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 1356
binietoglou@19 1357 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1358 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1359 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1360 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1361
volker@16 1362 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1363 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1364 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1365 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1366 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1367
binietoglou@19 1368 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1369 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1370 ATF1 = ATF[0]
volker@16 1371 ATF2 = ATF[1]
volker@16 1372 ATF3 = ATF[2]
volker@16 1373 ATF4 = ATF[3]
volker@16 1374 ARF1 = ARF[0]
volker@16 1375 ARF2 = ARF[1]
volker@16 1376 ARF3 = ARF[2]
volker@16 1377 ARF4 = ARF[3]
ulalume3@0 1378
volker@16 1379 # rotated AinF by epsilon
binietoglou@19 1380 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 1381 ATF3e = C2e * ATF[2] - S2e * ATF[1]
binietoglou@19 1382 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 1383 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 1384
binietoglou@19 1385 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 1386 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 1387
binietoglou@19 1388 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1389 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 1390
volker@16 1391 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
volker@16 1392 IinF = IinE
binietoglou@19 1393 QinF = aCal * QinE
binietoglou@19 1394 UinF = -aCal * UinE
binietoglou@19 1395 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 1396
volker@16 1397 IinFo = IinE
volker@16 1398 QinFo = 0.
volker@16 1399 UinFo = 0.
volker@16 1400 VinFo = VinE
ulalume3@0 1401
volker@16 1402 IinFa = 0.
volker@16 1403 QinFa = QinE
volker@16 1404 UinFa = -UinE
binietoglou@19 1405 VinFa = -2. * VinE
ulalume3@0 1406
volker@16 1407 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 1408 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 1409 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 1410 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 1411 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 1412 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 1413 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 1414
volker@16 1415 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1416 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
binietoglou@19 1417 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 1418 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 1419 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 1420 BR = ARF3e * QinF - ARF2e * h * UinF
ulalume3@0 1421
volker@16 1422 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1423 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 1424 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 1425 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 1426 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 1427 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
volker@16 1428 else:
binietoglou@19 1429 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 1430 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 1431 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 1432 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 1433
volker@16 1434 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1435 # p = +45°, m = -45°
binietoglou@19 1436 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 1437 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
ulalume3@0 1438
binietoglou@19 1439 AT = np.dot(ATFe, IF1e)
binietoglou@19 1440 AR = np.dot(ARFe, IF1e)
binietoglou@19 1441 BT = np.dot(ATFe, IF2e)
binietoglou@19 1442 BR = np.dot(ARFe, IF2e)
ulalume3@0 1443
volker@16 1444 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 1445 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1446 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 1447 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
ulalume3@0 1448
binietoglou@19 1449 GT = np.dot(ATF, IS1)
binietoglou@19 1450 GR = np.dot(ARF, IS1)
binietoglou@19 1451 HT = np.dot(ATF, IS2)
binietoglou@19 1452 HR = np.dot(ARF, IS2)
volker@16 1453 else:
binietoglou@19 1454 IS1e = np.array(
binietoglou@19 1455 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1456 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1457 IS2e = np.array(
binietoglou@19 1458 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1459 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1460 GT = np.dot(ATFe, IS1e)
binietoglou@19 1461 GR = np.dot(ARFe, IS1e)
binietoglou@19 1462 HT = np.dot(ATFe, IS2e)
binietoglou@19 1463 HR = np.dot(ARFe, IS2e)
ulalume3@0 1464
volker@16 1465 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1466 # p = +22.5°, m = -22.5°
binietoglou@19 1467 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 1468 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 1469 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 1470 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 1471 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
ulalume3@0 1472
binietoglou@19 1473 AT = np.dot(ATFe, IF1e)
binietoglou@19 1474 AR = np.dot(ARFe, IF1e)
binietoglou@19 1475 BT = np.dot(ATFe, IF2e)
binietoglou@19 1476 BR = np.dot(ARFe, IF2e)
ulalume3@0 1477
volker@16 1478 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1479 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1480 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 1481 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 1482 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 1483 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 1484 GT = np.dot(ATF, IS1)
binietoglou@19 1485 GR = np.dot(ARF, IS1)
binietoglou@19 1486 HT = np.dot(ATF, IS2)
binietoglou@19 1487 HR = np.dot(ARF, IS2)
volker@16 1488 else:
binietoglou@19 1489 # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE])
binietoglou@19 1490 # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)])
binietoglou@19 1491 IS1e = np.array(
binietoglou@19 1492 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1493 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1494 IS2e = np.array(
binietoglou@19 1495 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1496 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1497 GT = np.dot(ATFe, IS1e)
binietoglou@19 1498 GR = np.dot(ARFe, IS1e)
binietoglou@19 1499 HT = np.dot(ATFe, IS2e)
binietoglou@19 1500 HR = np.dot(ARFe, IS2e)
ulalume3@0 1501
ulalume3@0 1502
volker@16 1503 else:
volker@16 1504 print('Calibrator not implemented yet')
volker@16 1505 sys.exit()
ulalume3@0 1506
volker@16 1507 elif LocC == 2: # C behind emitter optics Eq.57
binietoglou@19 1508 # print("Calibrator location not implemented yet")
binietoglou@19 1509 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1510 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1511
volker@16 1512 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1513 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1514 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1515 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1516 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1517
binietoglou@19 1518 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1519 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1520 ATF1 = ATF[0]
volker@16 1521 ATF2 = ATF[1]
volker@16 1522 ATF3 = ATF[2]
volker@16 1523 ATF4 = ATF[3]
volker@16 1524 ARF1 = ARF[0]
volker@16 1525 ARF2 = ARF[1]
volker@16 1526 ARF3 = ARF[2]
volker@16 1527 ARF4 = ARF[3]
ulalume3@0 1528
volker@16 1529 # AS with C behind the emitter --------------------------------------------
volker@16 1530 # terms without aCal
volker@16 1531 ATE1o, ARE1o = ATF1, ARF1
volker@16 1532 ATE2o, ARE2o = 0., 0.
volker@16 1533 ATE3o, ARE3o = 0., 0.
volker@16 1534 ATE4o, ARE4o = ATF4, ARF4
volker@16 1535 # terms with aCal
binietoglou@19 1536 ATE1a, ARE1a = 0., 0.
volker@16 1537 ATE2a, ARE2a = ATF2, ARF2
volker@16 1538 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 1539 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
volker@16 1540 # rotated AinEa by epsilon
binietoglou@19 1541 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 1542 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 1543 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 1544 ARE3ae = -S2e * ARF2 - C2e * ARF3
volker@16 1545
volker@16 1546 ATE1 = ATE1o
binietoglou@19 1547 ATE2e = aCal * ATE2ae
binietoglou@19 1548 ATE3e = aCal * ATE3ae
binietoglou@19 1549 ATE4 = (1 - 2 * aCal) * ATF4
volker@16 1550 ARE1 = ARE1o
binietoglou@19 1551 ARE2e = aCal * ARE2ae
binietoglou@19 1552 ARE3e = aCal * ARE3ae
binietoglou@19 1553 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 1554
volker@16 1555 # rotated IinE
binietoglou@19 1556 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1557 UinEe = C2e * UinE - S2e * QinE
volker@16 1558
volker@16 1559 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1560 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 1561 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 1562 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 1563 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 1564 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 1565
volker@16 1566 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1567 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1568 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1569 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1570 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1571 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 1572 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
volker@16 1573 else:
binietoglou@19 1574 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1575 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1576 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 1577 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
volker@16 1578
volker@16 1579 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
volker@16 1580 # p = +45°, m = -45°
binietoglou@19 1581 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 1582 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 1583 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 1584 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 1585
volker@16 1586 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1587 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1588 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1589 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1590 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1591 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1592 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1593 else:
binietoglou@19 1594 D = IinE + DiC * QinEe
binietoglou@19 1595 A = DiC * IinE + QinEe
binietoglou@19 1596 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1597 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1598 GT = ATE1o * D + ATE4o * C
binietoglou@19 1599 GR = ARE1o * D + ARE4o * C
binietoglou@19 1600 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1601 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 1602
volker@16 1603 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1604 # p = +22.5°, m = -22.5°
binietoglou@19 1605 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 1606 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 1607 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 1608 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 1609 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 1610 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 1611 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 1612 AT = np.dot(ATEe, IE1e)
binietoglou@19 1613 AR = np.dot(AREe, IE1e)
binietoglou@19 1614 BT = np.dot(ATEe, IE2e)
binietoglou@19 1615 BR = np.dot(AREe, IE2e)
ulalume3@0 1616
volker@16 1617 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1618 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1619 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1620 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1621 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1622 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1623 else:
binietoglou@19 1624 D = IinE + DiC * QinEe
binietoglou@19 1625 A = DiC * IinE + QinEe
binietoglou@19 1626 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1627 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1628 GT = ATE1o * D + ATE4o * C
binietoglou@19 1629 GR = ARE1o * D + ARE4o * C
binietoglou@19 1630 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1631 HR = ARE2a * A + ARE3a * B + ARE4a * C
volker@16 1632
ulalume3@0 1633 else:
volker@16 1634 print('Calibrator not implemented yet')
volker@16 1635 sys.exit()
ulalume3@0 1636
volker@16 1637 # Calibration signals with aCal => Determination of the correction K of the real calibration factor
binietoglou@19 1638 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 1639 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 1640 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 1641 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
volker@16 1642 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 1643 # Eta = TiR/TiT # Eta = Eta*/K Eq. 84
binietoglou@19 1644 Etapx = IoutRp / IoutTp
binietoglou@19 1645 Etamx = IoutRm / IoutTm
binietoglou@19 1646 Etax = (Etapx * Etamx) ** 0.5
volker@16 1647 K = Etax / Eta0
binietoglou@19 1648 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km))
binietoglou@19 1649 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km))
ulalume3@0 1650
volker@16 1651 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 1652 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 1653 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 1654 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
volker@16 1655
volker@16 1656 # *************************************************************************
volker@16 1657 iLDR = -1
volker@16 1658 for LDRTrue in LDRrange:
volker@16 1659 iLDR = iLDR + 1
binietoglou@19 1660 atrue = (1 - LDRTrue) / (1 + LDRTrue)
volker@16 1661 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 1662 It = TaT * TiT * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT)
binietoglou@19 1663 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR)
volker@16 1664
volker@16 1665 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 1666 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
volker@16 1667 '''
volker@16 1668 if Y == 1.:
volker@16 1669 LDRsimx = LDRsim
volker@16 1670 LDRsimx2 = LDRsim2
ulalume3@0 1671 else:
volker@16 1672 LDRsimx = 1./LDRsim
volker@16 1673 LDRsimx2 = 1./LDRsim2
volker@16 1674 '''
volker@16 1675 # ----- Backward correction
volker@16 1676 # Corrected LDRCorr from forward simulated LDRsim (atrue) with assumed true G0,H0,K0
binietoglou@19 1677 LDRCorr = (LDRsim * K0 / Etax * (GT0 + HT0) - (GR0 + HR0)) / (
binietoglou@19 1678 (GR0 - HR0) - LDRsim * K0 / Etax * (GT0 - HT0))
volker@16 1679
volker@16 1680 # -- F11corr from It and Ir and calibration EtaX
volker@16 1681 Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1"
binietoglou@19 1682 F11corr = 1 / (TiO * TiE) * (
binietoglou@19 1683 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64)
ulalume3@0 1684
binietoglou@19 1685 # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)"
binietoglou@19 1686 # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64)
volker@16 1687
volker@16 1688 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs)
binietoglou@19 1689 # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1"
binietoglou@19 1690 # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0))
volker@16 1691 # !!! see below line 1673ff
volker@16 1692
binietoglou@19 1693 aF11corr[iLDR, iN] = F11corr
binietoglou@19 1694 aA[iLDR, iN] = LDRCorr
ulalume3@0 1695
binietoglou@19 1696 aX[0, iN] = GR
binietoglou@19 1697 aX[1, iN] = GT
binietoglou@19 1698 aX[2, iN] = HR
binietoglou@19 1699 aX[3, iN] = HT
binietoglou@19 1700 aX[4, iN] = K
volker@16 1701
volker@16 1702 aLDRCal[iN] = iLDRCal
volker@16 1703 aERaT[iN] = iERaT
volker@16 1704 aERaR[iN] = iERaR
volker@16 1705 aRotaT[iN] = iRotaT
volker@16 1706 aRotaR[iN] = iRotaR
volker@16 1707 aRetT[iN] = iRetT
volker@16 1708 aRetR[iN] = iRetR
volker@16 1709
volker@16 1710 aRotL[iN] = iRotL
volker@16 1711 aRotE[iN] = iRotE
volker@16 1712 aRetE[iN] = iRetE
volker@16 1713 aRotO[iN] = iRotO
volker@16 1714 aRetO[iN] = iRetO
volker@16 1715 aRotC[iN] = iRotC
volker@16 1716 aRetC[iN] = iRetC
volker@16 1717 aDiO[iN] = iDiO
volker@16 1718 aDiE[iN] = iDiE
volker@16 1719 aDiC[iN] = iDiC
volker@16 1720 aTP[iN] = iTP
volker@16 1721 aTS[iN] = iTS
volker@16 1722 aRP[iN] = iRP
volker@16 1723 aRS[iN] = iRS
ulalume3@0 1724
volker@16 1725 # --- END loop
volker@16 1726 btime = clock()
binietoglou@19 1727 print("\r done in ", "{0:5.0f}".format(btime - atime), "sec") # , end="\r")
volker@16 1728
volker@16 1729 # --- Plot -----------------------------------------------------------------
volker@16 1730 if (sns_loaded):
volker@16 1731 sns.set_style("whitegrid")
volker@16 1732 sns.set_palette("bright", 6)
ulalume3@0 1733
volker@16 1734 '''
volker@16 1735 fig2 = plt.figure()
volker@16 1736 plt.plot(aA[2,:],'b.')
volker@16 1737 plt.plot(aA[3,:],'r.')
volker@16 1738 plt.plot(aA[4,:],'g.')
volker@16 1739 #plt.plot(aA[6,:],'c.')
volker@16 1740 plt.show
volker@16 1741 '''
binietoglou@19 1742
binietoglou@19 1743
volker@16 1744 # Plot LDR
volker@16 1745 def PlotSubHist(aVar, aX, X0, daX, iaX, naX):
volker@16 1746 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1747 iLDR = -1
volker@16 1748 for LDRTrue in LDRrange:
volker@16 1749 iLDR = iLDR + 1
ulalume3@0 1750
binietoglou@19 1751 LDRmin[iLDR] = np.min(aA[iLDR, :])
binietoglou@19 1752 LDRmax[iLDR] = np.max(aA[iLDR, :])
binietoglou@19 1753 Rmin = LDRmin[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
binietoglou@19 1754 Rmax = LDRmax[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1755
binietoglou@19 1756 # plt.subplot(5,2,iLDR+1)
binietoglou@19 1757 plt.subplot(1, 5, iLDR + 1)
binietoglou@19 1758 (n, bins, patches) = plt.hist(aA[iLDR, :],
binietoglou@19 1759 bins=100, log=False,
binietoglou@19 1760 range=[Rmin, Rmax],
binietoglou@19 1761 alpha=0.5, normed=False, color='0.5', histtype='stepfilled')
ulalume3@0 1762
binietoglou@19 1763 for iaX in range(-naX, naX + 1):
binietoglou@19 1764 plt.hist(aA[iLDR, aX == iaX],
volker@16 1765 range=[Rmin, Rmax],
binietoglou@19 1766 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled',
binietoglou@19 1767 label=str(round(X0 + iaX * daX / naX, 5)))
volker@16 1768
volker@16 1769 if (iLDR == 2): plt.legend()
volker@16 1770
volker@16 1771 plt.tick_params(axis='both', labelsize=9)
volker@16 1772 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1773
binietoglou@19 1774 # plt.title(LID + ' ' + aVar, fontsize=18)
binietoglou@19 1775 # plt.ylabel('frequency', fontsize=10)
binietoglou@19 1776 # plt.xlabel('LDRcorr', fontsize=10)
binietoglou@19 1777 # fig.tight_layout()
binietoglou@19 1778 fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
binietoglou@19 1779 # plt.show()
binietoglou@19 1780 # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
binietoglou@19 1781 # plt.close
volker@16 1782 return
ulalume3@0 1783
binietoglou@19 1784
volker@16 1785 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1786 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1787 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1788 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1789 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1790 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1791 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1792 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1793 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1794 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1795 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1796 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1797 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1798 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1799 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1800 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1801 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1802 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1803 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1804 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1805 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1806
volker@16 1807 plt.show()
volker@16 1808 plt.close
volker@16 1809 '''
volker@16 1810 print()
volker@16 1811 #print("IT(LDRtrue) devided by IT(LDRtrue = 0.004)")
volker@16 1812 print(" ############################################################################## ")
volker@16 1813 print(Text1)
volker@16 1814 print()
volker@16 1815
volker@16 1816 iLDR = 5
volker@16 1817 for LDRTrue in LDRrange:
volker@16 1818 iLDR = iLDR - 1
volker@16 1819 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0
ulalume3@0 1820
volker@16 1821 # Plot F11
volker@16 1822 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX):
volker@16 1823 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1824 iLDR = -1
volker@16 1825 for LDRTrue in LDRrange:
volker@16 1826 iLDR = iLDR + 1
volker@16 1827
volker@16 1828 #F11min[iLDR] = np.min(aF11corr[iLDR,:])
volker@16 1829 #F11max[iLDR] = np.max(aF11corr[iLDR,:])
volker@16 1830 #Rmin = F11min[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
volker@16 1831 #Rmax = F11max[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1832
volker@16 1833 #Rmin = 0.8
volker@16 1834 #Rmax = 1.2
ulalume3@0 1835
volker@16 1836 #plt.subplot(5,2,iLDR+1)
volker@16 1837 plt.subplot(1,5,iLDR+1)
volker@16 1838 (n, bins, patches) = plt.hist(aF11corr[iLDR,:],
volker@16 1839 bins=100, log=False,
volker@16 1840 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled')
volker@16 1841
volker@16 1842 for iaX in range(-naX,naX+1):
volker@16 1843 plt.hist(aF11corr[iLDR,aX == iaX],
volker@16 1844 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5)))
volker@16 1845
volker@16 1846 if (iLDR == 2): plt.legend()
volker@16 1847
volker@16 1848 plt.tick_params(axis='both', labelsize=9)
volker@16 1849 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1850
volker@16 1851 #plt.title(LID + ' ' + aVar, fontsize=18)
volker@16 1852 #plt.ylabel('frequency', fontsize=10)
volker@16 1853 #plt.xlabel('LDRcorr', fontsize=10)
volker@16 1854 #fig.tight_layout()
volker@16 1855 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
volker@16 1856 #plt.show()
volker@16 1857 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
volker@16 1858 #plt.close
volker@16 1859 return
ulalume3@0 1860
volker@16 1861 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1862 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1863 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1864 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1865 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1866 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1867 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1868 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1869 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1870 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1871 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1872 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1873 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1874 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1875 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1876 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1877 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1878 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1879 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1880 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1881 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1882
volker@16 1883 plt.show()
volker@16 1884 plt.close
volker@16 1885 '''
volker@16 1886
volker@16 1887 '''
volker@16 1888 # only histogram
volker@16 1889 #print("******************* " + aVar + " *******************")
volker@16 1890 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10))
ulalume3@0 1891 iLDR = -1
ulalume3@0 1892 for LDRTrue in LDRrange:
ulalume3@0 1893 iLDR = iLDR + 1
ulalume3@0 1894 LDRmin[iLDR] = np.min(aA[iLDR,:])
ulalume3@0 1895 LDRmax[iLDR] = np.max(aA[iLDR,:])
volker@16 1896 Rmin = np.min(aA[iLDR,:]) * 0.999
volker@16 1897 Rmax = np.max(aA[iLDR,:]) * 1.001
volker@16 1898 plt.subplot(5,2,iLDR+1)
ulalume3@0 1899 (n, bins, patches) = plt.hist(aA[iLDR,:],
ulalume3@0 1900 range=[Rmin, Rmax],
volker@16 1901 bins=200, log=False, alpha=0.2, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1902 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1903 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1904 plt.show()
volker@16 1905 plt.close
volker@16 1906 '''
ulalume3@0 1907
volker@16 1908 # --- Plot LDRmin, LDRmax
volker@16 1909 fig2 = plt.figure()
binietoglou@19 1910 plt.plot(LDRrange, LDRmax - LDRrange, linewidth=2.0, color='b')
binietoglou@19 1911 plt.plot(LDRrange, LDRmin - LDRrange, linewidth=2.0, color='g')
ulalume3@0 1912
volker@16 1913 plt.xlabel('LDRtrue', fontsize=18)
volker@16 1914 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14)
volker@16 1915 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18)
binietoglou@19 1916 # plt.ylimit(-0.07, 0.07)
volker@16 1917 plt.show()
volker@16 1918 plt.close
ulalume3@0 1919
volker@16 1920 # --- Save LDRmin, LDRmax to file
volker@16 1921 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python
volker@16 1922 with open('output_files\LDR_min_max_' + LID + '.dat', 'w') as f:
volker@16 1923 with redirect_stdout(f):
volker@16 1924 print(LID)
volker@16 1925 print("LDRtrue, LDRmin, LDRmax")
volker@16 1926 for i in range(len(LDRrange)):
volker@16 1927 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrange[i], LDRmin[i], LDRmax[i]))
ulalume3@0 1928
volker@16 1929 '''
volker@16 1930 # --- Plot K over LDRCal
volker@16 1931 fig3 = plt.figure()
volker@16 1932 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aX[4,:], linewidth=2.0, color='b')
ulalume3@0 1933
volker@16 1934 plt.xlabel('LDRCal', fontsize=18)
volker@16 1935 plt.ylabel('K', fontsize=14)
volker@16 1936 plt.title(LID, fontsize=18)
volker@16 1937 plt.show()
volker@16 1938 plt.close
volker@16 1939 '''
ulalume3@0 1940
ulalume3@0 1941 # Additional plot routines ======>
ulalume3@0 1942 '''
ulalume3@0 1943 #******************************************************************************
ulalume3@0 1944 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel)
ulalume3@0 1945 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1946 LDRCorra = np.arange(1.,100.)
ulalume3@0 1947 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1948 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT))
ulalume3@0 1949 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1950 #
ulalume3@0 1951 #fig = plt.figure()
ulalume3@0 1952 plt.plot(LDRa,LDRCorra-LDRa)
ulalume3@0 1953 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1954 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16)
ulalume3@0 1955 plt.xlabel('LDR', fontsize=18)
ulalume3@0 1956 plt.ylabel('LDRCorr - LDR', fontsize=16)
ulalume3@0 1957 #plt.savefig('test.png')
ulalume3@0 1958 #
ulalume3@0 1959 '''
ulalume3@0 1960 '''
ulalume3@0 1961 #******************************************************************************
ulalume3@0 1962 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue
ulalume3@0 1963 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1964 LDRsima = np.arange(1.,100.)
ulalume3@0 1965
ulalume3@0 1966 atruea = (1.-LDRa)/(1+LDRa)
ulalume3@0 1967 Ita = TiT*TiO*IinL*(GT+atruea*HT)
ulalume3@0 1968 Ira = TiR*TiO*IinL*(GR+atruea*HR)
ulalume3@0 1969 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file
ulalume3@0 1970 if Y == -1.: LDRsima = 1./LDRsima
ulalume3@0 1971 #
ulalume3@0 1972 #fig = plt.figure()
ulalume3@0 1973 plt.plot(LDRa,LDRsima)
ulalume3@0 1974 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1975 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10)
ulalume3@0 1976 plt.xlabel('LDRtrue', fontsize=18)
ulalume3@0 1977 plt.ylabel('LDRsim', fontsize=16)
ulalume3@0 1978 #plt.savefig('test.png')
ulalume3@0 1979 #
ulalume3@0 1980 '''

mercurial