lidar_correction_ghk.py

Tue, 24 Jan 2017 02:26:19 +0100

author
Volker Freudenthaler <volker.freudenthaler@lmu.de>
date
Tue, 24 Jan 2017 02:26:19 +0100
changeset 21
857c95060313
parent 19
40d55af749b6
child 23
ef8a64173c96
permissions
-rw-r--r--

Moved "from __future__ import print_function"
before "# !/usr/bin/env python3"
Now it should work with Python 3.x .

Added some comments and a compact code description at the top.

ulalume3@0 1 # -*- coding: utf-8 -*-
ulalume3@0 2 """
ulalume3@0 3 Copyright 2016 Volker Freudenthaler
ulalume3@0 4
ulalume3@0 5 Licensed under the EUPL, Version 1.1 only (the "Licence").
ulalume3@0 6
ulalume3@0 7 You may not use this work except in compliance with the Licence.
ulalume3@0 8 A copy of the licence is distributed with the code. Alternatively, you may obtain
ulalume3@0 9 a copy of the Licence at:
ulalume3@0 10
ulalume3@0 11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl
ulalume3@0 12
ulalume3@0 13 Unless required by applicable law or agreed to in writing, software distributed
ulalume3@0 14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS
ulalume3@0 15 OF ANY KIND, either express or implied. See the Licence for the specific language governing
ulalume3@0 16 permissions and limitations under the Licence.
ulalume3@0 17
ulalume3@0 18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf
ulalume3@0 19 With equations code from Appendix C
volker@11 20 Python 3.4.2
volker@21 21
volker@21 22 Code description:
volker@21 23
volker@21 24 From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR)
volker@21 25 because of the cross talk between the channles and systematic errors of a lidar system.
volker@21 26 http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors,
volker@21 27 with which the measured signals can be corrected.
volker@21 28 This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K).
volker@21 29 The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to
volker@21 30 uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the
volker@21 31 gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true"
volker@21 32 GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRcorr),
volker@21 33 which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue.
volker@21 34 A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal
volker@21 35 in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for
volker@21 36 "assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error
volker@21 37 calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol
volker@21 38 content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005).
volker@21 39
volker@21 40 Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file.
ulalume3@0 41 """
volker@11 42
volker@11 43 # Comment: The code works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements.
ulalume3@0 44 from __future__ import print_function
volker@21 45 # !/usr/bin/env python3
binietoglou@19 46
binietoglou@19 47 import os
binietoglou@19 48 import sys
binietoglou@19 49
ulalume3@0 50 import numpy as np
ulalume3@0 51
volker@11 52 # Comment: the seaborn library makes nicer plots, but the code works also without it.
volker@11 53 try:
volker@11 54 import seaborn as sns
binietoglou@19 55
volker@11 56 sns_loaded = True
volker@11 57 except ImportError:
volker@11 58 sns_loaded = False
volker@11 59
ulalume3@0 60 import matplotlib.pyplot as plt
ulalume3@0 61 from time import clock
ulalume3@0 62
binietoglou@19 63 # from matplotlib.backends.backend_pdf import PdfPages
binietoglou@19 64 # pdffile = '{}.pdf'.format('path')
binietoglou@19 65 # pp = PdfPages(pdffile)
ulalume3@0 66 ## pp.savefig can be called multiple times to save to multiple pages
binietoglou@19 67 # pp.savefig()
binietoglou@19 68 # pp.close()
ulalume3@0 69
ulalume3@0 70 from contextlib import contextmanager
binietoglou@19 71
ulalume3@0 72 @contextmanager
ulalume3@0 73 def redirect_stdout(new_target):
binietoglou@19 74 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout
ulalume3@0 75 try:
binietoglou@19 76 yield new_target # run some code with the replaced stdout
ulalume3@0 77 finally:
ulalume3@0 78 sys.stdout.flush()
binietoglou@19 79 sys.stdout = old_target # restore to the previous value
binietoglou@19 80
ulalume3@0 81 '''
ulalume3@0 82 real_raw_input = vars(__builtins__).get('raw_input',input)
ulalume3@0 83 '''
ulalume3@0 84 try:
ulalume3@0 85 import __builtin__
binietoglou@19 86
ulalume3@0 87 input = getattr(__builtin__, 'raw_input')
ulalume3@0 88 except (ImportError, AttributeError):
ulalume3@0 89 pass
ulalume3@0 90
ulalume3@0 91 from distutils.util import strtobool
binietoglou@19 92
binietoglou@19 93
ulalume3@0 94 def user_yes_no_query(question):
ulalume3@0 95 sys.stdout.write('%s [y/n]\n' % question)
ulalume3@0 96 while True:
ulalume3@0 97 try:
ulalume3@0 98 return strtobool(input().lower())
ulalume3@0 99 except ValueError:
ulalume3@0 100 sys.stdout.write('Please respond with \'y\' or \'n\'.\n')
ulalume3@0 101
binietoglou@19 102
binietoglou@19 103 # if user_yes_no_query('want to exit?') == 1: sys.exit()
ulalume3@0 104
ulalume3@0 105 abspath = os.path.abspath(__file__)
ulalume3@0 106 dname = os.path.dirname(abspath)
ulalume3@0 107 fname = os.path.basename(abspath)
ulalume3@0 108 os.chdir(dname)
ulalume3@0 109
binietoglou@19 110 # PrintToOutputFile = True
ulalume3@0 111
binietoglou@19 112 sqr05 = 0.5 ** 0.5
ulalume3@0 113
volker@21 114 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below
volker@16 115 # Do you want to calculate the errors? If not, just the GHK-parameters are determined.
volker@16 116 Error_Calc = True
ulalume3@0 117 LID = "internal"
ulalume3@0 118 EID = "internal"
ulalume3@0 119 # --- IL Laser IL and +-Uncertainty
binietoglou@19 120 bL = 1. # degree of linear polarization; default 1
binietoglou@19 121 RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0
ulalume3@0 122 # --- ME Emitter and +-Uncertainty
binietoglou@19 123 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation
binietoglou@19 124 TiE = 1. # Unpolarized transmittance
binietoglou@19 125 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees
binietoglou@19 126 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees
ulalume3@0 127 # --- MO Receiver Optics including telescope
binietoglou@19 128 DiO, dDiO, nDiO = -0.055, 0.003, 1
binietoglou@19 129 TiO = 0.9
binietoglou@19 130 RetO, dRetO, nRetO = 0., 180.0, 2
binietoglou@19 131 RotO, dRotO, nRotO = 0., 0.1, 1 # gamma
ulalume3@0 132 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty
binietoglou@19 133 TP, dTP, nTP = 0.98, 0.02, 1
binietoglou@19 134 TS, dTS, nTS = 0.001, 0.001, 1
ulalume3@0 135 TiT = 0.5 * (TP + TS)
binietoglou@19 136 DiT = (TP - TS) / (TP + TS)
ulalume3@0 137 # PolFilter
binietoglou@19 138 RetT, dRetT, nRetT = 0., 180., 0
binietoglou@19 139 ERaT, dERaT, nERaT = 0.001, 0.001, 1
binietoglou@19 140 RotaT, dRotaT, nRotaT = 0., 3., 1
binietoglou@19 141 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 142 TaT = 0.5 * (1 + ERaT)
ulalume3@0 143 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty
volker@13 144 RS_RP_depend_on_TS_TP = False
binietoglou@19 145 if (RS_RP_depend_on_TS_TP):
binietoglou@19 146 RP, dRP, nRP = 1 - TP, 0.00, 0
binietoglou@19 147 RS, dRS, nRS = 1 - TS, 0.00, 0
volker@13 148 else:
binietoglou@19 149 RP, dRP, nRP = 0.05, 0.01, 1
binietoglou@19 150 RS, dRS, nRS = 0.98, 0.01, 1
ulalume3@0 151 TiR = 0.5 * (RP + RS)
binietoglou@19 152 DiR = (RP - RS) / (RP + RS)
ulalume3@0 153 # PolFilter
binietoglou@19 154 RetR, dRetR, nRetR = 0., 180., 0
binietoglou@19 155 ERaR, dERaR, nERaR = 0.001, 0.001, 1
binietoglou@19 156 RotaR, dRotaR, nRotaR = 90., 3., 1
binietoglou@19 157 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 158 TaR = 0.5 * (1 + ERaR)
ulalume3@0 159
ulalume3@0 160 # Parellel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1
ulalume3@0 161 Y = -1.
ulalume3@0 162
ulalume3@0 163 # Calibrator = type defined by matrix values
binietoglou@19 164 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4
ulalume3@0 165
binietoglou@19 166 TypeC = 3 # linear polarizer calibrator
ulalume3@0 167 # example with extinction ratio 0.001
binietoglou@19 168 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0
binietoglou@19 169 TiC = 0.5 # ideal 0.5
binietoglou@19 170 RetC, dRetC, nRetC = 0., 0., 0
binietoglou@19 171 RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon
binietoglou@19 172 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
ulalume3@0 173
ulalume3@0 174 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
ulalume3@0 175 RotationErrorEpsilonForNormalMeasurements = True
ulalume3@0 176
ulalume3@0 177 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess)
binietoglou@19 178 LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1
ulalume3@0 179 LDRCal = LDRCal0
ulalume3@0 180 # measured LDRm will be corrected with calculated parameters
ulalume3@0 181 LDRmeas = 0.015
ulalume3@0 182 # LDRtrue for simulation of measurement => LDRsim
ulalume3@0 183 LDRtrue = 0.5
ulalume3@0 184 LDRtrue2 = 0.004
ulalume3@0 185
ulalume3@0 186 # Initialize other values to 0
ulalume3@0 187 ER, nER, dER = 0.001, 0, 0.001
ulalume3@0 188 K = 0.
ulalume3@0 189 Km = 0.
ulalume3@0 190 Kp = 0.
ulalume3@0 191 LDRcorr = 0.
ulalume3@0 192 Eta = 0.
ulalume3@0 193 Ir = 0.
ulalume3@0 194 It = 0.
ulalume3@0 195 h = 1.
ulalume3@0 196
ulalume3@0 197 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS']
binietoglou@19 198 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer',
binietoglou@19 199 'real HWP +-22.5°']
ulalume3@0 200 dY = ['reflected channel', '', 'transmitted channel']
ulalume3@0 201
ulalume3@0 202 # end of initial definition of variables
ulalume3@0 203 # *******************************************************************************************************************************
ulalume3@0 204
volker@21 205 # --- Read actual lidar system parameters from optic_input.py (should be in sub-directory 'system_settings')
volker@11 206 InputFile = 'optic_input_example_lidar.py'
ulalume3@0 207
ulalume3@0 208 '''
ulalume3@0 209 print("From ", dname)
ulalume3@0 210 print("Running ", fname)
ulalume3@0 211 print("Reading input file ", InputFile, " for")
ulalume3@0 212 '''
ulalume3@0 213 input_path = os.path.join('.', 'system_settings', InputFile)
volker@21 214 # this works with Python 2 and 3!
binietoglou@19 215 exec (open(input_path).read(), globals())
ulalume3@0 216 # end of read actual system parameters
ulalume3@0 217
volker@21 218
ulalume3@0 219 # --- Manual Parameter Change ---
ulalume3@0 220 # (use for quick parameter changes without changing the input file )
binietoglou@19 221 # DiO = 0.
binietoglou@19 222 # LDRtrue = 0.45
binietoglou@19 223 # LDRtrue2 = 0.004
binietoglou@19 224 # Y = -1
binietoglou@19 225 # LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
ulalume3@0 226 ##TypeC = 6 Don't change the TypeC here
binietoglou@19 227 # RotationErrorEpsilonForNormalMeasurements = True
binietoglou@19 228 # LDRCal = 0.25
binietoglou@19 229 # bL = 0.8
ulalume3@0 230 ## --- Errors
ulalume3@0 231 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
ulalume3@0 232
binietoglou@19 233 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
ulalume3@0 234 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
ulalume3@0 235 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
ulalume3@0 236
binietoglou@19 237 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
ulalume3@0 238 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
ulalume3@0 239 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
ulalume3@0 240
binietoglou@19 241 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
ulalume3@0 242 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
ulalume3@0 243 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
ulalume3@0 244
binietoglou@19 245 TP0, dTP, nTP = TP, dTP, nTP
binietoglou@19 246 TS0, dTS, nTS = TS, dTS, nTS
ulalume3@0 247 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
ulalume3@0 248
ulalume3@0 249 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
binietoglou@19 250 RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT
ulalume3@0 251
binietoglou@19 252 RP0, dRP, nRP = RP, dRP, nRP
binietoglou@19 253 RS0, dRS, nRS = RS, dRS, nRS
ulalume3@0 254 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
ulalume3@0 255
ulalume3@0 256 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
binietoglou@19 257 RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR
ulalume3@0 258
binietoglou@19 259 LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal
binietoglou@19 260 # LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,0
ulalume3@0 261 # ---------- End of manual parameter change
ulalume3@0 262
ulalume3@0 263 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0
binietoglou@19 264 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0
ulalume3@0 265 LDRCal = LDRCal0
binietoglou@19 266 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0, 0, 0, 0, 0, 0
ulalume3@0 267
ulalume3@0 268 TiT = 0.5 * (TP + TS)
binietoglou@19 269 DiT = (TP - TS) / (TP + TS)
binietoglou@19 270 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 271 TiR = 0.5 * (RP + RS)
binietoglou@19 272 DiR = (RP - RS) / (RP + RS)
binietoglou@19 273 ZiR = (1. - DiR ** 2) ** 0.5
binietoglou@19 274
ulalume3@0 275
volker@13 276 # --- this subroutine is for the calculation with certain fixed parameters -----------------------------------------------------
binietoglou@19 277 def Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR,
binietoglou@19 278 LDRCal):
ulalume3@0 279 # ---- Do the calculations of bra-ket vectors
ulalume3@0 280 h = -1. if TypeC == 2 else 1
ulalume3@0 281 # from input file: assumed LDRCal for calibration measurements
binietoglou@19 282 aCal = (1. - LDRCal) / (1 + LDRCal)
ulalume3@0 283 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 284 # ameas = (1.-LDRmeas)/(1+LDRmeas)
binietoglou@19 285 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 286 # atrue2 = (1.-LDRtrue2)/(1+LDRtrue2)
ulalume3@0 287
ulalume3@0 288 # angles of emitter and laser and calibrator and receiver optics
ulalume3@0 289 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 290 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 291 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 292 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 293 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 294 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 295 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 296 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 297 C2g = np.cos(np.deg2rad(2 * RotO))
ulalume3@0 298
ulalume3@0 299 # Laser with Degree of linear polarization DOLP = bL
ulalume3@0 300 IinL = 1.
ulalume3@0 301 QinL = bL
ulalume3@0 302 UinL = 0.
binietoglou@19 303 VinL = (1. - bL ** 2) ** 0.5
ulalume3@0 304
ulalume3@0 305 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 306 A = C2a * QinL - S2a * UinL
binietoglou@19 307 B = S2a * QinL + C2a * UinL
ulalume3@0 308 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 309 C = C2ab * QinL - S2ab * UinL
binietoglou@19 310 D = S2ab * QinL + C2ab * UinL
ulalume3@0 311
ulalume3@0 312 # emitter optics
ulalume3@0 313 CosE = np.cos(np.deg2rad(RetE))
ulalume3@0 314 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 315 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 316 WiE = (1. - ZiE * CosE)
ulalume3@0 317
ulalume3@0 318 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
ulalume3@0 319 # b = beta
binietoglou@19 320 IinE = (IinL + DiE * C)
binietoglou@19 321 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 322 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 323 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 324
ulalume3@0 325 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 326 IinF = IinE
binietoglou@19 327 QinF = aCal * QinE
binietoglou@19 328 UinF = -aCal * UinE
binietoglou@19 329 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 330
ulalume3@0 331 # receiver optics
ulalume3@0 332 CosO = np.cos(np.deg2rad(RetO))
ulalume3@0 333 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 334 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 335 WiO = (1. - ZiO * CosO)
ulalume3@0 336
ulalume3@0 337 # calibrator
ulalume3@0 338 CosC = np.cos(np.deg2rad(RetC))
ulalume3@0 339 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 340 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 341 WiC = (1. - ZiC * CosC)
ulalume3@0 342
ulalume3@0 343 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 344 A = C2g * QinE - S2g * UinE
binietoglou@19 345 B = S2g * QinE + C2g * UinE
ulalume3@0 346
binietoglou@19 347 IinP = (IinE + DiO * aCal * A)
binietoglou@19 348 QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 349 UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 350 VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1 - 2 * aCal) * VinE)
ulalume3@0 351
binietoglou@19 352 # -------------------------
ulalume3@0 353 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 354 # F11sim = TiO*(IinE + DiO*atrue*A)/IinE
binietoglou@19 355 # -------------------------
ulalume3@0 356
ulalume3@0 357 # analyser
binietoglou@19 358 if (RS_RP_depend_on_TS_TP):
volker@13 359 RS = 1 - TS
volker@13 360 RP = 1 - TP
volker@21 361
ulalume3@0 362 TiT = 0.5 * (TP + TS)
binietoglou@19 363 DiT = (TP - TS) / (TP + TS)
binietoglou@19 364 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 365 TiR = 0.5 * (RP + RS)
binietoglou@19 366 DiR = (RP - RS) / (RP + RS)
binietoglou@19 367 ZiR = (1. - DiR ** 2) ** 0.5
ulalume3@0 368 CosT = np.cos(np.deg2rad(RetT))
ulalume3@0 369 SinT = np.sin(np.deg2rad(RetT))
ulalume3@0 370 CosR = np.cos(np.deg2rad(RetR))
ulalume3@0 371 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 372
binietoglou@19 373 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 374 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 375 TaT = 0.5 * (1 + ERaT)
binietoglou@19 376 TaR = 0.5 * (1 + ERaR)
ulalume3@0 377
binietoglou@19 378 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 379 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 380 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 381 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 382
ulalume3@0 383 # Aanalyzer As before the PBS Eq. D.5
binietoglou@19 384 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 385 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 386 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 387 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 388 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 389
binietoglou@19 390 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 391 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 392 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 393 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 394 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 395
binietoglou@19 396 DTa = ATP2 * Y / ATP1
binietoglou@19 397 DRa = ARP2 * Y / ARP1
ulalume3@0 398
ulalume3@0 399 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
ulalume3@0 400 if LocC == 4: # Calibrator before the PBS
binietoglou@19 401 # print("Calibrator location not implemented yet")
ulalume3@0 402
binietoglou@19 403 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 404 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 405 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 406 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 407 # rotated AinP by epsilon Eq. C.3
binietoglou@19 408 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 409 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 410 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 411 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 412 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 413 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
ulalume3@0 414 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 415 A = C2g * QinE - S2g * UinE
binietoglou@19 416 B = S2g * QinE + C2g * UinE
binietoglou@19 417 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 418 Co = ZiO * SinO * VinE
binietoglou@19 419 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 420 # C = Co + aCal*Ca
binietoglou@19 421 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 422 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 423 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 424 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 425 IinPo = IinE
binietoglou@19 426 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 427 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 428 VinPo = ZiO * CosO * VinE
ulalume3@0 429
binietoglou@19 430 IinPa = DiO * A
binietoglou@19 431 QinPa = QinE - S2g * Ca
binietoglou@19 432 UinPa = -UinE + C2g * Ca
binietoglou@19 433 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 434
binietoglou@19 435 IinP = IinPo + aCal * IinPa
binietoglou@19 436 QinP = QinPo + aCal * QinPa
binietoglou@19 437 UinP = UinPo + aCal * UinPa
binietoglou@19 438 VinP = VinPo + aCal * VinPa
ulalume3@0 439 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 440 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 441 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 442 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 443 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 444 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 445 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 446 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 447 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 448
ulalume3@0 449 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 450 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 451 # parameters for calibration with aCal
binietoglou@19 452 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 453 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 454 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 455 BR = ARP3e * QinP - h * ARP2e * UinP
ulalume3@0 456 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 457 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 458 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 459 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 460 GT = np.dot(ATP, IS1)
binietoglou@19 461 GR = np.dot(ARP, IS1)
binietoglou@19 462 HT = np.dot(ATP, IS2)
binietoglou@19 463 HR = np.dot(ARP, IS2)
ulalume3@0 464 else:
binietoglou@19 465 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 466 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 467 GT = np.dot(ATPe, IS1)
binietoglou@19 468 GR = np.dot(ARPe, IS1)
binietoglou@19 469 HT = np.dot(ATPe, IS2)
binietoglou@19 470 HR = np.dot(ARPe, IS2)
ulalume3@0 471 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 472 # parameters for calibration with aCal
binietoglou@19 473 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 474 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 475 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 476 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
ulalume3@0 477 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 478 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 479 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 480 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 481 GT = np.dot(ATP, IS1)
binietoglou@19 482 GR = np.dot(ARP, IS1)
binietoglou@19 483 HT = np.dot(ATP, IS2)
binietoglou@19 484 HR = np.dot(ARP, IS2)
ulalume3@0 485 else:
binietoglou@19 486 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 487 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 488 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 489 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 490 GT = np.dot(ATPe, IS1e)
binietoglou@19 491 GR = np.dot(ARPe, IS1e)
binietoglou@19 492 HT = np.dot(ATPe, IS2e)
binietoglou@19 493 HR = np.dot(ARPe, IS2e)
ulalume3@0 494 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 495 # parameters for calibration with aCal
binietoglou@19 496 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 497 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 498 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 499 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 500 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 501 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 502 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 503 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
ulalume3@0 504 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 505 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 506 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 507 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 508 GT = np.dot(ATP, IS1)
binietoglou@19 509 GR = np.dot(ARP, IS1)
binietoglou@19 510 HT = np.dot(ATP, IS2)
binietoglou@19 511 HR = np.dot(ARP, IS2)
ulalume3@0 512 else:
binietoglou@19 513 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 514 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 515 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 516 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 517 GT = np.dot(ATPe, IS1e)
binietoglou@19 518 GR = np.dot(ARPe, IS1e)
binietoglou@19 519 HT = np.dot(ATPe, IS2e)
binietoglou@19 520 HR = np.dot(ARPe, IS2e)
ulalume3@0 521 else:
ulalume3@0 522 print("Calibrator not implemented yet")
ulalume3@0 523 sys.exit()
ulalume3@0 524
ulalume3@0 525 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 526
binietoglou@19 527 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 528 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 529 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 530 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 531
ulalume3@0 532 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt)
binietoglou@19 533 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 534 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 535 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 536 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 537
binietoglou@19 538 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 539 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 540 ATF2 = ATF[1]
ulalume3@0 541 ATF3 = ATF[2]
ulalume3@0 542 ARF2 = ARF[1]
ulalume3@0 543 ARF3 = ARF[2]
ulalume3@0 544
ulalume3@0 545 # rotated AinF by epsilon
ulalume3@0 546 ATF1 = ATF[0]
ulalume3@0 547 ATF4 = ATF[3]
binietoglou@19 548 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 549 ATF3e = C2e * ATF[2] - S2e * ATF[1]
ulalume3@0 550 ARF1 = ARF[0]
ulalume3@0 551 ARF4 = ARF[3]
binietoglou@19 552 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 553 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 554
binietoglou@19 555 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 556 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 557
binietoglou@19 558 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 559 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 560
ulalume3@0 561 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 562 IinF = IinE
binietoglou@19 563 QinF = aCal * QinE
binietoglou@19 564 UinF = -aCal * UinE
binietoglou@19 565 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 566
ulalume3@0 567 IinFo = IinE
ulalume3@0 568 QinFo = 0.
ulalume3@0 569 UinFo = 0.
ulalume3@0 570 VinFo = VinE
ulalume3@0 571
ulalume3@0 572 IinFa = 0.
ulalume3@0 573 QinFa = QinE
ulalume3@0 574 UinFa = -UinE
binietoglou@19 575 VinFa = -2. * VinE
ulalume3@0 576
ulalume3@0 577 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 578 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 579 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 580 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 581 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 582 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 583 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 584
ulalume3@0 585 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 586 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 587 # parameters for calibration with aCal
binietoglou@19 588 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 589 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 590 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 591 BR = ARF3e * QinF - ARF2e * h * UinF
ulalume3@0 592 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 593 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 594 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 595 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 596 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 597 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
ulalume3@0 598 else:
binietoglou@19 599 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 600 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 601 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 602 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 603 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 604 # p = +45°, m = -45°
binietoglou@19 605 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 606 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
binietoglou@19 607 AT = np.dot(ATFe, IF1e)
binietoglou@19 608 AR = np.dot(ARFe, IF1e)
binietoglou@19 609 BT = np.dot(ATFe, IF2e)
binietoglou@19 610 BR = np.dot(ARFe, IF2e)
ulalume3@0 611
ulalume3@0 612 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 613 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 614 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 615 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
binietoglou@19 616 GT = np.dot(ATF, IS1)
binietoglou@19 617 GR = np.dot(ARF, IS1)
binietoglou@19 618 HT = np.dot(ATF, IS2)
binietoglou@19 619 HR = np.dot(ARF, IS2)
ulalume3@0 620 else:
binietoglou@19 621 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 622 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 623 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 624 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 625 GT = np.dot(ATFe, IS1e)
binietoglou@19 626 GR = np.dot(ARFe, IS1e)
binietoglou@19 627 HT = np.dot(ATFe, IS2e)
binietoglou@19 628 HR = np.dot(ARFe, IS2e)
ulalume3@0 629
ulalume3@0 630 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 631 # parameters for calibration with aCal
binietoglou@19 632 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 633 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 634 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 635 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 636 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
binietoglou@19 637 AT = np.dot(ATFe, IF1e)
binietoglou@19 638 AR = np.dot(ARFe, IF1e)
binietoglou@19 639 BT = np.dot(ATFe, IF2e)
binietoglou@19 640 BR = np.dot(ARFe, IF2e)
ulalume3@0 641
ulalume3@0 642 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 643 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 644 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 645 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 646 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 647 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 648 GT = np.dot(ATF, IS1)
binietoglou@19 649 GR = np.dot(ARF, IS1)
binietoglou@19 650 HT = np.dot(ATF, IS2)
binietoglou@19 651 HR = np.dot(ARF, IS2)
ulalume3@0 652 else:
binietoglou@19 653 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 654 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 655 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 656 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 657 # IS1e = np.array([IinFo,0,0,VinFo])
binietoglou@19 658 # IS2e = np.array([0,QinFae,UinFae,VinFa])
binietoglou@19 659 GT = np.dot(ATFe, IS1e)
binietoglou@19 660 GR = np.dot(ARFe, IS1e)
binietoglou@19 661 HT = np.dot(ATFe, IS2e)
binietoglou@19 662 HR = np.dot(ARFe, IS2e)
ulalume3@0 663
ulalume3@0 664 else:
ulalume3@0 665 print('Calibrator not implemented yet')
ulalume3@0 666 sys.exit()
ulalume3@0 667
ulalume3@0 668 elif LocC == 2: # C behind emitter optics Eq.57 -------------------------------------------------------
binietoglou@19 669 # print("Calibrator location not implemented yet")
binietoglou@19 670 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 671 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 672
ulalume3@0 673 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 674 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 675 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 676 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 677 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 678
binietoglou@19 679 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 680 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 681 ATF1 = ATF[0]
ulalume3@0 682 ATF2 = ATF[1]
ulalume3@0 683 ATF3 = ATF[2]
ulalume3@0 684 ATF4 = ATF[3]
ulalume3@0 685 ARF1 = ARF[0]
ulalume3@0 686 ARF2 = ARF[1]
ulalume3@0 687 ARF3 = ARF[2]
ulalume3@0 688 ARF4 = ARF[3]
ulalume3@0 689
ulalume3@0 690 # AS with C behind the emitter
ulalume3@0 691 # terms without aCal
ulalume3@0 692 ATE1o, ARE1o = ATF1, ARF1
ulalume3@0 693 ATE2o, ARE2o = 0., 0.
ulalume3@0 694 ATE3o, ARE3o = 0., 0.
ulalume3@0 695 ATE4o, ARE4o = ATF4, ARF4
ulalume3@0 696 # terms with aCal
binietoglou@19 697 ATE1a, ARE1a = 0., 0.
ulalume3@0 698 ATE2a, ARE2a = ATF2, ARF2
ulalume3@0 699 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 700 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
ulalume3@0 701 # rotated AinEa by epsilon
binietoglou@19 702 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 703 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 704 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 705 ARE3ae = -S2e * ARF2 - C2e * ARF3
ulalume3@0 706
ulalume3@0 707 ATE1 = ATE1o
binietoglou@19 708 ATE2e = aCal * ATE2ae
binietoglou@19 709 ATE3e = aCal * ATE3ae
binietoglou@19 710 ATE4 = (1 - 2 * aCal) * ATF4
ulalume3@0 711 ARE1 = ARE1o
binietoglou@19 712 ARE2e = aCal * ARE2ae
binietoglou@19 713 ARE3e = aCal * ARE3ae
binietoglou@19 714 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 715
ulalume3@0 716 # rotated IinE
binietoglou@19 717 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 718 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 719
ulalume3@0 720 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 721 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 722 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 723 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 724 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 725 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 726
ulalume3@0 727 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 728 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 729 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 730 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 731 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 732 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 733 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
ulalume3@0 734 else:
binietoglou@19 735 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 736 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 737 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 738 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
ulalume3@0 739
ulalume3@0 740 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
ulalume3@0 741 # p = +45°, m = -45°
binietoglou@19 742 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 743 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 744 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 745 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 746
ulalume3@0 747 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 748 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 749 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 750 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 751 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 752 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 753 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 754 else:
binietoglou@19 755 D = IinE + DiC * QinEe
binietoglou@19 756 A = DiC * IinE + QinEe
binietoglou@19 757 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 758 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 759 GT = ATE1o * D + ATE4o * C
binietoglou@19 760 GR = ARE1o * D + ARE4o * C
binietoglou@19 761 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 762 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 763
ulalume3@0 764 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 765 # p = +22.5°, m = -22.5°
binietoglou@19 766 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 767 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 768 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 769 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 770 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 771 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 772 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 773 AT = np.dot(ATEe, IE1e)
binietoglou@19 774 AR = np.dot(AREe, IE1e)
binietoglou@19 775 BT = np.dot(ATEe, IE2e)
binietoglou@19 776 BR = np.dot(AREe, IE2e)
ulalume3@0 777
ulalume3@0 778 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 779 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 780 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 781 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 782 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 783 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 784 else:
binietoglou@19 785 D = IinE + DiC * QinEe
binietoglou@19 786 A = DiC * IinE + QinEe
binietoglou@19 787 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 788 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 789 GT = ATE1o * D + ATE4o * C
binietoglou@19 790 GR = ARE1o * D + ARE4o * C
binietoglou@19 791 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 792 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 793
ulalume3@0 794 else:
ulalume3@0 795 print('Calibrator not implemented yet')
ulalume3@0 796 sys.exit()
ulalume3@0 797
ulalume3@0 798 else:
ulalume3@0 799 print("Calibrator location not implemented yet")
ulalume3@0 800 sys.exit()
ulalume3@0 801
ulalume3@0 802 # Determination of the correction K of the calibration factor
binietoglou@19 803 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 804 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 805 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 806 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
ulalume3@0 807
ulalume3@0 808 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 809 Etapx = IoutRp / IoutTp
binietoglou@19 810 Etamx = IoutRm / IoutTm
binietoglou@19 811 Etax = (Etapx * Etamx) ** 0.5
ulalume3@0 812
binietoglou@19 813 Eta = (TaR * TiR) / (TaT * TiT) # Eta = Eta*/K Eq. 84
ulalume3@0 814 K = Etax / Eta
ulalume3@0 815
ulalume3@0 816 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 817 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 818 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 819 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
ulalume3@0 820
ulalume3@0 821 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 822 It = TaT * TiT * TiO * TiE * (GT + atrue * HT)
binietoglou@19 823 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR)
ulalume3@0 824 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 825 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
ulalume3@0 826 # Corrected LDRsimCorr from forward simulated LDRsim (atrue)
ulalume3@0 827 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT))
ulalume3@0 828 if Y == -1.:
binietoglou@19 829 LDRsimx = 1. / LDRsim
ulalume3@0 830 else:
ulalume3@0 831 LDRsimx = LDRsim
ulalume3@0 832
ulalume3@0 833 # The following is correct without doubt
binietoglou@19 834 # LDRCorr = (LDRsim*K/Etax*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT))
ulalume3@0 835
ulalume3@0 836 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent
binietoglou@19 837 LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim * K / Etax * (GT - HT))
ulalume3@0 838
binietoglou@19 839 TTa = TiT * TaT # *ATP1
binietoglou@19 840 TRa = TiR * TaR # *ARP1
ulalume3@0 841
binietoglou@19 842 F11sim = 1 / (TiO * TiE) * (
volker@21 843 (HR * Etax / K * It / TTa - HT * Ir / TRa) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta
ulalume3@0 844
ulalume3@0 845 return (GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim)
binietoglou@19 846
binietoglou@19 847
ulalume3@0 848 # *******************************************************************************************************************************
ulalume3@0 849
volker@21 850 # --- CALC truth with assumed true parameters from the input file
binietoglou@19 851 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0,
binietoglou@19 852 RetO0, DiO0, RotC0, RetC0, DiC0,
binietoglou@19 853 TP0, TS0, RP0, RS0, ERaT0,
binietoglou@19 854 RotaT0, RetT0, ERaR0, RotaR0,
binietoglou@19 855 RetR0, LDRCal0)
ulalume3@0 856
volker@13 857 # --- Print parameters to console and output file
volker@13 858 with open('output_files\output_' + LID + '.dat', 'w') as f:
ulalume3@0 859 with redirect_stdout(f):
ulalume3@0 860 print("From ", dname)
ulalume3@0 861 print("Running ", fname)
binietoglou@19 862 print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID)
ulalume3@0 863 print("for Lidar system: ", EID, ", ", LID)
ulalume3@0 864 # --- Print iput information*********************************
ulalume3@0 865 print(" --- Input parameters: value ±error / ±steps ----------------------")
binietoglou@19 866 print("{0:8} {1:8} {2:8.5f}; {3:8} {4:7.4f}±{5:7.4f}/{6:2d}".format("Laser: ", "DOLP = ", bL,
binietoglou@19 867 " rotation alpha = ", RotL0, dRotL,
binietoglou@19 868 nRotL))
ulalume3@0 869 print(" Diatt., Tunpol, Retard., Rotation (deg)")
binietoglou@19 870 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 871 "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE))
binietoglou@19 872 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 873 "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO))
binietoglou@19 874 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 875 "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC))
ulalume3@0 876 print("{0:12}".format(" --- Pol.-filter ---"))
binietoglou@19 877 print(
binietoglou@19 878 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERT, RotT :", ERaT0, dERaT, nERaT,
binietoglou@19 879 RotaT0, dRotaT, nRotaT))
binietoglou@19 880 print(
binietoglou@19 881 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERR, RotR :", ERaR0, dERaR, nERaR,
binietoglou@19 882 RotaR0, dRotaR, nRotaR))
ulalume3@0 883 print("{0:12}".format(" --- PBS ---"))
binietoglou@19 884 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("TP,TS :", TP0, dTP, nTP, TS0,
binietoglou@19 885 dTS, nTS))
binietoglou@19 886 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("RP,RS :", RP0, dRP, nRP, RS0,
binietoglou@19 887 dRS, nRS))
ulalume3@0 888 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format("DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y))
ulalume3@0 889 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---"))
volker@13 890 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format("DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0))
volker@21 891 print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format("LDRCal during calibration in calibration range", LDRCal0,
volker@21 892 dLDRCal, nLDRCal))
ulalume3@0 893 print()
ulalume3@0 894 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements)
volker@13 895 print(Type[TypeC], Loc[LocC])
binietoglou@19 896 print("Parallel signal detected in", dY[int(Y + 1)])
volker@13 897 print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP)
ulalume3@0 898 # end of print actual system parameters
ulalume3@0 899 # ******************************************************************************
ulalume3@0 900
binietoglou@19 901 # print()
binietoglou@19 902 # print(" --- LDRCal during calibration | simulated and corrected LDRs -------------")
binietoglou@19 903 # print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr"))
binietoglou@19 904 # print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr))
binietoglou@19 905 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 906 # print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr))
binietoglou@19 907 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 908 # print(" --- LDRCal during calibration")
ulalume3@0 909
binietoglou@19 910 # print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim))
ulalume3@0 911 print()
ulalume3@0 912
ulalume3@0 913 K0List = np.zeros(3)
ulalume3@0 914 LDRsimxList = np.zeros(3)
ulalume3@0 915 LDRCalList = 0.004, 0.2, 0.45
volker@21 916 # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work.
volker@21 917 # Still with assumed true parameters in input file
binietoglou@19 918 for i, LDRCal in enumerate(LDRCalList):
binietoglou@19 919 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0,
binietoglou@19 920 DiE0, RotO0, RetO0,
binietoglou@19 921 DiO0, RotC0, RetC0,
binietoglou@19 922 DiC0, TP0, TS0, RP0,
binietoglou@19 923 RS0, ERaT0, RotaT0,
binietoglou@19 924 RetT0, ERaR0, RotaR0,
binietoglou@19 925 RetR0, LDRCal)
ulalume3@0 926 K0List[i] = K0
ulalume3@0 927 LDRsimxList[i] = LDRsimx
ulalume3@0 928
volker@13 929 print('========================================================================')
binietoglou@19 930 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9}".format(" GR", " GT", " HR", " HT", " K(0.004)", " K(0.2)",
binietoglou@19 931 " K(0.45)"))
binietoglou@19 932 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f}".format(GR0, GT0, HR0, HT0, K0List[0],
binietoglou@19 933 K0List[1], K0List[2]))
ulalume3@0 934 print('========================================================================')
volker@21 935 print("{0:9},{1:9},{2:9}".format(" LDRtrue", " LDRsimx", " LDRCorr"))
ulalume3@0 936
volker@21 937 #LDRtrueList = 0.004, 0.02, 0.2, 0.45
volker@21 938 aF11sim0 = np.zeros(5)
volker@21 939 LDRrange = np.zeros(5)
volker@21 940 LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
volker@21 941
volker@21 942 # The loop over LDRtrueList is ony for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work.
volker@21 943 # LDRsimx = LDRsim = Ir / It or 1/LDRsim
volker@21 944 # Still with assumed true parameters in input file
volker@21 945 for i, LDRtrue in enumerate(LDRrange):
volker@21 946 #for LDRtrue in LDRrange:
binietoglou@19 947 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0,
binietoglou@19 948 DiE0, RotO0, RetO0,
binietoglou@19 949 DiO0, RotC0, RetC0,
binietoglou@19 950 DiC0, TP0, TS0, RP0,
binietoglou@19 951 RS0, ERaT0, RotaT0,
binietoglou@19 952 RetT0, ERaR0, RotaR0,
binietoglou@19 953 RetR0, LDRCal0)
ulalume3@0 954 print("{0:9.5f},{1:9.5f},{2:9.5f}".format(LDRtrue, LDRsimx, LDRCorr))
volker@21 955 aF11sim0[i] = F11sim0
volker@21 956 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals
ulalume3@0 957
volker@13 958 file = open('output_files\output_' + LID + '.dat', 'r')
binietoglou@19 959 print(file.read())
ulalume3@0 960 file.close()
ulalume3@0 961
ulalume3@0 962 '''
ulalume3@0 963 if(PrintToOutputFile):
ulalume3@0 964 f = open('output_ver7.dat', 'w')
ulalume3@0 965 old_target = sys.stdout
ulalume3@0 966 sys.stdout = f
ulalume3@0 967
ulalume3@0 968 print("something")
ulalume3@0 969
ulalume3@0 970 if(PrintToOutputFile):
ulalume3@0 971 sys.stdout.flush()
ulalume3@0 972 f.close
ulalume3@0 973 sys.stdout = old_target
ulalume3@0 974 '''
binietoglou@19 975 if (Error_Calc):
volker@21 976 # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values
binietoglou@19 977 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0,
binietoglou@19 978 RotO0, RetO0, DiO0, RotC0,
binietoglou@19 979 RetC0, DiC0, TP0, TS0, RP0,
binietoglou@19 980 RS0, ERaT0, RotaT0, RetT0,
binietoglou@19 981 ERaR0, RotaR0, RetR0,
binietoglou@19 982 LDRCal0)
volker@16 983 # --- Start Errors calculation with variable parameters ------------------------------------------------------------------
ulalume3@0 984
volker@16 985 iN = -1
binietoglou@19 986 N = ((nRotL * 2 + 1) *
binietoglou@19 987 (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) *
binietoglou@19 988 (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) *
binietoglou@19 989 (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) *
binietoglou@19 990 (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) *
binietoglou@19 991 (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1))
binietoglou@19 992 print("N = ", N, " ", end="")
ulalume3@0 993
volker@16 994 if N > 1e6:
binietoglou@19 995 if user_yes_no_query('Warning: processing ' + str(
binietoglou@19 996 N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
volker@16 997 if N > 5e6:
binietoglou@19 998 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format(
binietoglou@19 999 N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit()
ulalume3@0 1000
binietoglou@19 1001 # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
ulalume3@0 1002
volker@16 1003 # --- Arrays for plotting ------
volker@16 1004 LDRmin = np.zeros(5)
volker@16 1005 LDRmax = np.zeros(5)
volker@16 1006 F11min = np.zeros(5)
volker@16 1007 F11max = np.zeros(5)
ulalume3@0 1008
volker@21 1009 #LDRrange = np.zeros(5)
volker@21 1010 #LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
binietoglou@19 1011 # aLDRsimx = np.zeros(N)
binietoglou@19 1012 # aLDRsimx2 = np.zeros(N)
binietoglou@19 1013 # aLDRcorr = np.zeros(N)
binietoglou@19 1014 # aLDRcorr2 = np.zeros(N)
volker@16 1015 aERaT = np.zeros(N)
volker@16 1016 aERaR = np.zeros(N)
volker@16 1017 aRotaT = np.zeros(N)
volker@16 1018 aRotaR = np.zeros(N)
volker@16 1019 aRetT = np.zeros(N)
volker@16 1020 aRetR = np.zeros(N)
volker@16 1021 aTP = np.zeros(N)
volker@16 1022 aTS = np.zeros(N)
volker@16 1023 aRP = np.zeros(N)
volker@16 1024 aRS = np.zeros(N)
volker@16 1025 aDiE = np.zeros(N)
volker@16 1026 aDiO = np.zeros(N)
volker@16 1027 aDiC = np.zeros(N)
volker@16 1028 aRotC = np.zeros(N)
volker@16 1029 aRetC = np.zeros(N)
volker@16 1030 aRotL = np.zeros(N)
volker@16 1031 aRetE = np.zeros(N)
volker@16 1032 aRotE = np.zeros(N)
volker@16 1033 aRetO = np.zeros(N)
volker@16 1034 aRotO = np.zeros(N)
volker@16 1035 aLDRCal = np.zeros(N)
binietoglou@19 1036 aA = np.zeros((5, N))
binietoglou@19 1037 aX = np.zeros((5, N))
binietoglou@19 1038 aF11corr = np.zeros((5, N))
ulalume3@0 1039
volker@16 1040 atime = clock()
volker@16 1041 dtime = clock()
ulalume3@0 1042
volker@16 1043 # --- Calc Error signals
volker@16 1044 # ---- Do the calculations of bra-ket vectors
volker@16 1045 h = -1. if TypeC == 2 else 1
ulalume3@0 1046
volker@21 1047 '''
volker@16 1048 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 1049 ameas = (1. - LDRmeas) / (1 + LDRmeas)
binietoglou@19 1050 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 1051 atrue2 = (1. - LDRtrue2) / (1 + LDRtrue2)
volker@21 1052 '''
ulalume3@0 1053
binietoglou@19 1054 for iLDRCal in range(-nLDRCal, nLDRCal + 1):
volker@16 1055 # from input file: assumed LDRCal for calibration measurements
volker@16 1056 LDRCal = LDRCal0
binietoglou@19 1057 if nLDRCal > 0: LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal
ulalume3@0 1058
volker@21 1059 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim = Calc(RotL0, RotE0, RetE0,
binietoglou@19 1060 DiE0, RotO0, RetO0, DiO0,
binietoglou@19 1061 RotC0, RetC0, DiC0, TP0,
binietoglou@19 1062 TS0, RP0, RS0, ERaT0,
binietoglou@19 1063 RotaT0, RetT0, ERaR0,
binietoglou@19 1064 RotaR0, RetR0, LDRCal)
binietoglou@19 1065 aCal = (1. - LDRCal) / (1 + LDRCal)
volker@16 1066 for iRotL, iRotE, iRetE, iDiE \
binietoglou@19 1067 in [(iRotL, iRotE, iRetE, iDiE)
binietoglou@19 1068 for iRotL in range(-nRotL, nRotL + 1)
binietoglou@19 1069 for iRotE in range(-nRotE, nRotE + 1)
binietoglou@19 1070 for iRetE in range(-nRetE, nRetE + 1)
binietoglou@19 1071 for iDiE in range(-nDiE, nDiE + 1)]:
ulalume3@0 1072
binietoglou@19 1073 if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL
binietoglou@19 1074 if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE
binietoglou@19 1075 if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE
binietoglou@19 1076 if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE
ulalume3@0 1077
volker@16 1078 # angles of emitter and laser and calibrator and receiver optics
volker@16 1079 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 1080 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 1081 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 1082 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 1083 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 1084 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 1085 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
ulalume3@0 1086
volker@16 1087 # Laser with Degree of linear polarization DOLP = bL
volker@16 1088 IinL = 1.
volker@16 1089 QinL = bL
volker@16 1090 UinL = 0.
binietoglou@19 1091 VinL = (1. - bL ** 2) ** 0.5
ulalume3@0 1092
volker@16 1093 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 1094 A = C2a * QinL - S2a * UinL
binietoglou@19 1095 B = S2a * QinL + C2a * UinL
volker@16 1096 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 1097 C = C2ab * QinL - S2ab * UinL
binietoglou@19 1098 D = S2ab * QinL + C2ab * UinL
ulalume3@0 1099
volker@16 1100 # emitter optics
volker@16 1101 CosE = np.cos(np.deg2rad(RetE))
volker@16 1102 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 1103 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 1104 WiE = (1. - ZiE * CosE)
ulalume3@0 1105
volker@16 1106 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
volker@16 1107 # b = beta
binietoglou@19 1108 IinE = (IinL + DiE * C)
binietoglou@19 1109 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1110 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1111 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 1112
binietoglou@19 1113 # -------------------------
volker@16 1114 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 1115 # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE
binietoglou@19 1116 # -------------------------
ulalume3@0 1117
volker@16 1118 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \
binietoglou@19 1119 in [
binietoglou@19 1120 (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR)
binietoglou@19 1121 for iRotO in range(-nRotO, nRotO + 1)
binietoglou@19 1122 for iRetO in range(-nRetO, nRetO + 1)
binietoglou@19 1123 for iDiO in range(-nDiO, nDiO + 1)
binietoglou@19 1124 for iRotC in range(-nRotC, nRotC + 1)
binietoglou@19 1125 for iRetC in range(-nRetC, nRetC + 1)
binietoglou@19 1126 for iDiC in range(-nDiC, nDiC + 1)
binietoglou@19 1127 for iTP in range(-nTP, nTP + 1)
binietoglou@19 1128 for iTS in range(-nTS, nTS + 1)
binietoglou@19 1129 for iRP in range(-nRP, nRP + 1)
binietoglou@19 1130 for iRS in range(-nRS, nRS + 1)
binietoglou@19 1131 for iERaT in range(-nERaT, nERaT + 1)
binietoglou@19 1132 for iRotaT in range(-nRotaT, nRotaT + 1)
binietoglou@19 1133 for iRetT in range(-nRetT, nRetT + 1)
binietoglou@19 1134 for iERaR in range(-nERaR, nERaR + 1)
binietoglou@19 1135 for iRotaR in range(-nRotaR, nRotaR + 1)
binietoglou@19 1136 for iRetR in range(-nRetR, nRetR + 1)]:
ulalume3@0 1137
volker@16 1138 iN = iN + 1
volker@16 1139 if (iN == 10001):
volker@16 1140 ctime = clock()
binietoglou@19 1141 print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="")
binietoglou@19 1142 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
ulalume3@0 1143 ctime = clock()
volker@16 1144 if ((ctime - dtime) > 10):
binietoglou@19 1145 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
volker@16 1146 dtime = ctime
ulalume3@0 1147
binietoglou@19 1148 if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO
binietoglou@19 1149 if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO
binietoglou@19 1150 if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO
binietoglou@19 1151 if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC
binietoglou@19 1152 if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC
binietoglou@19 1153 if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC
binietoglou@19 1154 if nTP > 0: TP = TP0 + iTP * dTP / nTP
binietoglou@19 1155 if nTS > 0: TS = TS0 + iTS * dTS / nTS
binietoglou@19 1156 if nRP > 0: RP = RP0 + iRP * dRP / nRP
binietoglou@19 1157 if nRS > 0: RS = RS0 + iRS * dRS / nRS
binietoglou@19 1158 if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT
binietoglou@19 1159 if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT
binietoglou@19 1160 if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT
binietoglou@19 1161 if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR
binietoglou@19 1162 if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR
binietoglou@19 1163 if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR
ulalume3@0 1164
binietoglou@19 1165 # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN))
ulalume3@0 1166
volker@16 1167 # receiver optics
volker@16 1168 CosO = np.cos(np.deg2rad(RetO))
volker@16 1169 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 1170 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 1171 WiO = (1. - ZiO * CosO)
binietoglou@19 1172 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 1173 C2g = np.cos(np.deg2rad(2 * RotO))
volker@16 1174 # calibrator
volker@16 1175 CosC = np.cos(np.deg2rad(RetC))
volker@16 1176 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 1177 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 1178 WiC = (1. - ZiC * CosC)
ulalume3@0 1179
volker@16 1180 # analyser
binietoglou@19 1181 # For POLLY_XTs
binietoglou@19 1182 if (RS_RP_depend_on_TS_TP):
volker@16 1183 RS = 1 - TS
volker@16 1184 RP = 1 - TP
volker@16 1185 TiT = 0.5 * (TP + TS)
binietoglou@19 1186 DiT = (TP - TS) / (TP + TS)
binietoglou@19 1187 ZiT = (1. - DiT ** 2) ** 0.5
volker@16 1188 TiR = 0.5 * (RP + RS)
binietoglou@19 1189 DiR = (RP - RS) / (RP + RS)
binietoglou@19 1190 ZiR = (1. - DiR ** 2) ** 0.5
volker@16 1191 CosT = np.cos(np.deg2rad(RetT))
volker@16 1192 SinT = np.sin(np.deg2rad(RetT))
volker@16 1193 CosR = np.cos(np.deg2rad(RetR))
volker@16 1194 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 1195
binietoglou@19 1196 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 1197 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 1198 TaT = 0.5 * (1 + ERaT)
binietoglou@19 1199 TaR = 0.5 * (1 + ERaR)
ulalume3@0 1200
binietoglou@19 1201 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 1202 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 1203 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 1204 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 1205
volker@16 1206 # Aanalyzer As before the PBS Eq. D.5
binietoglou@19 1207 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 1208 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 1209 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 1210 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 1211 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 1212
binietoglou@19 1213 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 1214 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 1215 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 1216 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 1217 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 1218
binietoglou@19 1219 TTa = TiT * TaT # *ATP1
binietoglou@19 1220 TRa = TiR * TaR # *ARP1
ulalume3@0 1221
volker@16 1222 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
volker@16 1223 if LocC == 4: # Calibrator before the PBS
binietoglou@19 1224 # print("Calibrator location not implemented yet")
ulalume3@0 1225
binietoglou@19 1226 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1227 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1228 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 1229 C2e = np.cos(np.deg2rad(2 * RotC))
volker@16 1230 # rotated AinP by epsilon Eq. C.3
binietoglou@19 1231 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 1232 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 1233 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 1234 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 1235 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 1236 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
volker@16 1237 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 1238 A = C2g * QinE - S2g * UinE
binietoglou@19 1239 B = S2g * QinE + C2g * UinE
binietoglou@19 1240 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 1241 Co = ZiO * SinO * VinE
binietoglou@19 1242 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 1243 # C = Co + aCal*Ca
binietoglou@19 1244 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 1245 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 1246 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 1247 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
volker@16 1248 IinPo = IinE
binietoglou@19 1249 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 1250 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 1251 VinPo = ZiO * CosO * VinE
ulalume3@0 1252
binietoglou@19 1253 IinPa = DiO * A
binietoglou@19 1254 QinPa = QinE - S2g * Ca
binietoglou@19 1255 UinPa = -UinE + C2g * Ca
binietoglou@19 1256 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 1257
binietoglou@19 1258 IinP = IinPo + aCal * IinPa
binietoglou@19 1259 QinP = QinPo + aCal * QinPa
binietoglou@19 1260 UinP = UinPo + aCal * UinPa
binietoglou@19 1261 VinP = VinPo + aCal * VinPa
volker@16 1262 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 1263 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 1264 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 1265 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 1266 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 1267 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 1268 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 1269 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 1270 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 1271
volker@16 1272 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
volker@16 1273 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
volker@16 1274 # parameters for calibration with aCal
binietoglou@19 1275 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 1276 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 1277 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 1278 BR = ARP3e * QinP - h * ARP2e * UinP
volker@16 1279 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1280 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1281 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1282 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1283 GT = np.dot(ATP, IS1)
binietoglou@19 1284 GR = np.dot(ARP, IS1)
binietoglou@19 1285 HT = np.dot(ATP, IS2)
binietoglou@19 1286 HR = np.dot(ARP, IS2)
volker@16 1287 else:
binietoglou@19 1288 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1289 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1290 GT = np.dot(ATPe, IS1)
binietoglou@19 1291 GR = np.dot(ARPe, IS1)
binietoglou@19 1292 HT = np.dot(ATPe, IS2)
binietoglou@19 1293 HR = np.dot(ARPe, IS2)
volker@16 1294 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1295 # parameters for calibration with aCal
binietoglou@19 1296 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 1297 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1298 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 1299 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@16 1300 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1301 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1302 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1303 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1304 GT = np.dot(ATP, IS1)
binietoglou@19 1305 GR = np.dot(ARP, IS1)
binietoglou@19 1306 HT = np.dot(ATP, IS2)
binietoglou@19 1307 HR = np.dot(ARP, IS2)
volker@16 1308 else:
binietoglou@19 1309 IS1e = np.array(
binietoglou@19 1310 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1311 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1312 IS2e = np.array(
binietoglou@19 1313 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1314 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1315 GT = np.dot(ATPe, IS1e)
binietoglou@19 1316 GR = np.dot(ARPe, IS1e)
binietoglou@19 1317 HT = np.dot(ATPe, IS2e)
binietoglou@19 1318 HR = np.dot(ARPe, IS2e)
volker@16 1319 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1320 # parameters for calibration with aCal
binietoglou@19 1321 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1322 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (
binietoglou@19 1323 sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 1324 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1325 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1326 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1327 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (
binietoglou@19 1328 sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 1329 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1330 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@16 1331 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1332 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1333 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1334 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1335 GT = np.dot(ATP, IS1)
binietoglou@19 1336 GR = np.dot(ARP, IS1)
binietoglou@19 1337 HT = np.dot(ATP, IS2)
binietoglou@19 1338 HR = np.dot(ARP, IS2)
volker@16 1339 else:
binietoglou@19 1340 IS1e = np.array(
binietoglou@19 1341 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1342 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1343 IS2e = np.array(
binietoglou@19 1344 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1345 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1346 GT = np.dot(ATPe, IS1e)
binietoglou@19 1347 GR = np.dot(ARPe, IS1e)
binietoglou@19 1348 HT = np.dot(ATPe, IS2e)
binietoglou@19 1349 HR = np.dot(ARPe, IS2e)
ulalume3@0 1350 else:
volker@16 1351 print("Calibrator not implemented yet")
volker@16 1352 sys.exit()
volker@16 1353
volker@16 1354 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 1355
binietoglou@19 1356 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1357 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1358 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1359 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1360
volker@16 1361 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1362 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1363 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1364 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1365 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1366
binietoglou@19 1367 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1368 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1369 ATF1 = ATF[0]
volker@16 1370 ATF2 = ATF[1]
volker@16 1371 ATF3 = ATF[2]
volker@16 1372 ATF4 = ATF[3]
volker@16 1373 ARF1 = ARF[0]
volker@16 1374 ARF2 = ARF[1]
volker@16 1375 ARF3 = ARF[2]
volker@16 1376 ARF4 = ARF[3]
ulalume3@0 1377
volker@16 1378 # rotated AinF by epsilon
binietoglou@19 1379 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 1380 ATF3e = C2e * ATF[2] - S2e * ATF[1]
binietoglou@19 1381 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 1382 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 1383
binietoglou@19 1384 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 1385 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 1386
binietoglou@19 1387 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1388 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 1389
volker@16 1390 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
volker@16 1391 IinF = IinE
binietoglou@19 1392 QinF = aCal * QinE
binietoglou@19 1393 UinF = -aCal * UinE
binietoglou@19 1394 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 1395
volker@16 1396 IinFo = IinE
volker@16 1397 QinFo = 0.
volker@16 1398 UinFo = 0.
volker@16 1399 VinFo = VinE
ulalume3@0 1400
volker@16 1401 IinFa = 0.
volker@16 1402 QinFa = QinE
volker@16 1403 UinFa = -UinE
binietoglou@19 1404 VinFa = -2. * VinE
ulalume3@0 1405
volker@16 1406 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 1407 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 1408 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 1409 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 1410 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 1411 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 1412 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 1413
volker@16 1414 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1415 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
binietoglou@19 1416 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 1417 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 1418 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 1419 BR = ARF3e * QinF - ARF2e * h * UinF
ulalume3@0 1420
volker@16 1421 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1422 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 1423 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 1424 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 1425 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 1426 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
volker@16 1427 else:
binietoglou@19 1428 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 1429 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 1430 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 1431 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 1432
volker@16 1433 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1434 # p = +45°, m = -45°
binietoglou@19 1435 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 1436 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
ulalume3@0 1437
binietoglou@19 1438 AT = np.dot(ATFe, IF1e)
binietoglou@19 1439 AR = np.dot(ARFe, IF1e)
binietoglou@19 1440 BT = np.dot(ATFe, IF2e)
binietoglou@19 1441 BR = np.dot(ARFe, IF2e)
ulalume3@0 1442
volker@16 1443 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 1444 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1445 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 1446 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
ulalume3@0 1447
binietoglou@19 1448 GT = np.dot(ATF, IS1)
binietoglou@19 1449 GR = np.dot(ARF, IS1)
binietoglou@19 1450 HT = np.dot(ATF, IS2)
binietoglou@19 1451 HR = np.dot(ARF, IS2)
volker@16 1452 else:
binietoglou@19 1453 IS1e = np.array(
binietoglou@19 1454 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1455 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1456 IS2e = np.array(
binietoglou@19 1457 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1458 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1459 GT = np.dot(ATFe, IS1e)
binietoglou@19 1460 GR = np.dot(ARFe, IS1e)
binietoglou@19 1461 HT = np.dot(ATFe, IS2e)
binietoglou@19 1462 HR = np.dot(ARFe, IS2e)
ulalume3@0 1463
volker@16 1464 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1465 # p = +22.5°, m = -22.5°
binietoglou@19 1466 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 1467 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 1468 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 1469 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 1470 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
ulalume3@0 1471
binietoglou@19 1472 AT = np.dot(ATFe, IF1e)
binietoglou@19 1473 AR = np.dot(ARFe, IF1e)
binietoglou@19 1474 BT = np.dot(ATFe, IF2e)
binietoglou@19 1475 BR = np.dot(ARFe, IF2e)
ulalume3@0 1476
volker@16 1477 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1478 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1479 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 1480 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 1481 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 1482 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 1483 GT = np.dot(ATF, IS1)
binietoglou@19 1484 GR = np.dot(ARF, IS1)
binietoglou@19 1485 HT = np.dot(ATF, IS2)
binietoglou@19 1486 HR = np.dot(ARF, IS2)
volker@16 1487 else:
binietoglou@19 1488 # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE])
binietoglou@19 1489 # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)])
binietoglou@19 1490 IS1e = np.array(
binietoglou@19 1491 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1492 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1493 IS2e = np.array(
binietoglou@19 1494 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1495 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1496 GT = np.dot(ATFe, IS1e)
binietoglou@19 1497 GR = np.dot(ARFe, IS1e)
binietoglou@19 1498 HT = np.dot(ATFe, IS2e)
binietoglou@19 1499 HR = np.dot(ARFe, IS2e)
ulalume3@0 1500
ulalume3@0 1501
volker@16 1502 else:
volker@16 1503 print('Calibrator not implemented yet')
volker@16 1504 sys.exit()
ulalume3@0 1505
volker@16 1506 elif LocC == 2: # C behind emitter optics Eq.57
binietoglou@19 1507 # print("Calibrator location not implemented yet")
binietoglou@19 1508 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1509 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1510
volker@16 1511 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1512 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1513 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1514 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1515 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1516
binietoglou@19 1517 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1518 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1519 ATF1 = ATF[0]
volker@16 1520 ATF2 = ATF[1]
volker@16 1521 ATF3 = ATF[2]
volker@16 1522 ATF4 = ATF[3]
volker@16 1523 ARF1 = ARF[0]
volker@16 1524 ARF2 = ARF[1]
volker@16 1525 ARF3 = ARF[2]
volker@16 1526 ARF4 = ARF[3]
ulalume3@0 1527
volker@16 1528 # AS with C behind the emitter --------------------------------------------
volker@16 1529 # terms without aCal
volker@16 1530 ATE1o, ARE1o = ATF1, ARF1
volker@16 1531 ATE2o, ARE2o = 0., 0.
volker@16 1532 ATE3o, ARE3o = 0., 0.
volker@16 1533 ATE4o, ARE4o = ATF4, ARF4
volker@16 1534 # terms with aCal
binietoglou@19 1535 ATE1a, ARE1a = 0., 0.
volker@16 1536 ATE2a, ARE2a = ATF2, ARF2
volker@16 1537 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 1538 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
volker@16 1539 # rotated AinEa by epsilon
binietoglou@19 1540 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 1541 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 1542 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 1543 ARE3ae = -S2e * ARF2 - C2e * ARF3
volker@16 1544
volker@16 1545 ATE1 = ATE1o
binietoglou@19 1546 ATE2e = aCal * ATE2ae
binietoglou@19 1547 ATE3e = aCal * ATE3ae
binietoglou@19 1548 ATE4 = (1 - 2 * aCal) * ATF4
volker@16 1549 ARE1 = ARE1o
binietoglou@19 1550 ARE2e = aCal * ARE2ae
binietoglou@19 1551 ARE3e = aCal * ARE3ae
binietoglou@19 1552 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 1553
volker@16 1554 # rotated IinE
binietoglou@19 1555 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1556 UinEe = C2e * UinE - S2e * QinE
volker@16 1557
volker@16 1558 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1559 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 1560 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 1561 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 1562 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 1563 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 1564
volker@16 1565 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1566 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1567 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1568 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1569 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1570 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 1571 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
volker@16 1572 else:
binietoglou@19 1573 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1574 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1575 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 1576 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
volker@16 1577
volker@16 1578 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
volker@16 1579 # p = +45°, m = -45°
binietoglou@19 1580 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 1581 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 1582 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 1583 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 1584
volker@16 1585 # Correction paremeters for normal measurements; they are independent of LDR
volker@16 1586 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1587 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1588 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1589 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1590 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1591 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1592 else:
binietoglou@19 1593 D = IinE + DiC * QinEe
binietoglou@19 1594 A = DiC * IinE + QinEe
binietoglou@19 1595 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1596 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1597 GT = ATE1o * D + ATE4o * C
binietoglou@19 1598 GR = ARE1o * D + ARE4o * C
binietoglou@19 1599 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1600 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 1601
volker@16 1602 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1603 # p = +22.5°, m = -22.5°
binietoglou@19 1604 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 1605 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 1606 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 1607 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 1608 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 1609 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 1610 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 1611 AT = np.dot(ATEe, IE1e)
binietoglou@19 1612 AR = np.dot(AREe, IE1e)
binietoglou@19 1613 BT = np.dot(ATEe, IE2e)
binietoglou@19 1614 BR = np.dot(AREe, IE2e)
ulalume3@0 1615
volker@16 1616 # Correction paremeters for normal measurements; they are independent of LDR
binietoglou@19 1617 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1618 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1619 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1620 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1621 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1622 else:
binietoglou@19 1623 D = IinE + DiC * QinEe
binietoglou@19 1624 A = DiC * IinE + QinEe
binietoglou@19 1625 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1626 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1627 GT = ATE1o * D + ATE4o * C
binietoglou@19 1628 GR = ARE1o * D + ARE4o * C
binietoglou@19 1629 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1630 HR = ARE2a * A + ARE3a * B + ARE4a * C
volker@16 1631
ulalume3@0 1632 else:
volker@16 1633 print('Calibrator not implemented yet')
volker@16 1634 sys.exit()
ulalume3@0 1635
volker@16 1636 # Calibration signals with aCal => Determination of the correction K of the real calibration factor
binietoglou@19 1637 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 1638 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 1639 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 1640 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
volker@16 1641 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 1642 # Eta = TiR/TiT # Eta = Eta*/K Eq. 84
binietoglou@19 1643 Etapx = IoutRp / IoutTp
binietoglou@19 1644 Etamx = IoutRm / IoutTm
binietoglou@19 1645 Etax = (Etapx * Etamx) ** 0.5
volker@16 1646 K = Etax / Eta0
binietoglou@19 1647 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km))
binietoglou@19 1648 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km))
ulalume3@0 1649
volker@16 1650 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 1651 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 1652 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 1653 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
volker@16 1654
volker@16 1655 # *************************************************************************
volker@16 1656 iLDR = -1
volker@16 1657 for LDRTrue in LDRrange:
volker@16 1658 iLDR = iLDR + 1
binietoglou@19 1659 atrue = (1 - LDRTrue) / (1 + LDRTrue)
volker@16 1660 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 1661 It = TaT * TiT * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT)
binietoglou@19 1662 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR)
volker@16 1663
volker@16 1664 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 1665 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
volker@16 1666 '''
volker@16 1667 if Y == 1.:
volker@16 1668 LDRsimx = LDRsim
volker@16 1669 LDRsimx2 = LDRsim2
ulalume3@0 1670 else:
volker@16 1671 LDRsimx = 1./LDRsim
volker@16 1672 LDRsimx2 = 1./LDRsim2
volker@16 1673 '''
volker@16 1674 # ----- Backward correction
volker@21 1675 # Corrected LDRCorr with assumed true G0,H0,K0 from forward simulated (real) LDRsim (atrue)
binietoglou@19 1676 LDRCorr = (LDRsim * K0 / Etax * (GT0 + HT0) - (GR0 + HR0)) / (
binietoglou@19 1677 (GR0 - HR0) - LDRsim * K0 / Etax * (GT0 - HT0))
volker@21 1678 '''
volker@16 1679 # -- F11corr from It and Ir and calibration EtaX
volker@16 1680 Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1"
binietoglou@19 1681 F11corr = 1 / (TiO * TiE) * (
volker@21 1682 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0.
volker@21 1683 '''
volker@21 1684 # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue)
volker@21 1685 Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1"
volker@21 1686 F11corr = 1 / (TiO * TiE) * (
volker@21 1687 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0.
ulalume3@0 1688
binietoglou@19 1689 # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)"
binietoglou@19 1690 # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64)
volker@16 1691
volker@16 1692 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs)
binietoglou@19 1693 # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1"
binietoglou@19 1694 # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0))
volker@16 1695 # !!! see below line 1673ff
volker@16 1696
binietoglou@19 1697 aF11corr[iLDR, iN] = F11corr
binietoglou@19 1698 aA[iLDR, iN] = LDRCorr
ulalume3@0 1699
binietoglou@19 1700 aX[0, iN] = GR
binietoglou@19 1701 aX[1, iN] = GT
binietoglou@19 1702 aX[2, iN] = HR
binietoglou@19 1703 aX[3, iN] = HT
binietoglou@19 1704 aX[4, iN] = K
volker@16 1705
volker@16 1706 aLDRCal[iN] = iLDRCal
volker@16 1707 aERaT[iN] = iERaT
volker@16 1708 aERaR[iN] = iERaR
volker@16 1709 aRotaT[iN] = iRotaT
volker@16 1710 aRotaR[iN] = iRotaR
volker@16 1711 aRetT[iN] = iRetT
volker@16 1712 aRetR[iN] = iRetR
volker@16 1713
volker@16 1714 aRotL[iN] = iRotL
volker@16 1715 aRotE[iN] = iRotE
volker@16 1716 aRetE[iN] = iRetE
volker@16 1717 aRotO[iN] = iRotO
volker@16 1718 aRetO[iN] = iRetO
volker@16 1719 aRotC[iN] = iRotC
volker@16 1720 aRetC[iN] = iRetC
volker@16 1721 aDiO[iN] = iDiO
volker@16 1722 aDiE[iN] = iDiE
volker@16 1723 aDiC[iN] = iDiC
volker@16 1724 aTP[iN] = iTP
volker@16 1725 aTS[iN] = iTS
volker@16 1726 aRP[iN] = iRP
volker@16 1727 aRS[iN] = iRS
ulalume3@0 1728
volker@16 1729 # --- END loop
volker@16 1730 btime = clock()
binietoglou@19 1731 print("\r done in ", "{0:5.0f}".format(btime - atime), "sec") # , end="\r")
volker@16 1732
volker@16 1733 # --- Plot -----------------------------------------------------------------
volker@16 1734 if (sns_loaded):
volker@16 1735 sns.set_style("whitegrid")
volker@16 1736 sns.set_palette("bright", 6)
ulalume3@0 1737
volker@16 1738 '''
volker@16 1739 fig2 = plt.figure()
volker@16 1740 plt.plot(aA[2,:],'b.')
volker@16 1741 plt.plot(aA[3,:],'r.')
volker@16 1742 plt.plot(aA[4,:],'g.')
volker@16 1743 #plt.plot(aA[6,:],'c.')
volker@16 1744 plt.show
volker@16 1745 '''
binietoglou@19 1746
binietoglou@19 1747
volker@16 1748 # Plot LDR
volker@16 1749 def PlotSubHist(aVar, aX, X0, daX, iaX, naX):
volker@16 1750 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1751 iLDR = -1
volker@16 1752 for LDRTrue in LDRrange:
volker@16 1753 iLDR = iLDR + 1
ulalume3@0 1754
binietoglou@19 1755 LDRmin[iLDR] = np.min(aA[iLDR, :])
binietoglou@19 1756 LDRmax[iLDR] = np.max(aA[iLDR, :])
binietoglou@19 1757 Rmin = LDRmin[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
binietoglou@19 1758 Rmax = LDRmax[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1759
binietoglou@19 1760 # plt.subplot(5,2,iLDR+1)
binietoglou@19 1761 plt.subplot(1, 5, iLDR + 1)
binietoglou@19 1762 (n, bins, patches) = plt.hist(aA[iLDR, :],
binietoglou@19 1763 bins=100, log=False,
binietoglou@19 1764 range=[Rmin, Rmax],
binietoglou@19 1765 alpha=0.5, normed=False, color='0.5', histtype='stepfilled')
ulalume3@0 1766
binietoglou@19 1767 for iaX in range(-naX, naX + 1):
binietoglou@19 1768 plt.hist(aA[iLDR, aX == iaX],
volker@16 1769 range=[Rmin, Rmax],
binietoglou@19 1770 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled',
binietoglou@19 1771 label=str(round(X0 + iaX * daX / naX, 5)))
volker@16 1772
volker@16 1773 if (iLDR == 2): plt.legend()
volker@16 1774
volker@16 1775 plt.tick_params(axis='both', labelsize=9)
volker@16 1776 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1777
binietoglou@19 1778 # plt.title(LID + ' ' + aVar, fontsize=18)
binietoglou@19 1779 # plt.ylabel('frequency', fontsize=10)
binietoglou@19 1780 # plt.xlabel('LDRcorr', fontsize=10)
binietoglou@19 1781 # fig.tight_layout()
binietoglou@19 1782 fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
binietoglou@19 1783 # plt.show()
binietoglou@19 1784 # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
binietoglou@19 1785 # plt.close
volker@16 1786 return
ulalume3@0 1787
binietoglou@19 1788
volker@16 1789 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1790 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1791 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1792 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1793 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1794 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1795 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1796 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1797 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1798 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1799 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1800 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1801 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1802 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1803 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1804 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1805 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1806 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1807 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1808 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1809 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1810
volker@16 1811 plt.show()
volker@16 1812 plt.close
volker@21 1813
volker@16 1814 '''
volker@21 1815 # --- Plot F11 histograms
volker@16 1816 print()
volker@16 1817 print(" ############################################################################## ")
volker@16 1818 print(Text1)
volker@16 1819 print()
volker@16 1820
volker@16 1821 iLDR = 5
volker@16 1822 for LDRTrue in LDRrange:
volker@16 1823 iLDR = iLDR - 1
volker@21 1824 #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0
volker@21 1825 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0
volker@16 1826 # Plot F11
volker@16 1827 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX):
volker@16 1828 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1829 iLDR = -1
volker@16 1830 for LDRTrue in LDRrange:
volker@16 1831 iLDR = iLDR + 1
volker@16 1832
volker@16 1833 #F11min[iLDR] = np.min(aF11corr[iLDR,:])
volker@16 1834 #F11max[iLDR] = np.max(aF11corr[iLDR,:])
volker@16 1835 #Rmin = F11min[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
volker@16 1836 #Rmax = F11max[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1837
volker@16 1838 #Rmin = 0.8
volker@16 1839 #Rmax = 1.2
ulalume3@0 1840
volker@16 1841 #plt.subplot(5,2,iLDR+1)
volker@16 1842 plt.subplot(1,5,iLDR+1)
volker@16 1843 (n, bins, patches) = plt.hist(aF11corr[iLDR,:],
volker@16 1844 bins=100, log=False,
volker@16 1845 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled')
volker@16 1846
volker@16 1847 for iaX in range(-naX,naX+1):
volker@16 1848 plt.hist(aF11corr[iLDR,aX == iaX],
volker@16 1849 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5)))
volker@16 1850
volker@16 1851 if (iLDR == 2): plt.legend()
volker@16 1852
volker@16 1853 plt.tick_params(axis='both', labelsize=9)
volker@16 1854 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1855
volker@16 1856 #plt.title(LID + ' ' + aVar, fontsize=18)
volker@16 1857 #plt.ylabel('frequency', fontsize=10)
volker@16 1858 #plt.xlabel('LDRcorr', fontsize=10)
volker@16 1859 #fig.tight_layout()
volker@16 1860 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
volker@16 1861 #plt.show()
volker@16 1862 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
volker@16 1863 #plt.close
volker@16 1864 return
ulalume3@0 1865
volker@16 1866 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1867 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1868 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1869 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1870 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1871 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1872 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1873 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1874 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1875 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1876 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1877 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1878 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1879 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1880 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1881 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1882 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1883 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1884 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1885 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1886 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1887
volker@16 1888 plt.show()
volker@16 1889 plt.close
volker@21 1890
volker@16 1891 '''
volker@16 1892 '''
volker@16 1893 # only histogram
volker@16 1894 #print("******************* " + aVar + " *******************")
volker@16 1895 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10))
ulalume3@0 1896 iLDR = -1
ulalume3@0 1897 for LDRTrue in LDRrange:
ulalume3@0 1898 iLDR = iLDR + 1
ulalume3@0 1899 LDRmin[iLDR] = np.min(aA[iLDR,:])
ulalume3@0 1900 LDRmax[iLDR] = np.max(aA[iLDR,:])
volker@16 1901 Rmin = np.min(aA[iLDR,:]) * 0.999
volker@16 1902 Rmax = np.max(aA[iLDR,:]) * 1.001
volker@16 1903 plt.subplot(5,2,iLDR+1)
ulalume3@0 1904 (n, bins, patches) = plt.hist(aA[iLDR,:],
ulalume3@0 1905 range=[Rmin, Rmax],
volker@16 1906 bins=200, log=False, alpha=0.2, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1907 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1908 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1909 plt.show()
volker@16 1910 plt.close
volker@21 1911 # --- End of Plot F11 histograms
volker@16 1912 '''
ulalume3@0 1913
volker@16 1914 # --- Plot LDRmin, LDRmax
volker@16 1915 fig2 = plt.figure()
binietoglou@19 1916 plt.plot(LDRrange, LDRmax - LDRrange, linewidth=2.0, color='b')
binietoglou@19 1917 plt.plot(LDRrange, LDRmin - LDRrange, linewidth=2.0, color='g')
ulalume3@0 1918
volker@16 1919 plt.xlabel('LDRtrue', fontsize=18)
volker@16 1920 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14)
volker@16 1921 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18)
binietoglou@19 1922 # plt.ylimit(-0.07, 0.07)
volker@16 1923 plt.show()
volker@16 1924 plt.close
ulalume3@0 1925
volker@16 1926 # --- Save LDRmin, LDRmax to file
volker@16 1927 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python
volker@16 1928 with open('output_files\LDR_min_max_' + LID + '.dat', 'w') as f:
volker@16 1929 with redirect_stdout(f):
volker@16 1930 print(LID)
volker@16 1931 print("LDRtrue, LDRmin, LDRmax")
volker@16 1932 for i in range(len(LDRrange)):
volker@16 1933 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrange[i], LDRmin[i], LDRmax[i]))
ulalume3@0 1934
volker@16 1935 '''
volker@16 1936 # --- Plot K over LDRCal
volker@16 1937 fig3 = plt.figure()
volker@16 1938 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aX[4,:], linewidth=2.0, color='b')
ulalume3@0 1939
volker@16 1940 plt.xlabel('LDRCal', fontsize=18)
volker@16 1941 plt.ylabel('K', fontsize=14)
volker@16 1942 plt.title(LID, fontsize=18)
volker@16 1943 plt.show()
volker@16 1944 plt.close
volker@16 1945 '''
ulalume3@0 1946
ulalume3@0 1947 # Additional plot routines ======>
ulalume3@0 1948 '''
ulalume3@0 1949 #******************************************************************************
ulalume3@0 1950 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel)
ulalume3@0 1951 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1952 LDRCorra = np.arange(1.,100.)
ulalume3@0 1953 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1954 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT))
ulalume3@0 1955 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1956 #
ulalume3@0 1957 #fig = plt.figure()
ulalume3@0 1958 plt.plot(LDRa,LDRCorra-LDRa)
ulalume3@0 1959 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1960 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16)
ulalume3@0 1961 plt.xlabel('LDR', fontsize=18)
ulalume3@0 1962 plt.ylabel('LDRCorr - LDR', fontsize=16)
ulalume3@0 1963 #plt.savefig('test.png')
ulalume3@0 1964 #
ulalume3@0 1965 '''
ulalume3@0 1966 '''
ulalume3@0 1967 #******************************************************************************
ulalume3@0 1968 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue
ulalume3@0 1969 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1970 LDRsima = np.arange(1.,100.)
ulalume3@0 1971
ulalume3@0 1972 atruea = (1.-LDRa)/(1+LDRa)
ulalume3@0 1973 Ita = TiT*TiO*IinL*(GT+atruea*HT)
ulalume3@0 1974 Ira = TiR*TiO*IinL*(GR+atruea*HR)
ulalume3@0 1975 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file
ulalume3@0 1976 if Y == -1.: LDRsima = 1./LDRsima
ulalume3@0 1977 #
ulalume3@0 1978 #fig = plt.figure()
ulalume3@0 1979 plt.plot(LDRa,LDRsima)
ulalume3@0 1980 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1981 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10)
ulalume3@0 1982 plt.xlabel('LDRtrue', fontsize=18)
ulalume3@0 1983 plt.ylabel('LDRsim', fontsize=16)
ulalume3@0 1984 #plt.savefig('test.png')
ulalume3@0 1985 #
ulalume3@0 1986 '''

mercurial