lidar_correction_ghk.py

Thu, 16 Feb 2017 21:34:49 +0100

author
Volker Freudenthaler <volker.freudenthaler@lmu.de>
date
Thu, 16 Feb 2017 21:34:49 +0100
changeset 23
ef8a64173c96
parent 21
857c95060313
child 25
4c66b9ca23be
permissions
-rw-r--r--

Changed parameter name for laser degree of linear polarization from bL to DOLP.
Added loop for DOLP uncertainty.
Input file changed accordingly.

ulalume3@0 1 # -*- coding: utf-8 -*-
ulalume3@0 2 """
volker@23 3 Copyright 2016, 2017 Volker Freudenthaler
ulalume3@0 4
ulalume3@0 5 Licensed under the EUPL, Version 1.1 only (the "Licence").
ulalume3@0 6
ulalume3@0 7 You may not use this work except in compliance with the Licence.
ulalume3@0 8 A copy of the licence is distributed with the code. Alternatively, you may obtain
ulalume3@0 9 a copy of the Licence at:
ulalume3@0 10
ulalume3@0 11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl
ulalume3@0 12
ulalume3@0 13 Unless required by applicable law or agreed to in writing, software distributed
ulalume3@0 14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS
ulalume3@0 15 OF ANY KIND, either express or implied. See the Licence for the specific language governing
ulalume3@0 16 permissions and limitations under the Licence.
ulalume3@0 17
ulalume3@0 18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf
ulalume3@0 19 With equations code from Appendix C
volker@11 20 Python 3.4.2
volker@21 21
volker@21 22 Code description:
volker@21 23
volker@21 24 From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR)
volker@21 25 because of the cross talk between the channles and systematic errors of a lidar system.
volker@21 26 http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors,
volker@21 27 with which the measured signals can be corrected.
volker@21 28 This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K).
volker@21 29 The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to
volker@21 30 uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the
volker@21 31 gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true"
volker@21 32 GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRcorr),
volker@21 33 which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue.
volker@21 34 A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal
volker@21 35 in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for
volker@21 36 "assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error
volker@21 37 calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol
volker@21 38 content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005).
volker@21 39
volker@21 40 Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file.
ulalume3@0 41 """
volker@11 42
volker@11 43 # Comment: The code works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements.
ulalume3@0 44 from __future__ import print_function
volker@21 45 # !/usr/bin/env python3
binietoglou@19 46
binietoglou@19 47 import os
binietoglou@19 48 import sys
binietoglou@19 49
ulalume3@0 50 import numpy as np
ulalume3@0 51
volker@11 52 # Comment: the seaborn library makes nicer plots, but the code works also without it.
volker@11 53 try:
volker@11 54 import seaborn as sns
binietoglou@19 55
volker@11 56 sns_loaded = True
volker@11 57 except ImportError:
volker@11 58 sns_loaded = False
volker@11 59
ulalume3@0 60 import matplotlib.pyplot as plt
ulalume3@0 61 from time import clock
ulalume3@0 62
binietoglou@19 63 # from matplotlib.backends.backend_pdf import PdfPages
binietoglou@19 64 # pdffile = '{}.pdf'.format('path')
binietoglou@19 65 # pp = PdfPages(pdffile)
ulalume3@0 66 ## pp.savefig can be called multiple times to save to multiple pages
binietoglou@19 67 # pp.savefig()
binietoglou@19 68 # pp.close()
ulalume3@0 69
ulalume3@0 70 from contextlib import contextmanager
binietoglou@19 71
ulalume3@0 72 @contextmanager
ulalume3@0 73 def redirect_stdout(new_target):
binietoglou@19 74 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout
ulalume3@0 75 try:
binietoglou@19 76 yield new_target # run some code with the replaced stdout
ulalume3@0 77 finally:
ulalume3@0 78 sys.stdout.flush()
binietoglou@19 79 sys.stdout = old_target # restore to the previous value
binietoglou@19 80
ulalume3@0 81 '''
ulalume3@0 82 real_raw_input = vars(__builtins__).get('raw_input',input)
ulalume3@0 83 '''
ulalume3@0 84 try:
ulalume3@0 85 import __builtin__
binietoglou@19 86
ulalume3@0 87 input = getattr(__builtin__, 'raw_input')
ulalume3@0 88 except (ImportError, AttributeError):
ulalume3@0 89 pass
ulalume3@0 90
ulalume3@0 91 from distutils.util import strtobool
binietoglou@19 92
binietoglou@19 93
ulalume3@0 94 def user_yes_no_query(question):
ulalume3@0 95 sys.stdout.write('%s [y/n]\n' % question)
ulalume3@0 96 while True:
ulalume3@0 97 try:
ulalume3@0 98 return strtobool(input().lower())
ulalume3@0 99 except ValueError:
ulalume3@0 100 sys.stdout.write('Please respond with \'y\' or \'n\'.\n')
ulalume3@0 101
binietoglou@19 102
binietoglou@19 103 # if user_yes_no_query('want to exit?') == 1: sys.exit()
ulalume3@0 104
ulalume3@0 105 abspath = os.path.abspath(__file__)
ulalume3@0 106 dname = os.path.dirname(abspath)
ulalume3@0 107 fname = os.path.basename(abspath)
ulalume3@0 108 os.chdir(dname)
ulalume3@0 109
binietoglou@19 110 # PrintToOutputFile = True
ulalume3@0 111
binietoglou@19 112 sqr05 = 0.5 ** 0.5
ulalume3@0 113
volker@21 114 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below
volker@16 115 # Do you want to calculate the errors? If not, just the GHK-parameters are determined.
volker@16 116 Error_Calc = True
ulalume3@0 117 LID = "internal"
ulalume3@0 118 EID = "internal"
ulalume3@0 119 # --- IL Laser IL and +-Uncertainty
volker@23 120 DOLP, dDOLP, nDOLP = 0.995, 0.005, 1 # degree of linear polarization; default 1
binietoglou@19 121 RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0
ulalume3@0 122 # --- ME Emitter and +-Uncertainty
binietoglou@19 123 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation
binietoglou@19 124 TiE = 1. # Unpolarized transmittance
binietoglou@19 125 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees
binietoglou@19 126 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees
ulalume3@0 127 # --- MO Receiver Optics including telescope
binietoglou@19 128 DiO, dDiO, nDiO = -0.055, 0.003, 1
binietoglou@19 129 TiO = 0.9
binietoglou@19 130 RetO, dRetO, nRetO = 0., 180.0, 2
binietoglou@19 131 RotO, dRotO, nRotO = 0., 0.1, 1 # gamma
ulalume3@0 132 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty
binietoglou@19 133 TP, dTP, nTP = 0.98, 0.02, 1
binietoglou@19 134 TS, dTS, nTS = 0.001, 0.001, 1
ulalume3@0 135 TiT = 0.5 * (TP + TS)
binietoglou@19 136 DiT = (TP - TS) / (TP + TS)
ulalume3@0 137 # PolFilter
binietoglou@19 138 RetT, dRetT, nRetT = 0., 180., 0
binietoglou@19 139 ERaT, dERaT, nERaT = 0.001, 0.001, 1
binietoglou@19 140 RotaT, dRotaT, nRotaT = 0., 3., 1
binietoglou@19 141 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 142 TaT = 0.5 * (1 + ERaT)
ulalume3@0 143 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty
volker@13 144 RS_RP_depend_on_TS_TP = False
binietoglou@19 145 if (RS_RP_depend_on_TS_TP):
binietoglou@19 146 RP, dRP, nRP = 1 - TP, 0.00, 0
binietoglou@19 147 RS, dRS, nRS = 1 - TS, 0.00, 0
volker@13 148 else:
binietoglou@19 149 RP, dRP, nRP = 0.05, 0.01, 1
binietoglou@19 150 RS, dRS, nRS = 0.98, 0.01, 1
ulalume3@0 151 TiR = 0.5 * (RP + RS)
binietoglou@19 152 DiR = (RP - RS) / (RP + RS)
ulalume3@0 153 # PolFilter
binietoglou@19 154 RetR, dRetR, nRetR = 0., 180., 0
binietoglou@19 155 ERaR, dERaR, nERaR = 0.001, 0.001, 1
binietoglou@19 156 RotaR, dRotaR, nRotaR = 90., 3., 1
binietoglou@19 157 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 158 TaR = 0.5 * (1 + ERaR)
ulalume3@0 159
ulalume3@0 160 # Parellel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1
ulalume3@0 161 Y = -1.
ulalume3@0 162
ulalume3@0 163 # Calibrator = type defined by matrix values
binietoglou@19 164 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4
ulalume3@0 165
binietoglou@19 166 TypeC = 3 # linear polarizer calibrator
ulalume3@0 167 # example with extinction ratio 0.001
binietoglou@19 168 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0
binietoglou@19 169 TiC = 0.5 # ideal 0.5
binietoglou@19 170 RetC, dRetC, nRetC = 0., 0., 0
binietoglou@19 171 RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon
binietoglou@19 172 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
ulalume3@0 173
ulalume3@0 174 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
ulalume3@0 175 RotationErrorEpsilonForNormalMeasurements = True
ulalume3@0 176
ulalume3@0 177 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess)
binietoglou@19 178 LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1
ulalume3@0 179 LDRCal = LDRCal0
ulalume3@0 180 # measured LDRm will be corrected with calculated parameters
ulalume3@0 181 LDRmeas = 0.015
ulalume3@0 182 # LDRtrue for simulation of measurement => LDRsim
ulalume3@0 183 LDRtrue = 0.5
ulalume3@0 184 LDRtrue2 = 0.004
ulalume3@0 185
ulalume3@0 186 # Initialize other values to 0
ulalume3@0 187 ER, nER, dER = 0.001, 0, 0.001
ulalume3@0 188 K = 0.
ulalume3@0 189 Km = 0.
ulalume3@0 190 Kp = 0.
ulalume3@0 191 LDRcorr = 0.
ulalume3@0 192 Eta = 0.
ulalume3@0 193 Ir = 0.
ulalume3@0 194 It = 0.
ulalume3@0 195 h = 1.
ulalume3@0 196
ulalume3@0 197 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS']
binietoglou@19 198 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer',
binietoglou@19 199 'real HWP +-22.5°']
ulalume3@0 200 dY = ['reflected channel', '', 'transmitted channel']
ulalume3@0 201
ulalume3@0 202 # end of initial definition of variables
ulalume3@0 203 # *******************************************************************************************************************************
ulalume3@0 204
volker@21 205 # --- Read actual lidar system parameters from optic_input.py (should be in sub-directory 'system_settings')
volker@11 206 InputFile = 'optic_input_example_lidar.py'
volker@23 207 InputFile = 'optic_input_ver8c_POLIS_532_Sep2016.py'
volker@23 208 InputFile = 'optic_input_Bertha_Saltrace_532.py'
ulalume3@0 209
ulalume3@0 210 '''
ulalume3@0 211 print("From ", dname)
ulalume3@0 212 print("Running ", fname)
ulalume3@0 213 print("Reading input file ", InputFile, " for")
ulalume3@0 214 '''
ulalume3@0 215 input_path = os.path.join('.', 'system_settings', InputFile)
volker@21 216 # this works with Python 2 and 3!
binietoglou@19 217 exec (open(input_path).read(), globals())
ulalume3@0 218 # end of read actual system parameters
ulalume3@0 219
volker@21 220
ulalume3@0 221 # --- Manual Parameter Change ---
ulalume3@0 222 # (use for quick parameter changes without changing the input file )
binietoglou@19 223 # DiO = 0.
binietoglou@19 224 # LDRtrue = 0.45
binietoglou@19 225 # LDRtrue2 = 0.004
binietoglou@19 226 # Y = -1
binietoglou@19 227 # LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
ulalume3@0 228 ##TypeC = 6 Don't change the TypeC here
binietoglou@19 229 # RotationErrorEpsilonForNormalMeasurements = True
binietoglou@19 230 # LDRCal = 0.25
ulalume3@0 231 ## --- Errors
volker@23 232 DOLP0, dDOLP, nDOLP = DOLP, dDOLP, nDOLP
ulalume3@0 233 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
ulalume3@0 234
binietoglou@19 235 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
ulalume3@0 236 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
ulalume3@0 237 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
ulalume3@0 238
binietoglou@19 239 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
ulalume3@0 240 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
ulalume3@0 241 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
ulalume3@0 242
binietoglou@19 243 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
ulalume3@0 244 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
ulalume3@0 245 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
ulalume3@0 246
binietoglou@19 247 TP0, dTP, nTP = TP, dTP, nTP
binietoglou@19 248 TS0, dTS, nTS = TS, dTS, nTS
ulalume3@0 249 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
ulalume3@0 250
ulalume3@0 251 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
binietoglou@19 252 RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT
ulalume3@0 253
binietoglou@19 254 RP0, dRP, nRP = RP, dRP, nRP
binietoglou@19 255 RS0, dRS, nRS = RS, dRS, nRS
ulalume3@0 256 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
ulalume3@0 257
ulalume3@0 258 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
binietoglou@19 259 RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR
ulalume3@0 260
binietoglou@19 261 LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal
binietoglou@19 262 # LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,0
ulalume3@0 263 # ---------- End of manual parameter change
ulalume3@0 264
ulalume3@0 265 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0
binietoglou@19 266 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0
ulalume3@0 267 LDRCal = LDRCal0
binietoglou@19 268 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0, 0, 0, 0, 0, 0
ulalume3@0 269
ulalume3@0 270 TiT = 0.5 * (TP + TS)
binietoglou@19 271 DiT = (TP - TS) / (TP + TS)
binietoglou@19 272 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 273 TiR = 0.5 * (RP + RS)
binietoglou@19 274 DiR = (RP - RS) / (RP + RS)
binietoglou@19 275 ZiR = (1. - DiR ** 2) ** 0.5
binietoglou@19 276
ulalume3@0 277
volker@13 278 # --- this subroutine is for the calculation with certain fixed parameters -----------------------------------------------------
volker@23 279 def Calc(DOLP, RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR,
binietoglou@19 280 LDRCal):
ulalume3@0 281 # ---- Do the calculations of bra-ket vectors
ulalume3@0 282 h = -1. if TypeC == 2 else 1
ulalume3@0 283 # from input file: assumed LDRCal for calibration measurements
binietoglou@19 284 aCal = (1. - LDRCal) / (1 + LDRCal)
ulalume3@0 285 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 286 # ameas = (1.-LDRmeas)/(1+LDRmeas)
binietoglou@19 287 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 288 # atrue2 = (1.-LDRtrue2)/(1+LDRtrue2)
ulalume3@0 289
ulalume3@0 290 # angles of emitter and laser and calibrator and receiver optics
ulalume3@0 291 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 292 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 293 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 294 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 295 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 296 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 297 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 298 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 299 C2g = np.cos(np.deg2rad(2 * RotO))
ulalume3@0 300
volker@23 301 # Laser with Degree of linear polarization DOLP
ulalume3@0 302 IinL = 1.
volker@23 303 QinL = DOLP
ulalume3@0 304 UinL = 0.
volker@23 305 VinL = (1. - DOLP ** 2) ** 0.5
ulalume3@0 306
ulalume3@0 307 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 308 A = C2a * QinL - S2a * UinL
binietoglou@19 309 B = S2a * QinL + C2a * UinL
ulalume3@0 310 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 311 C = C2ab * QinL - S2ab * UinL
binietoglou@19 312 D = S2ab * QinL + C2ab * UinL
ulalume3@0 313
ulalume3@0 314 # emitter optics
ulalume3@0 315 CosE = np.cos(np.deg2rad(RetE))
ulalume3@0 316 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 317 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 318 WiE = (1. - ZiE * CosE)
ulalume3@0 319
ulalume3@0 320 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
ulalume3@0 321 # b = beta
binietoglou@19 322 IinE = (IinL + DiE * C)
binietoglou@19 323 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 324 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 325 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 326
ulalume3@0 327 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 328 IinF = IinE
binietoglou@19 329 QinF = aCal * QinE
binietoglou@19 330 UinF = -aCal * UinE
binietoglou@19 331 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 332
ulalume3@0 333 # receiver optics
ulalume3@0 334 CosO = np.cos(np.deg2rad(RetO))
ulalume3@0 335 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 336 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 337 WiO = (1. - ZiO * CosO)
ulalume3@0 338
ulalume3@0 339 # calibrator
ulalume3@0 340 CosC = np.cos(np.deg2rad(RetC))
ulalume3@0 341 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 342 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 343 WiC = (1. - ZiC * CosC)
ulalume3@0 344
ulalume3@0 345 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 346 A = C2g * QinE - S2g * UinE
binietoglou@19 347 B = S2g * QinE + C2g * UinE
ulalume3@0 348
binietoglou@19 349 IinP = (IinE + DiO * aCal * A)
binietoglou@19 350 QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 351 UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1 - 2 * aCal) * VinE))
binietoglou@19 352 VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1 - 2 * aCal) * VinE)
ulalume3@0 353
binietoglou@19 354 # -------------------------
ulalume3@0 355 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 356 # F11sim = TiO*(IinE + DiO*atrue*A)/IinE
binietoglou@19 357 # -------------------------
ulalume3@0 358
ulalume3@0 359 # analyser
binietoglou@19 360 if (RS_RP_depend_on_TS_TP):
volker@13 361 RS = 1 - TS
volker@13 362 RP = 1 - TP
volker@21 363
ulalume3@0 364 TiT = 0.5 * (TP + TS)
binietoglou@19 365 DiT = (TP - TS) / (TP + TS)
binietoglou@19 366 ZiT = (1. - DiT ** 2) ** 0.5
ulalume3@0 367 TiR = 0.5 * (RP + RS)
binietoglou@19 368 DiR = (RP - RS) / (RP + RS)
binietoglou@19 369 ZiR = (1. - DiR ** 2) ** 0.5
ulalume3@0 370 CosT = np.cos(np.deg2rad(RetT))
ulalume3@0 371 SinT = np.sin(np.deg2rad(RetT))
ulalume3@0 372 CosR = np.cos(np.deg2rad(RetR))
ulalume3@0 373 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 374
binietoglou@19 375 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 376 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 377 TaT = 0.5 * (1 + ERaT)
binietoglou@19 378 TaR = 0.5 * (1 + ERaR)
ulalume3@0 379
binietoglou@19 380 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 381 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 382 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 383 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 384
volker@23 385 # Analyzer As before the PBS Eq. D.5
binietoglou@19 386 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 387 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 388 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 389 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 390 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 391
binietoglou@19 392 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 393 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 394 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 395 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 396 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 397
binietoglou@19 398 DTa = ATP2 * Y / ATP1
binietoglou@19 399 DRa = ARP2 * Y / ARP1
ulalume3@0 400
ulalume3@0 401 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
ulalume3@0 402 if LocC == 4: # Calibrator before the PBS
binietoglou@19 403 # print("Calibrator location not implemented yet")
ulalume3@0 404
binietoglou@19 405 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 406 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 407 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 408 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 409 # rotated AinP by epsilon Eq. C.3
binietoglou@19 410 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 411 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 412 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 413 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 414 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 415 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
ulalume3@0 416 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 417 A = C2g * QinE - S2g * UinE
binietoglou@19 418 B = S2g * QinE + C2g * UinE
binietoglou@19 419 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 420 Co = ZiO * SinO * VinE
binietoglou@19 421 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 422 # C = Co + aCal*Ca
binietoglou@19 423 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 424 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 425 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 426 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 427 IinPo = IinE
binietoglou@19 428 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 429 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 430 VinPo = ZiO * CosO * VinE
ulalume3@0 431
binietoglou@19 432 IinPa = DiO * A
binietoglou@19 433 QinPa = QinE - S2g * Ca
binietoglou@19 434 UinPa = -UinE + C2g * Ca
binietoglou@19 435 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 436
binietoglou@19 437 IinP = IinPo + aCal * IinPa
binietoglou@19 438 QinP = QinPo + aCal * QinPa
binietoglou@19 439 UinP = UinPo + aCal * UinPa
binietoglou@19 440 VinP = VinPo + aCal * VinPa
ulalume3@0 441 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 442 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 443 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 444 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 445 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 446 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 447 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 448 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 449 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 450
ulalume3@0 451 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 452 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 453 # parameters for calibration with aCal
binietoglou@19 454 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 455 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 456 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 457 BR = ARP3e * QinP - h * ARP2e * UinP
volker@23 458 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 459 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 460 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 461 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 462 GT = np.dot(ATP, IS1)
binietoglou@19 463 GR = np.dot(ARP, IS1)
binietoglou@19 464 HT = np.dot(ATP, IS2)
binietoglou@19 465 HR = np.dot(ARP, IS2)
ulalume3@0 466 else:
binietoglou@19 467 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 468 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 469 GT = np.dot(ATPe, IS1)
binietoglou@19 470 GR = np.dot(ARPe, IS1)
binietoglou@19 471 HT = np.dot(ATPe, IS2)
binietoglou@19 472 HR = np.dot(ARPe, IS2)
ulalume3@0 473 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 474 # parameters for calibration with aCal
binietoglou@19 475 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 476 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 477 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 478 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@23 479 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 480 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 481 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 482 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 483 GT = np.dot(ATP, IS1)
binietoglou@19 484 GR = np.dot(ARP, IS1)
binietoglou@19 485 HT = np.dot(ATP, IS2)
binietoglou@19 486 HR = np.dot(ARP, IS2)
ulalume3@0 487 else:
binietoglou@19 488 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 489 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 490 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 491 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 492 GT = np.dot(ATPe, IS1e)
binietoglou@19 493 GR = np.dot(ARPe, IS1e)
binietoglou@19 494 HT = np.dot(ATPe, IS2e)
binietoglou@19 495 HR = np.dot(ARPe, IS2e)
ulalume3@0 496 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 497 # parameters for calibration with aCal
binietoglou@19 498 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 499 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 500 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 501 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 502 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 503 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 504 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 505 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@23 506 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 507 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 508 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 509 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 510 GT = np.dot(ATP, IS1)
binietoglou@19 511 GR = np.dot(ARP, IS1)
binietoglou@19 512 HT = np.dot(ATP, IS2)
binietoglou@19 513 HR = np.dot(ARP, IS2)
ulalume3@0 514 else:
binietoglou@19 515 IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 516 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 517 IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 518 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 519 GT = np.dot(ATPe, IS1e)
binietoglou@19 520 GR = np.dot(ARPe, IS1e)
binietoglou@19 521 HT = np.dot(ATPe, IS2e)
binietoglou@19 522 HR = np.dot(ARPe, IS2e)
ulalume3@0 523 else:
ulalume3@0 524 print("Calibrator not implemented yet")
ulalume3@0 525 sys.exit()
ulalume3@0 526
ulalume3@0 527 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 528
binietoglou@19 529 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 530 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 531 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 532 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 533
ulalume3@0 534 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt)
binietoglou@19 535 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 536 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 537 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 538 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 539
binietoglou@19 540 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 541 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 542 ATF2 = ATF[1]
ulalume3@0 543 ATF3 = ATF[2]
ulalume3@0 544 ARF2 = ARF[1]
ulalume3@0 545 ARF3 = ARF[2]
ulalume3@0 546
ulalume3@0 547 # rotated AinF by epsilon
ulalume3@0 548 ATF1 = ATF[0]
ulalume3@0 549 ATF4 = ATF[3]
binietoglou@19 550 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 551 ATF3e = C2e * ATF[2] - S2e * ATF[1]
ulalume3@0 552 ARF1 = ARF[0]
ulalume3@0 553 ARF4 = ARF[3]
binietoglou@19 554 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 555 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 556
binietoglou@19 557 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 558 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 559
binietoglou@19 560 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 561 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 562
ulalume3@0 563 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 564 IinF = IinE
binietoglou@19 565 QinF = aCal * QinE
binietoglou@19 566 UinF = -aCal * UinE
binietoglou@19 567 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 568
ulalume3@0 569 IinFo = IinE
ulalume3@0 570 QinFo = 0.
ulalume3@0 571 UinFo = 0.
ulalume3@0 572 VinFo = VinE
ulalume3@0 573
ulalume3@0 574 IinFa = 0.
ulalume3@0 575 QinFa = QinE
ulalume3@0 576 UinFa = -UinE
binietoglou@19 577 VinFa = -2. * VinE
ulalume3@0 578
ulalume3@0 579 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 580 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 581 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 582 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 583 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 584 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 585 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 586
ulalume3@0 587 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 588 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 589 # parameters for calibration with aCal
binietoglou@19 590 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 591 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 592 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 593 BR = ARF3e * QinF - ARF2e * h * UinF
volker@23 594 # Correction parameters for normal measurements; they are independent of LDR
ulalume3@0 595 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 596 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 597 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 598 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 599 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
ulalume3@0 600 else:
binietoglou@19 601 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 602 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 603 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 604 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 605 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 606 # p = +45°, m = -45°
binietoglou@19 607 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 608 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
binietoglou@19 609 AT = np.dot(ATFe, IF1e)
binietoglou@19 610 AR = np.dot(ARFe, IF1e)
binietoglou@19 611 BT = np.dot(ATFe, IF2e)
binietoglou@19 612 BR = np.dot(ARFe, IF2e)
ulalume3@0 613
volker@23 614 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 615 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 616 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 617 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
binietoglou@19 618 GT = np.dot(ATF, IS1)
binietoglou@19 619 GR = np.dot(ARF, IS1)
binietoglou@19 620 HT = np.dot(ATF, IS2)
binietoglou@19 621 HR = np.dot(ARF, IS2)
ulalume3@0 622 else:
binietoglou@19 623 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 624 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 625 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 626 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 627 GT = np.dot(ATFe, IS1e)
binietoglou@19 628 GR = np.dot(ARFe, IS1e)
binietoglou@19 629 HT = np.dot(ATFe, IS2e)
binietoglou@19 630 HR = np.dot(ARFe, IS2e)
ulalume3@0 631
ulalume3@0 632 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 633 # parameters for calibration with aCal
binietoglou@19 634 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 635 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 636 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 637 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 638 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
binietoglou@19 639 AT = np.dot(ATFe, IF1e)
binietoglou@19 640 AR = np.dot(ARFe, IF1e)
binietoglou@19 641 BT = np.dot(ATFe, IF2e)
binietoglou@19 642 BR = np.dot(ARFe, IF2e)
ulalume3@0 643
volker@23 644 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 645 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 646 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 647 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 648 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 649 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 650 GT = np.dot(ATF, IS1)
binietoglou@19 651 GR = np.dot(ARF, IS1)
binietoglou@19 652 HT = np.dot(ATF, IS2)
binietoglou@19 653 HR = np.dot(ARF, IS2)
ulalume3@0 654 else:
binietoglou@19 655 IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 656 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 657 IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 658 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 659 # IS1e = np.array([IinFo,0,0,VinFo])
binietoglou@19 660 # IS2e = np.array([0,QinFae,UinFae,VinFa])
binietoglou@19 661 GT = np.dot(ATFe, IS1e)
binietoglou@19 662 GR = np.dot(ARFe, IS1e)
binietoglou@19 663 HT = np.dot(ATFe, IS2e)
binietoglou@19 664 HR = np.dot(ARFe, IS2e)
ulalume3@0 665
ulalume3@0 666 else:
ulalume3@0 667 print('Calibrator not implemented yet')
ulalume3@0 668 sys.exit()
ulalume3@0 669
ulalume3@0 670 elif LocC == 2: # C behind emitter optics Eq.57 -------------------------------------------------------
binietoglou@19 671 # print("Calibrator location not implemented yet")
binietoglou@19 672 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 673 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 674
ulalume3@0 675 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 676 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 677 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 678 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 679 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 680
binietoglou@19 681 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 682 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
ulalume3@0 683 ATF1 = ATF[0]
ulalume3@0 684 ATF2 = ATF[1]
ulalume3@0 685 ATF3 = ATF[2]
ulalume3@0 686 ATF4 = ATF[3]
ulalume3@0 687 ARF1 = ARF[0]
ulalume3@0 688 ARF2 = ARF[1]
ulalume3@0 689 ARF3 = ARF[2]
ulalume3@0 690 ARF4 = ARF[3]
ulalume3@0 691
ulalume3@0 692 # AS with C behind the emitter
ulalume3@0 693 # terms without aCal
ulalume3@0 694 ATE1o, ARE1o = ATF1, ARF1
ulalume3@0 695 ATE2o, ARE2o = 0., 0.
ulalume3@0 696 ATE3o, ARE3o = 0., 0.
ulalume3@0 697 ATE4o, ARE4o = ATF4, ARF4
ulalume3@0 698 # terms with aCal
binietoglou@19 699 ATE1a, ARE1a = 0., 0.
ulalume3@0 700 ATE2a, ARE2a = ATF2, ARF2
ulalume3@0 701 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 702 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
ulalume3@0 703 # rotated AinEa by epsilon
binietoglou@19 704 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 705 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 706 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 707 ARE3ae = -S2e * ARF2 - C2e * ARF3
ulalume3@0 708
ulalume3@0 709 ATE1 = ATE1o
binietoglou@19 710 ATE2e = aCal * ATE2ae
binietoglou@19 711 ATE3e = aCal * ATE3ae
binietoglou@19 712 ATE4 = (1 - 2 * aCal) * ATF4
ulalume3@0 713 ARE1 = ARE1o
binietoglou@19 714 ARE2e = aCal * ARE2ae
binietoglou@19 715 ARE3e = aCal * ARE3ae
binietoglou@19 716 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 717
ulalume3@0 718 # rotated IinE
binietoglou@19 719 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 720 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 721
ulalume3@0 722 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 723 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 724 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 725 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 726 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 727 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 728
volker@23 729 # Correction parameters for normal measurements; they are independent of LDR
ulalume3@0 730 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 731 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 732 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 733 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 734 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 735 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
ulalume3@0 736 else:
binietoglou@19 737 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 738 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 739 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 740 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
ulalume3@0 741
ulalume3@0 742 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
ulalume3@0 743 # p = +45°, m = -45°
binietoglou@19 744 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 745 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 746 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 747 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 748
volker@23 749 # Correction parameters for normal measurements; they are independent of LDR
ulalume3@0 750 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 751 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 752 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 753 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 754 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 755 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 756 else:
binietoglou@19 757 D = IinE + DiC * QinEe
binietoglou@19 758 A = DiC * IinE + QinEe
binietoglou@19 759 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 760 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 761 GT = ATE1o * D + ATE4o * C
binietoglou@19 762 GR = ARE1o * D + ARE4o * C
binietoglou@19 763 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 764 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 765
ulalume3@0 766 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 767 # p = +22.5°, m = -22.5°
binietoglou@19 768 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 769 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 770 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 771 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 772 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 773 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 774 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 775 AT = np.dot(ATEe, IE1e)
binietoglou@19 776 AR = np.dot(AREe, IE1e)
binietoglou@19 777 BT = np.dot(ATEe, IE2e)
binietoglou@19 778 BR = np.dot(AREe, IE2e)
ulalume3@0 779
volker@23 780 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 781 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 782 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 783 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 784 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 785 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
ulalume3@0 786 else:
binietoglou@19 787 D = IinE + DiC * QinEe
binietoglou@19 788 A = DiC * IinE + QinEe
binietoglou@19 789 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 790 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 791 GT = ATE1o * D + ATE4o * C
binietoglou@19 792 GR = ARE1o * D + ARE4o * C
binietoglou@19 793 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 794 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 795
ulalume3@0 796 else:
ulalume3@0 797 print('Calibrator not implemented yet')
ulalume3@0 798 sys.exit()
ulalume3@0 799
ulalume3@0 800 else:
ulalume3@0 801 print("Calibrator location not implemented yet")
ulalume3@0 802 sys.exit()
ulalume3@0 803
ulalume3@0 804 # Determination of the correction K of the calibration factor
binietoglou@19 805 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 806 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 807 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 808 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
ulalume3@0 809
ulalume3@0 810 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 811 Etapx = IoutRp / IoutTp
binietoglou@19 812 Etamx = IoutRm / IoutTm
binietoglou@19 813 Etax = (Etapx * Etamx) ** 0.5
ulalume3@0 814
binietoglou@19 815 Eta = (TaR * TiR) / (TaT * TiT) # Eta = Eta*/K Eq. 84
ulalume3@0 816 K = Etax / Eta
ulalume3@0 817
ulalume3@0 818 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 819 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 820 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 821 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
ulalume3@0 822
ulalume3@0 823 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 824 It = TaT * TiT * TiO * TiE * (GT + atrue * HT)
binietoglou@19 825 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR)
ulalume3@0 826 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 827 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
ulalume3@0 828 # Corrected LDRsimCorr from forward simulated LDRsim (atrue)
ulalume3@0 829 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT))
ulalume3@0 830 if Y == -1.:
binietoglou@19 831 LDRsimx = 1. / LDRsim
ulalume3@0 832 else:
ulalume3@0 833 LDRsimx = LDRsim
ulalume3@0 834
ulalume3@0 835 # The following is correct without doubt
binietoglou@19 836 # LDRCorr = (LDRsim*K/Etax*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT))
ulalume3@0 837
ulalume3@0 838 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent
binietoglou@19 839 LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim * K / Etax * (GT - HT))
ulalume3@0 840
binietoglou@19 841 TTa = TiT * TaT # *ATP1
binietoglou@19 842 TRa = TiR * TaR # *ARP1
ulalume3@0 843
binietoglou@19 844 F11sim = 1 / (TiO * TiE) * (
volker@21 845 (HR * Etax / K * It / TTa - HT * Ir / TRa) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta
ulalume3@0 846
ulalume3@0 847 return (GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim)
binietoglou@19 848
binietoglou@19 849
ulalume3@0 850 # *******************************************************************************************************************************
ulalume3@0 851
volker@21 852 # --- CALC truth with assumed true parameters from the input file
volker@23 853 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(DOLP0, RotL0, RotE0, RetE0, DiE0, RotO0,
binietoglou@19 854 RetO0, DiO0, RotC0, RetC0, DiC0,
binietoglou@19 855 TP0, TS0, RP0, RS0, ERaT0,
binietoglou@19 856 RotaT0, RetT0, ERaR0, RotaR0,
binietoglou@19 857 RetR0, LDRCal0)
ulalume3@0 858
volker@13 859 # --- Print parameters to console and output file
volker@13 860 with open('output_files\output_' + LID + '.dat', 'w') as f:
ulalume3@0 861 with redirect_stdout(f):
ulalume3@0 862 print("From ", dname)
ulalume3@0 863 print("Running ", fname)
binietoglou@19 864 print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID)
ulalume3@0 865 print("for Lidar system: ", EID, ", ", LID)
ulalume3@0 866 # --- Print iput information*********************************
ulalume3@0 867 print(" --- Input parameters: value ±error / ±steps ----------------------")
volker@23 868 print("{0:5}{1:5} {2:6.4f}±{3:7.4f}/{4:2d}; {5:8} {6:8.4f}±{7:7.4f}/{8:2d}".format("Laser: ", "DOLP =", DOLP0, dDOLP, nDOLP,
volker@23 869 " Rotation alpha = ", RotL0, dRotL,
binietoglou@19 870 nRotL))
ulalume3@0 871 print(" Diatt., Tunpol, Retard., Rotation (deg)")
binietoglou@19 872 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 873 "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE))
binietoglou@19 874 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 875 "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO))
binietoglou@19 876 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format(
binietoglou@19 877 "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC))
ulalume3@0 878 print("{0:12}".format(" --- Pol.-filter ---"))
binietoglou@19 879 print(
binietoglou@19 880 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERT, RotT :", ERaT0, dERaT, nERaT,
binietoglou@19 881 RotaT0, dRotaT, nRotaT))
binietoglou@19 882 print(
binietoglou@19 883 "{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERR, RotR :", ERaR0, dERaR, nERaR,
binietoglou@19 884 RotaR0, dRotaR, nRotaR))
ulalume3@0 885 print("{0:12}".format(" --- PBS ---"))
binietoglou@19 886 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("TP,TS :", TP0, dTP, nTP, TS0,
binietoglou@19 887 dTS, nTS))
binietoglou@19 888 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("RP,RS :", RP0, dRP, nRP, RS0,
binietoglou@19 889 dRS, nRS))
ulalume3@0 890 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format("DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y))
ulalume3@0 891 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---"))
volker@13 892 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format("DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0))
volker@21 893 print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format("LDRCal during calibration in calibration range", LDRCal0,
volker@21 894 dLDRCal, nLDRCal))
ulalume3@0 895 print()
ulalume3@0 896 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements)
volker@13 897 print(Type[TypeC], Loc[LocC])
binietoglou@19 898 print("Parallel signal detected in", dY[int(Y + 1)])
volker@13 899 print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP)
ulalume3@0 900 # end of print actual system parameters
ulalume3@0 901 # ******************************************************************************
ulalume3@0 902
binietoglou@19 903 # print()
binietoglou@19 904 # print(" --- LDRCal during calibration | simulated and corrected LDRs -------------")
binietoglou@19 905 # print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr"))
binietoglou@19 906 # print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr))
binietoglou@19 907 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 908 # print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr))
binietoglou@19 909 # print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
binietoglou@19 910 # print(" --- LDRCal during calibration")
ulalume3@0 911
binietoglou@19 912 # print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim))
ulalume3@0 913 print()
ulalume3@0 914
ulalume3@0 915 K0List = np.zeros(3)
ulalume3@0 916 LDRsimxList = np.zeros(3)
ulalume3@0 917 LDRCalList = 0.004, 0.2, 0.45
volker@21 918 # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work.
volker@21 919 # Still with assumed true parameters in input file
binietoglou@19 920 for i, LDRCal in enumerate(LDRCalList):
volker@23 921 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(DOLP0, RotL0, RotE0, RetE0,
binietoglou@19 922 DiE0, RotO0, RetO0,
binietoglou@19 923 DiO0, RotC0, RetC0,
binietoglou@19 924 DiC0, TP0, TS0, RP0,
binietoglou@19 925 RS0, ERaT0, RotaT0,
binietoglou@19 926 RetT0, ERaR0, RotaR0,
binietoglou@19 927 RetR0, LDRCal)
ulalume3@0 928 K0List[i] = K0
ulalume3@0 929 LDRsimxList[i] = LDRsimx
ulalume3@0 930
volker@13 931 print('========================================================================')
binietoglou@19 932 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9}".format(" GR", " GT", " HR", " HT", " K(0.004)", " K(0.2)",
binietoglou@19 933 " K(0.45)"))
binietoglou@19 934 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f}".format(GR0, GT0, HR0, HT0, K0List[0],
binietoglou@19 935 K0List[1], K0List[2]))
ulalume3@0 936 print('========================================================================')
volker@21 937 print("{0:9},{1:9},{2:9}".format(" LDRtrue", " LDRsimx", " LDRCorr"))
ulalume3@0 938
volker@21 939 #LDRtrueList = 0.004, 0.02, 0.2, 0.45
volker@21 940 aF11sim0 = np.zeros(5)
volker@21 941 LDRrange = np.zeros(5)
volker@21 942 LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
volker@21 943
volker@21 944 # The loop over LDRtrueList is ony for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work.
volker@21 945 # LDRsimx = LDRsim = Ir / It or 1/LDRsim
volker@21 946 # Still with assumed true parameters in input file
volker@21 947 for i, LDRtrue in enumerate(LDRrange):
volker@21 948 #for LDRtrue in LDRrange:
volker@23 949 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(DOLP0, RotL0, RotE0, RetE0,
binietoglou@19 950 DiE0, RotO0, RetO0,
binietoglou@19 951 DiO0, RotC0, RetC0,
binietoglou@19 952 DiC0, TP0, TS0, RP0,
binietoglou@19 953 RS0, ERaT0, RotaT0,
binietoglou@19 954 RetT0, ERaR0, RotaR0,
binietoglou@19 955 RetR0, LDRCal0)
ulalume3@0 956 print("{0:9.5f},{1:9.5f},{2:9.5f}".format(LDRtrue, LDRsimx, LDRCorr))
volker@21 957 aF11sim0[i] = F11sim0
volker@21 958 # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals
ulalume3@0 959
volker@13 960 file = open('output_files\output_' + LID + '.dat', 'r')
binietoglou@19 961 print(file.read())
ulalume3@0 962 file.close()
ulalume3@0 963
ulalume3@0 964 '''
ulalume3@0 965 if(PrintToOutputFile):
ulalume3@0 966 f = open('output_ver7.dat', 'w')
ulalume3@0 967 old_target = sys.stdout
ulalume3@0 968 sys.stdout = f
ulalume3@0 969
ulalume3@0 970 print("something")
ulalume3@0 971
ulalume3@0 972 if(PrintToOutputFile):
ulalume3@0 973 sys.stdout.flush()
ulalume3@0 974 f.close
ulalume3@0 975 sys.stdout = old_target
ulalume3@0 976 '''
binietoglou@19 977 if (Error_Calc):
volker@21 978 # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values
volker@23 979 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(DOLP0, RotL0, RotE0, RetE0, DiE0,
binietoglou@19 980 RotO0, RetO0, DiO0, RotC0,
binietoglou@19 981 RetC0, DiC0, TP0, TS0, RP0,
binietoglou@19 982 RS0, ERaT0, RotaT0, RetT0,
binietoglou@19 983 ERaR0, RotaR0, RetR0,
binietoglou@19 984 LDRCal0)
volker@16 985 # --- Start Errors calculation with variable parameters ------------------------------------------------------------------
ulalume3@0 986
volker@16 987 iN = -1
volker@23 988 N = ((nDOLP * 2 + 1) * (nRotL * 2 + 1) *
binietoglou@19 989 (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) *
binietoglou@19 990 (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) *
binietoglou@19 991 (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) *
binietoglou@19 992 (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) *
binietoglou@19 993 (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1))
binietoglou@19 994 print("N = ", N, " ", end="")
ulalume3@0 995
volker@16 996 if N > 1e6:
binietoglou@19 997 if user_yes_no_query('Warning: processing ' + str(
binietoglou@19 998 N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
volker@16 999 if N > 5e6:
binietoglou@19 1000 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format(
binietoglou@19 1001 N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit()
ulalume3@0 1002
binietoglou@19 1003 # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
ulalume3@0 1004
volker@16 1005 # --- Arrays for plotting ------
volker@16 1006 LDRmin = np.zeros(5)
volker@16 1007 LDRmax = np.zeros(5)
volker@16 1008 F11min = np.zeros(5)
volker@16 1009 F11max = np.zeros(5)
ulalume3@0 1010
volker@21 1011 #LDRrange = np.zeros(5)
volker@21 1012 #LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
binietoglou@19 1013 # aLDRsimx = np.zeros(N)
binietoglou@19 1014 # aLDRsimx2 = np.zeros(N)
binietoglou@19 1015 # aLDRcorr = np.zeros(N)
binietoglou@19 1016 # aLDRcorr2 = np.zeros(N)
volker@23 1017 aDOLP = np.zeros(N)
volker@16 1018 aERaT = np.zeros(N)
volker@16 1019 aERaR = np.zeros(N)
volker@16 1020 aRotaT = np.zeros(N)
volker@16 1021 aRotaR = np.zeros(N)
volker@16 1022 aRetT = np.zeros(N)
volker@16 1023 aRetR = np.zeros(N)
volker@16 1024 aTP = np.zeros(N)
volker@16 1025 aTS = np.zeros(N)
volker@16 1026 aRP = np.zeros(N)
volker@16 1027 aRS = np.zeros(N)
volker@16 1028 aDiE = np.zeros(N)
volker@16 1029 aDiO = np.zeros(N)
volker@16 1030 aDiC = np.zeros(N)
volker@16 1031 aRotC = np.zeros(N)
volker@16 1032 aRetC = np.zeros(N)
volker@16 1033 aRotL = np.zeros(N)
volker@16 1034 aRetE = np.zeros(N)
volker@16 1035 aRotE = np.zeros(N)
volker@16 1036 aRetO = np.zeros(N)
volker@16 1037 aRotO = np.zeros(N)
volker@16 1038 aLDRCal = np.zeros(N)
binietoglou@19 1039 aA = np.zeros((5, N))
binietoglou@19 1040 aX = np.zeros((5, N))
binietoglou@19 1041 aF11corr = np.zeros((5, N))
ulalume3@0 1042
volker@16 1043 atime = clock()
volker@16 1044 dtime = clock()
ulalume3@0 1045
volker@16 1046 # --- Calc Error signals
volker@16 1047 # ---- Do the calculations of bra-ket vectors
volker@16 1048 h = -1. if TypeC == 2 else 1
ulalume3@0 1049
volker@21 1050 '''
volker@16 1051 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
binietoglou@19 1052 ameas = (1. - LDRmeas) / (1 + LDRmeas)
binietoglou@19 1053 atrue = (1. - LDRtrue) / (1 + LDRtrue)
binietoglou@19 1054 atrue2 = (1. - LDRtrue2) / (1 + LDRtrue2)
volker@21 1055 '''
ulalume3@0 1056
binietoglou@19 1057 for iLDRCal in range(-nLDRCal, nLDRCal + 1):
volker@16 1058 # from input file: assumed LDRCal for calibration measurements
volker@16 1059 LDRCal = LDRCal0
binietoglou@19 1060 if nLDRCal > 0: LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal
ulalume3@0 1061
volker@23 1062 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim = Calc(DOLP0, RotL0, RotE0, RetE0,
binietoglou@19 1063 DiE0, RotO0, RetO0, DiO0,
binietoglou@19 1064 RotC0, RetC0, DiC0, TP0,
binietoglou@19 1065 TS0, RP0, RS0, ERaT0,
binietoglou@19 1066 RotaT0, RetT0, ERaR0,
binietoglou@19 1067 RotaR0, RetR0, LDRCal)
binietoglou@19 1068 aCal = (1. - LDRCal) / (1 + LDRCal)
volker@23 1069 for iDOLP, iRotL, iRotE, iRetE, iDiE \
volker@23 1070 in [(iDOLP, iRotL, iRotE, iRetE, iDiE)
volker@23 1071 for iDOLP in range(-nDOLP, nDOLP + 1)
binietoglou@19 1072 for iRotL in range(-nRotL, nRotL + 1)
binietoglou@19 1073 for iRotE in range(-nRotE, nRotE + 1)
binietoglou@19 1074 for iRetE in range(-nRetE, nRetE + 1)
binietoglou@19 1075 for iDiE in range(-nDiE, nDiE + 1)]:
ulalume3@0 1076
volker@23 1077 if nDOLP > 0: DOLP = DOLP0 + iDOLP * dDOLP / nDOLP
binietoglou@19 1078 if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL
binietoglou@19 1079 if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE
binietoglou@19 1080 if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE
binietoglou@19 1081 if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE
ulalume3@0 1082
volker@16 1083 # angles of emitter and laser and calibrator and receiver optics
volker@16 1084 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
binietoglou@19 1085 S2a = np.sin(2 * np.deg2rad(RotL))
binietoglou@19 1086 C2a = np.cos(2 * np.deg2rad(RotL))
binietoglou@19 1087 S2b = np.sin(2 * np.deg2rad(RotE))
binietoglou@19 1088 C2b = np.cos(2 * np.deg2rad(RotE))
binietoglou@19 1089 S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE))
binietoglou@19 1090 C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE))
ulalume3@0 1091
volker@23 1092 # Laser with Degree of linear polarization DOLP
volker@16 1093 IinL = 1.
volker@23 1094 QinL = DOLP
volker@16 1095 UinL = 0.
volker@23 1096 VinL = (1. - DOLP ** 2) ** 0.5
ulalume3@0 1097
volker@16 1098 # Stokes Input Vector rotation Eq. E.4
binietoglou@19 1099 A = C2a * QinL - S2a * UinL
binietoglou@19 1100 B = S2a * QinL + C2a * UinL
volker@16 1101 # Stokes Input Vector rotation Eq. E.9
binietoglou@19 1102 C = C2ab * QinL - S2ab * UinL
binietoglou@19 1103 D = S2ab * QinL + C2ab * UinL
ulalume3@0 1104
volker@16 1105 # emitter optics
volker@16 1106 CosE = np.cos(np.deg2rad(RetE))
volker@16 1107 SinE = np.sin(np.deg2rad(RetE))
binietoglou@19 1108 ZiE = (1. - DiE ** 2) ** 0.5
binietoglou@19 1109 WiE = (1. - ZiE * CosE)
ulalume3@0 1110
volker@16 1111 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
volker@16 1112 # b = beta
binietoglou@19 1113 IinE = (IinL + DiE * C)
binietoglou@19 1114 QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1115 UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL))
binietoglou@19 1116 VinE = (-ZiE * SinE * D + ZiE * CosE * VinL)
ulalume3@0 1117
binietoglou@19 1118 # -------------------------
volker@16 1119 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
binietoglou@19 1120 # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE
binietoglou@19 1121 # -------------------------
ulalume3@0 1122
volker@16 1123 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \
binietoglou@19 1124 in [
binietoglou@19 1125 (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR)
binietoglou@19 1126 for iRotO in range(-nRotO, nRotO + 1)
binietoglou@19 1127 for iRetO in range(-nRetO, nRetO + 1)
binietoglou@19 1128 for iDiO in range(-nDiO, nDiO + 1)
binietoglou@19 1129 for iRotC in range(-nRotC, nRotC + 1)
binietoglou@19 1130 for iRetC in range(-nRetC, nRetC + 1)
binietoglou@19 1131 for iDiC in range(-nDiC, nDiC + 1)
binietoglou@19 1132 for iTP in range(-nTP, nTP + 1)
binietoglou@19 1133 for iTS in range(-nTS, nTS + 1)
binietoglou@19 1134 for iRP in range(-nRP, nRP + 1)
binietoglou@19 1135 for iRS in range(-nRS, nRS + 1)
binietoglou@19 1136 for iERaT in range(-nERaT, nERaT + 1)
binietoglou@19 1137 for iRotaT in range(-nRotaT, nRotaT + 1)
binietoglou@19 1138 for iRetT in range(-nRetT, nRetT + 1)
binietoglou@19 1139 for iERaR in range(-nERaR, nERaR + 1)
binietoglou@19 1140 for iRotaR in range(-nRotaR, nRotaR + 1)
binietoglou@19 1141 for iRetR in range(-nRetR, nRetR + 1)]:
ulalume3@0 1142
volker@16 1143 iN = iN + 1
volker@16 1144 if (iN == 10001):
volker@16 1145 ctime = clock()
binietoglou@19 1146 print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="")
binietoglou@19 1147 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
ulalume3@0 1148 ctime = clock()
volker@16 1149 if ((ctime - dtime) > 10):
binietoglou@19 1150 print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r")
volker@16 1151 dtime = ctime
ulalume3@0 1152
binietoglou@19 1153 if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO
binietoglou@19 1154 if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO
binietoglou@19 1155 if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO
binietoglou@19 1156 if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC
binietoglou@19 1157 if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC
binietoglou@19 1158 if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC
binietoglou@19 1159 if nTP > 0: TP = TP0 + iTP * dTP / nTP
binietoglou@19 1160 if nTS > 0: TS = TS0 + iTS * dTS / nTS
binietoglou@19 1161 if nRP > 0: RP = RP0 + iRP * dRP / nRP
binietoglou@19 1162 if nRS > 0: RS = RS0 + iRS * dRS / nRS
binietoglou@19 1163 if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT
binietoglou@19 1164 if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT
binietoglou@19 1165 if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT
binietoglou@19 1166 if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR
binietoglou@19 1167 if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR
binietoglou@19 1168 if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR
ulalume3@0 1169
binietoglou@19 1170 # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN))
ulalume3@0 1171
volker@16 1172 # receiver optics
volker@16 1173 CosO = np.cos(np.deg2rad(RetO))
volker@16 1174 SinO = np.sin(np.deg2rad(RetO))
binietoglou@19 1175 ZiO = (1. - DiO ** 2) ** 0.5
binietoglou@19 1176 WiO = (1. - ZiO * CosO)
binietoglou@19 1177 S2g = np.sin(np.deg2rad(2 * RotO))
binietoglou@19 1178 C2g = np.cos(np.deg2rad(2 * RotO))
volker@16 1179 # calibrator
volker@16 1180 CosC = np.cos(np.deg2rad(RetC))
volker@16 1181 SinC = np.sin(np.deg2rad(RetC))
binietoglou@19 1182 ZiC = (1. - DiC ** 2) ** 0.5
binietoglou@19 1183 WiC = (1. - ZiC * CosC)
ulalume3@0 1184
volker@16 1185 # analyser
binietoglou@19 1186 # For POLLY_XTs
binietoglou@19 1187 if (RS_RP_depend_on_TS_TP):
volker@16 1188 RS = 1 - TS
volker@16 1189 RP = 1 - TP
volker@16 1190 TiT = 0.5 * (TP + TS)
binietoglou@19 1191 DiT = (TP - TS) / (TP + TS)
binietoglou@19 1192 ZiT = (1. - DiT ** 2) ** 0.5
volker@16 1193 TiR = 0.5 * (RP + RS)
binietoglou@19 1194 DiR = (RP - RS) / (RP + RS)
binietoglou@19 1195 ZiR = (1. - DiR ** 2) ** 0.5
volker@16 1196 CosT = np.cos(np.deg2rad(RetT))
volker@16 1197 SinT = np.sin(np.deg2rad(RetT))
volker@16 1198 CosR = np.cos(np.deg2rad(RetR))
volker@16 1199 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 1200
binietoglou@19 1201 DaT = (1 - ERaT) / (1 + ERaT)
binietoglou@19 1202 DaR = (1 - ERaR) / (1 + ERaR)
binietoglou@19 1203 TaT = 0.5 * (1 + ERaT)
binietoglou@19 1204 TaR = 0.5 * (1 + ERaR)
ulalume3@0 1205
binietoglou@19 1206 S2aT = np.sin(np.deg2rad(h * 2 * RotaT))
binietoglou@19 1207 C2aT = np.cos(np.deg2rad(2 * RotaT))
binietoglou@19 1208 S2aR = np.sin(np.deg2rad(h * 2 * RotaR))
binietoglou@19 1209 C2aR = np.cos(np.deg2rad(2 * RotaR))
ulalume3@0 1210
volker@16 1211 # Aanalyzer As before the PBS Eq. D.5
binietoglou@19 1212 ATP1 = (1 + C2aT * DaT * DiT)
binietoglou@19 1213 ATP2 = Y * (DiT + C2aT * DaT)
binietoglou@19 1214 ATP3 = Y * S2aT * DaT * ZiT * CosT
binietoglou@19 1215 ATP4 = S2aT * DaT * ZiT * SinT
binietoglou@19 1216 ATP = np.array([ATP1, ATP2, ATP3, ATP4])
ulalume3@0 1217
binietoglou@19 1218 ARP1 = (1 + C2aR * DaR * DiR)
binietoglou@19 1219 ARP2 = Y * (DiR + C2aR * DaR)
binietoglou@19 1220 ARP3 = Y * S2aR * DaR * ZiR * CosR
binietoglou@19 1221 ARP4 = S2aR * DaR * ZiR * SinR
binietoglou@19 1222 ARP = np.array([ARP1, ARP2, ARP3, ARP4])
ulalume3@0 1223
binietoglou@19 1224 TTa = TiT * TaT # *ATP1
binietoglou@19 1225 TRa = TiR * TaR # *ARP1
ulalume3@0 1226
volker@16 1227 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
volker@16 1228 if LocC == 4: # Calibrator before the PBS
binietoglou@19 1229 # print("Calibrator location not implemented yet")
ulalume3@0 1230
binietoglou@19 1231 # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1232 # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
binietoglou@19 1233 S2e = np.sin(np.deg2rad(h * 2 * RotC))
binietoglou@19 1234 C2e = np.cos(np.deg2rad(2 * RotC))
volker@16 1235 # rotated AinP by epsilon Eq. C.3
binietoglou@19 1236 ATP2e = C2e * ATP2 + S2e * ATP3
binietoglou@19 1237 ATP3e = C2e * ATP3 - S2e * ATP2
binietoglou@19 1238 ARP2e = C2e * ARP2 + S2e * ARP3
binietoglou@19 1239 ARP3e = C2e * ARP3 - S2e * ARP2
binietoglou@19 1240 ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4])
binietoglou@19 1241 ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4])
volker@16 1242 # Stokes Input Vector before the polarising beam splitter Eq. E.31
binietoglou@19 1243 A = C2g * QinE - S2g * UinE
binietoglou@19 1244 B = S2g * QinE + C2g * UinE
binietoglou@19 1245 # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
binietoglou@19 1246 Co = ZiO * SinO * VinE
binietoglou@19 1247 Ca = (WiO * B - 2 * ZiO * SinO * VinE)
binietoglou@19 1248 # C = Co + aCal*Ca
binietoglou@19 1249 # IinP = (IinE + DiO*aCal*A)
binietoglou@19 1250 # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
binietoglou@19 1251 # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
binietoglou@19 1252 # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
volker@16 1253 IinPo = IinE
binietoglou@19 1254 QinPo = (C2g * DiO * IinE - S2g * Co)
binietoglou@19 1255 UinPo = (S2g * DiO * IinE + C2g * Co)
binietoglou@19 1256 VinPo = ZiO * CosO * VinE
ulalume3@0 1257
binietoglou@19 1258 IinPa = DiO * A
binietoglou@19 1259 QinPa = QinE - S2g * Ca
binietoglou@19 1260 UinPa = -UinE + C2g * Ca
binietoglou@19 1261 VinPa = ZiO * (SinO * B - 2 * CosO * VinE)
ulalume3@0 1262
binietoglou@19 1263 IinP = IinPo + aCal * IinPa
binietoglou@19 1264 QinP = QinPo + aCal * QinPa
binietoglou@19 1265 UinP = UinPo + aCal * UinPa
binietoglou@19 1266 VinP = VinPo + aCal * VinPa
volker@16 1267 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
binietoglou@19 1268 # QinPe = C2e*QinP + S2e*UinP
binietoglou@19 1269 # UinPe = C2e*UinP - S2e*QinP
binietoglou@19 1270 QinPoe = C2e * QinPo + S2e * UinPo
binietoglou@19 1271 UinPoe = C2e * UinPo - S2e * QinPo
binietoglou@19 1272 QinPae = C2e * QinPa + S2e * UinPa
binietoglou@19 1273 UinPae = C2e * UinPa - S2e * QinPa
binietoglou@19 1274 QinPe = C2e * QinP + S2e * UinP
binietoglou@19 1275 UinPe = C2e * UinP - S2e * QinP
ulalume3@0 1276
volker@16 1277 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
volker@16 1278 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
volker@16 1279 # parameters for calibration with aCal
binietoglou@19 1280 AT = ATP1 * IinP + h * ATP4 * VinP
binietoglou@19 1281 BT = ATP3e * QinP - h * ATP2e * UinP
binietoglou@19 1282 AR = ARP1 * IinP + h * ARP4 * VinP
binietoglou@19 1283 BR = ARP3e * QinP - h * ARP2e * UinP
volker@23 1284 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 1285 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1286 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1287 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1288 GT = np.dot(ATP, IS1)
binietoglou@19 1289 GR = np.dot(ARP, IS1)
binietoglou@19 1290 HT = np.dot(ATP, IS2)
binietoglou@19 1291 HR = np.dot(ARP, IS2)
volker@16 1292 else:
binietoglou@19 1293 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1294 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1295 GT = np.dot(ATPe, IS1)
binietoglou@19 1296 GR = np.dot(ARPe, IS1)
binietoglou@19 1297 HT = np.dot(ATPe, IS2)
binietoglou@19 1298 HR = np.dot(ARPe, IS2)
volker@16 1299 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1300 # parameters for calibration with aCal
binietoglou@19 1301 AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP)
binietoglou@19 1302 BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1303 AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP)
binietoglou@19 1304 BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@23 1305 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 1306 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1307 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1308 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1309 GT = np.dot(ATP, IS1)
binietoglou@19 1310 GR = np.dot(ARP, IS1)
binietoglou@19 1311 HT = np.dot(ATP, IS2)
binietoglou@19 1312 HR = np.dot(ARP, IS2)
volker@16 1313 else:
binietoglou@19 1314 IS1e = np.array(
binietoglou@19 1315 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1316 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1317 IS2e = np.array(
binietoglou@19 1318 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1319 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1320 GT = np.dot(ATPe, IS1e)
binietoglou@19 1321 GR = np.dot(ARPe, IS1e)
binietoglou@19 1322 HT = np.dot(ATPe, IS2e)
binietoglou@19 1323 HR = np.dot(ARPe, IS2e)
volker@16 1324 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1325 # parameters for calibration with aCal
binietoglou@19 1326 AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1327 ATP2e * QinPe + ATP3e * UinPe) + ZiC * (
binietoglou@19 1328 sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP)
binietoglou@19 1329 BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1330 ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe)
binietoglou@19 1331 AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * (
binietoglou@19 1332 ARP2e * QinPe + ARP3e * UinPe) + ZiC * (
binietoglou@19 1333 sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP)
binietoglou@19 1334 BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * (
binietoglou@19 1335 ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe)
volker@23 1336 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 1337 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1338 IS1 = np.array([IinPo, QinPo, UinPo, VinPo])
binietoglou@19 1339 IS2 = np.array([IinPa, QinPa, UinPa, VinPa])
binietoglou@19 1340 GT = np.dot(ATP, IS1)
binietoglou@19 1341 GR = np.dot(ARP, IS1)
binietoglou@19 1342 HT = np.dot(ATP, IS2)
binietoglou@19 1343 HR = np.dot(ARP, IS2)
volker@16 1344 else:
binietoglou@19 1345 IS1e = np.array(
binietoglou@19 1346 [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo),
binietoglou@19 1347 -ZiC * (SinC * UinPoe - CosC * VinPo)])
binietoglou@19 1348 IS2e = np.array(
binietoglou@19 1349 [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa),
binietoglou@19 1350 -ZiC * (SinC * UinPae - CosC * VinPa)])
binietoglou@19 1351 GT = np.dot(ATPe, IS1e)
binietoglou@19 1352 GR = np.dot(ARPe, IS1e)
binietoglou@19 1353 HT = np.dot(ATPe, IS2e)
binietoglou@19 1354 HR = np.dot(ARPe, IS2e)
ulalume3@0 1355 else:
volker@16 1356 print("Calibrator not implemented yet")
volker@16 1357 sys.exit()
volker@16 1358
volker@16 1359 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 1360
binietoglou@19 1361 # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1362 # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
binietoglou@19 1363 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1364 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1365
volker@16 1366 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1367 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1368 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1369 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1370 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1371
binietoglou@19 1372 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1373 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1374 ATF1 = ATF[0]
volker@16 1375 ATF2 = ATF[1]
volker@16 1376 ATF3 = ATF[2]
volker@16 1377 ATF4 = ATF[3]
volker@16 1378 ARF1 = ARF[0]
volker@16 1379 ARF2 = ARF[1]
volker@16 1380 ARF3 = ARF[2]
volker@16 1381 ARF4 = ARF[3]
ulalume3@0 1382
volker@16 1383 # rotated AinF by epsilon
binietoglou@19 1384 ATF2e = C2e * ATF[1] + S2e * ATF[2]
binietoglou@19 1385 ATF3e = C2e * ATF[2] - S2e * ATF[1]
binietoglou@19 1386 ARF2e = C2e * ARF[1] + S2e * ARF[2]
binietoglou@19 1387 ARF3e = C2e * ARF[2] - S2e * ARF[1]
ulalume3@0 1388
binietoglou@19 1389 ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4])
binietoglou@19 1390 ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4])
ulalume3@0 1391
binietoglou@19 1392 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1393 UinEe = C2e * UinE - S2e * QinE
ulalume3@0 1394
volker@16 1395 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
volker@16 1396 IinF = IinE
binietoglou@19 1397 QinF = aCal * QinE
binietoglou@19 1398 UinF = -aCal * UinE
binietoglou@19 1399 VinF = (1. - 2. * aCal) * VinE
ulalume3@0 1400
volker@16 1401 IinFo = IinE
volker@16 1402 QinFo = 0.
volker@16 1403 UinFo = 0.
volker@16 1404 VinFo = VinE
ulalume3@0 1405
volker@16 1406 IinFa = 0.
volker@16 1407 QinFa = QinE
volker@16 1408 UinFa = -UinE
binietoglou@19 1409 VinFa = -2. * VinE
ulalume3@0 1410
volker@16 1411 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
binietoglou@19 1412 QinFe = C2e * QinF + S2e * UinF
binietoglou@19 1413 UinFe = C2e * UinF - S2e * QinF
binietoglou@19 1414 QinFoe = C2e * QinFo + S2e * UinFo
binietoglou@19 1415 UinFoe = C2e * UinFo - S2e * QinFo
binietoglou@19 1416 QinFae = C2e * QinFa + S2e * UinFa
binietoglou@19 1417 UinFae = C2e * UinFa - S2e * QinFa
ulalume3@0 1418
volker@16 1419 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1420 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
binietoglou@19 1421 AT = ATF1 * IinF + ATF4 * h * VinF
binietoglou@19 1422 BT = ATF3e * QinF - ATF2e * h * UinF
binietoglou@19 1423 AR = ARF1 * IinF + ARF4 * h * VinF
binietoglou@19 1424 BR = ARF3e * QinF - ARF2e * h * UinF
ulalume3@0 1425
volker@23 1426 # Correction parameters for normal measurements; they are independent of LDR
volker@16 1427 if (not RotationErrorEpsilonForNormalMeasurements):
binietoglou@19 1428 GT = ATF1 * IinE + ATF4 * VinE
binietoglou@19 1429 GR = ARF1 * IinE + ARF4 * VinE
binietoglou@19 1430 HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE
binietoglou@19 1431 HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE
volker@16 1432 else:
binietoglou@19 1433 GT = ATF1 * IinE + ATF4 * h * VinE
binietoglou@19 1434 GR = ARF1 * IinE + ARF4 * h * VinE
binietoglou@19 1435 HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE
binietoglou@19 1436 HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE
ulalume3@0 1437
volker@16 1438 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
volker@16 1439 # p = +45°, m = -45°
binietoglou@19 1440 IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF])
binietoglou@19 1441 IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe])
ulalume3@0 1442
binietoglou@19 1443 AT = np.dot(ATFe, IF1e)
binietoglou@19 1444 AR = np.dot(ARFe, IF1e)
binietoglou@19 1445 BT = np.dot(ATFe, IF2e)
binietoglou@19 1446 BR = np.dot(ARFe, IF2e)
ulalume3@0 1447
volker@23 1448 # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
binietoglou@19 1449 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1450 IS1 = np.array([IinE, 0, 0, VinE])
binietoglou@19 1451 IS2 = np.array([0, QinE, -UinE, -2 * VinE])
ulalume3@0 1452
binietoglou@19 1453 GT = np.dot(ATF, IS1)
binietoglou@19 1454 GR = np.dot(ARF, IS1)
binietoglou@19 1455 HT = np.dot(ATF, IS2)
binietoglou@19 1456 HR = np.dot(ARF, IS2)
volker@16 1457 else:
binietoglou@19 1458 IS1e = np.array(
binietoglou@19 1459 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1460 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1461 IS2e = np.array(
binietoglou@19 1462 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1463 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1464 GT = np.dot(ATFe, IS1e)
binietoglou@19 1465 GR = np.dot(ARFe, IS1e)
binietoglou@19 1466 HT = np.dot(ATFe, IS2e)
binietoglou@19 1467 HR = np.dot(ARFe, IS2e)
ulalume3@0 1468
volker@16 1469 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1470 # p = +22.5°, m = -22.5°
binietoglou@19 1471 IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe,
binietoglou@19 1472 (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF,
binietoglou@19 1473 -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF])
binietoglou@19 1474 IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF,
binietoglou@19 1475 sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe])
ulalume3@0 1476
binietoglou@19 1477 AT = np.dot(ATFe, IF1e)
binietoglou@19 1478 AR = np.dot(ARFe, IF1e)
binietoglou@19 1479 BT = np.dot(ATFe, IF2e)
binietoglou@19 1480 BR = np.dot(ARFe, IF2e)
ulalume3@0 1481
volker@23 1482 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 1483 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1484 # IS1 = np.array([IinE,0,0,VinE])
binietoglou@19 1485 # IS2 = np.array([0,QinE,-UinE,-2*VinE])
binietoglou@19 1486 IS1 = np.array([IinFo, 0, 0, VinFo])
binietoglou@19 1487 IS2 = np.array([0, QinFa, UinFa, VinFa])
binietoglou@19 1488 GT = np.dot(ATF, IS1)
binietoglou@19 1489 GR = np.dot(ARF, IS1)
binietoglou@19 1490 HT = np.dot(ATF, IS2)
binietoglou@19 1491 HR = np.dot(ARF, IS2)
volker@16 1492 else:
binietoglou@19 1493 # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE])
binietoglou@19 1494 # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)])
binietoglou@19 1495 IS1e = np.array(
binietoglou@19 1496 [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo),
binietoglou@19 1497 -ZiC * (SinC * UinFoe - CosC * VinFo)])
binietoglou@19 1498 IS2e = np.array(
binietoglou@19 1499 [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa),
binietoglou@19 1500 -ZiC * (SinC * UinFae - CosC * VinFa)])
binietoglou@19 1501 GT = np.dot(ATFe, IS1e)
binietoglou@19 1502 GR = np.dot(ARFe, IS1e)
binietoglou@19 1503 HT = np.dot(ATFe, IS2e)
binietoglou@19 1504 HR = np.dot(ARFe, IS2e)
ulalume3@0 1505
ulalume3@0 1506
volker@16 1507 else:
volker@16 1508 print('Calibrator not implemented yet')
volker@16 1509 sys.exit()
ulalume3@0 1510
volker@16 1511 elif LocC == 2: # C behind emitter optics Eq.57
binietoglou@19 1512 # print("Calibrator location not implemented yet")
binietoglou@19 1513 S2e = np.sin(np.deg2rad(2 * RotC))
binietoglou@19 1514 C2e = np.cos(np.deg2rad(2 * RotC))
ulalume3@0 1515
volker@16 1516 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
binietoglou@19 1517 AF1 = np.array([1, C2g * DiO, S2g * DiO, 0])
binietoglou@19 1518 AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO])
binietoglou@19 1519 AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO])
binietoglou@19 1520 AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO])
ulalume3@0 1521
binietoglou@19 1522 ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4)
binietoglou@19 1523 ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4)
volker@16 1524 ATF1 = ATF[0]
volker@16 1525 ATF2 = ATF[1]
volker@16 1526 ATF3 = ATF[2]
volker@16 1527 ATF4 = ATF[3]
volker@16 1528 ARF1 = ARF[0]
volker@16 1529 ARF2 = ARF[1]
volker@16 1530 ARF3 = ARF[2]
volker@16 1531 ARF4 = ARF[3]
ulalume3@0 1532
volker@16 1533 # AS with C behind the emitter --------------------------------------------
volker@16 1534 # terms without aCal
volker@16 1535 ATE1o, ARE1o = ATF1, ARF1
volker@16 1536 ATE2o, ARE2o = 0., 0.
volker@16 1537 ATE3o, ARE3o = 0., 0.
volker@16 1538 ATE4o, ARE4o = ATF4, ARF4
volker@16 1539 # terms with aCal
binietoglou@19 1540 ATE1a, ARE1a = 0., 0.
volker@16 1541 ATE2a, ARE2a = ATF2, ARF2
volker@16 1542 ATE3a, ARE3a = -ATF3, -ARF3
binietoglou@19 1543 ATE4a, ARE4a = -2 * ATF4, -2 * ARF4
volker@16 1544 # rotated AinEa by epsilon
binietoglou@19 1545 ATE2ae = C2e * ATF2 + S2e * ATF3
binietoglou@19 1546 ATE3ae = -S2e * ATF2 - C2e * ATF3
binietoglou@19 1547 ARE2ae = C2e * ARF2 + S2e * ARF3
binietoglou@19 1548 ARE3ae = -S2e * ARF2 - C2e * ARF3
volker@16 1549
volker@16 1550 ATE1 = ATE1o
binietoglou@19 1551 ATE2e = aCal * ATE2ae
binietoglou@19 1552 ATE3e = aCal * ATE3ae
binietoglou@19 1553 ATE4 = (1 - 2 * aCal) * ATF4
volker@16 1554 ARE1 = ARE1o
binietoglou@19 1555 ARE2e = aCal * ARE2ae
binietoglou@19 1556 ARE3e = aCal * ARE3ae
binietoglou@19 1557 ARE4 = (1 - 2 * aCal) * ARF4
ulalume3@0 1558
volker@16 1559 # rotated IinE
binietoglou@19 1560 QinEe = C2e * QinE + S2e * UinE
binietoglou@19 1561 UinEe = C2e * UinE - S2e * QinE
volker@16 1562
volker@16 1563 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal
binietoglou@19 1564 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
binietoglou@19 1565 AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE
binietoglou@19 1566 BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe)
binietoglou@19 1567 AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE
binietoglou@19 1568 BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe)
ulalume3@0 1569
volker@23 1570 # Correction parameters for normal measurements; they are independent of LDR
volker@16 1571 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1572 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1573 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1574 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1575 HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE
binietoglou@19 1576 HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE
volker@16 1577 else:
binietoglou@19 1578 GT = ATE1o * IinE + ATE4o * h * VinE
binietoglou@19 1579 GR = ARE1o * IinE + ARE4o * h * VinE
binietoglou@19 1580 HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE
binietoglou@19 1581 HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE
volker@16 1582
volker@16 1583 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
volker@16 1584 # p = +45°, m = -45°
binietoglou@19 1585 AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe
binietoglou@19 1586 BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE)
binietoglou@19 1587 AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe
binietoglou@19 1588 BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE)
ulalume3@0 1589
volker@23 1590 # Correction parameters for normal measurements; they are independent of LDR
volker@16 1591 if (not RotationErrorEpsilonForNormalMeasurements):
volker@16 1592 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
binietoglou@19 1593 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1594 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1595 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1596 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1597 else:
binietoglou@19 1598 D = IinE + DiC * QinEe
binietoglou@19 1599 A = DiC * IinE + QinEe
binietoglou@19 1600 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1601 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1602 GT = ATE1o * D + ATE4o * C
binietoglou@19 1603 GR = ARE1o * D + ARE4o * C
binietoglou@19 1604 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1605 HR = ARE2a * A + ARE3a * B + ARE4a * C
ulalume3@0 1606
volker@16 1607 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
volker@16 1608 # p = +22.5°, m = -22.5°
binietoglou@19 1609 IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe,
binietoglou@19 1610 (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE,
binietoglou@19 1611 -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE])
binietoglou@19 1612 IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE,
binietoglou@19 1613 sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe])
binietoglou@19 1614 ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4])
binietoglou@19 1615 AREe = np.array([ARE1, ARE2e, ARE3e, ARE4])
binietoglou@19 1616 AT = np.dot(ATEe, IE1e)
binietoglou@19 1617 AR = np.dot(AREe, IE1e)
binietoglou@19 1618 BT = np.dot(ATEe, IE2e)
binietoglou@19 1619 BR = np.dot(AREe, IE2e)
ulalume3@0 1620
volker@23 1621 # Correction parameters for normal measurements; they are independent of LDR
binietoglou@19 1622 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
binietoglou@19 1623 GT = ATE1o * IinE + ATE4o * VinE
binietoglou@19 1624 GR = ARE1o * IinE + ARE4o * VinE
binietoglou@19 1625 HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE
binietoglou@19 1626 HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE
volker@16 1627 else:
binietoglou@19 1628 D = IinE + DiC * QinEe
binietoglou@19 1629 A = DiC * IinE + QinEe
binietoglou@19 1630 B = ZiC * (CosC * UinEe + SinC * VinE)
binietoglou@19 1631 C = -ZiC * (SinC * UinEe - CosC * VinE)
binietoglou@19 1632 GT = ATE1o * D + ATE4o * C
binietoglou@19 1633 GR = ARE1o * D + ARE4o * C
binietoglou@19 1634 HT = ATE2a * A + ATE3a * B + ATE4a * C
binietoglou@19 1635 HR = ARE2a * A + ARE3a * B + ARE4a * C
volker@16 1636
ulalume3@0 1637 else:
volker@16 1638 print('Calibrator not implemented yet')
volker@16 1639 sys.exit()
ulalume3@0 1640
volker@16 1641 # Calibration signals with aCal => Determination of the correction K of the real calibration factor
binietoglou@19 1642 IoutTp = TaT * TiT * TiO * TiE * (AT + BT)
binietoglou@19 1643 IoutTm = TaT * TiT * TiO * TiE * (AT - BT)
binietoglou@19 1644 IoutRp = TaR * TiR * TiO * TiE * (AR + BR)
binietoglou@19 1645 IoutRm = TaR * TiR * TiO * TiE * (AR - BR)
volker@16 1646 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
binietoglou@19 1647 # Eta = TiR/TiT # Eta = Eta*/K Eq. 84
binietoglou@19 1648 Etapx = IoutRp / IoutTp
binietoglou@19 1649 Etamx = IoutRm / IoutTm
binietoglou@19 1650 Etax = (Etapx * Etamx) ** 0.5
volker@16 1651 K = Etax / Eta0
binietoglou@19 1652 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km))
binietoglou@19 1653 # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km))
ulalume3@0 1654
volker@16 1655 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
binietoglou@19 1656 # Eta_test_p = (IoutRp/IoutTp)
binietoglou@19 1657 # Eta_test_m = (IoutRm/IoutTm)
binietoglou@19 1658 # Eta_test = (Eta_test_p*Eta_test_m)**0.5
volker@16 1659
volker@16 1660 # *************************************************************************
volker@16 1661 iLDR = -1
volker@16 1662 for LDRTrue in LDRrange:
volker@16 1663 iLDR = iLDR + 1
binietoglou@19 1664 atrue = (1 - LDRTrue) / (1 + LDRTrue)
volker@16 1665 # ----- Forward simulated signals and LDRsim with atrue; from input file
binietoglou@19 1666 It = TaT * TiT * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT)
binietoglou@19 1667 Ir = TaR * TiR * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR)
volker@16 1668
volker@16 1669 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
binietoglou@19 1670 LDRsim = Ir / It # simulated uncorrected LDR with Y from input file
volker@16 1671 '''
volker@16 1672 if Y == 1.:
volker@16 1673 LDRsimx = LDRsim
volker@16 1674 LDRsimx2 = LDRsim2
ulalume3@0 1675 else:
volker@16 1676 LDRsimx = 1./LDRsim
volker@16 1677 LDRsimx2 = 1./LDRsim2
volker@16 1678 '''
volker@16 1679 # ----- Backward correction
volker@21 1680 # Corrected LDRCorr with assumed true G0,H0,K0 from forward simulated (real) LDRsim (atrue)
binietoglou@19 1681 LDRCorr = (LDRsim * K0 / Etax * (GT0 + HT0) - (GR0 + HR0)) / (
binietoglou@19 1682 (GR0 - HR0) - LDRsim * K0 / Etax * (GT0 - HT0))
volker@21 1683 '''
volker@16 1684 # -- F11corr from It and Ir and calibration EtaX
volker@16 1685 Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1"
binietoglou@19 1686 F11corr = 1 / (TiO * TiE) * (
volker@21 1687 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0.
volker@21 1688 '''
volker@21 1689 # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue)
volker@21 1690 Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1"
volker@21 1691 F11corr = 1 / (TiO * TiE) * (
volker@21 1692 (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0.
ulalume3@0 1693
binietoglou@19 1694 # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)"
binietoglou@19 1695 # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64)
volker@16 1696
volker@16 1697 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs)
binietoglou@19 1698 # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1"
binietoglou@19 1699 # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0))
volker@16 1700 # !!! see below line 1673ff
volker@16 1701
binietoglou@19 1702 aF11corr[iLDR, iN] = F11corr
binietoglou@19 1703 aA[iLDR, iN] = LDRCorr
ulalume3@0 1704
binietoglou@19 1705 aX[0, iN] = GR
binietoglou@19 1706 aX[1, iN] = GT
binietoglou@19 1707 aX[2, iN] = HR
binietoglou@19 1708 aX[3, iN] = HT
binietoglou@19 1709 aX[4, iN] = K
volker@16 1710
volker@16 1711 aLDRCal[iN] = iLDRCal
volker@23 1712 aDOLP[iN] = iDOLP
volker@16 1713 aERaT[iN] = iERaT
volker@16 1714 aERaR[iN] = iERaR
volker@16 1715 aRotaT[iN] = iRotaT
volker@16 1716 aRotaR[iN] = iRotaR
volker@16 1717 aRetT[iN] = iRetT
volker@16 1718 aRetR[iN] = iRetR
volker@16 1719
volker@16 1720 aRotL[iN] = iRotL
volker@16 1721 aRotE[iN] = iRotE
volker@16 1722 aRetE[iN] = iRetE
volker@16 1723 aRotO[iN] = iRotO
volker@16 1724 aRetO[iN] = iRetO
volker@16 1725 aRotC[iN] = iRotC
volker@16 1726 aRetC[iN] = iRetC
volker@16 1727 aDiO[iN] = iDiO
volker@16 1728 aDiE[iN] = iDiE
volker@16 1729 aDiC[iN] = iDiC
volker@16 1730 aTP[iN] = iTP
volker@16 1731 aTS[iN] = iTS
volker@16 1732 aRP[iN] = iRP
volker@16 1733 aRS[iN] = iRS
ulalume3@0 1734
volker@16 1735 # --- END loop
volker@16 1736 btime = clock()
binietoglou@19 1737 print("\r done in ", "{0:5.0f}".format(btime - atime), "sec") # , end="\r")
volker@16 1738
volker@16 1739 # --- Plot -----------------------------------------------------------------
volker@16 1740 if (sns_loaded):
volker@16 1741 sns.set_style("whitegrid")
volker@16 1742 sns.set_palette("bright", 6)
ulalume3@0 1743
volker@16 1744 '''
volker@16 1745 fig2 = plt.figure()
volker@16 1746 plt.plot(aA[2,:],'b.')
volker@16 1747 plt.plot(aA[3,:],'r.')
volker@16 1748 plt.plot(aA[4,:],'g.')
volker@16 1749 #plt.plot(aA[6,:],'c.')
volker@16 1750 plt.show
volker@16 1751 '''
binietoglou@19 1752
binietoglou@19 1753
volker@16 1754 # Plot LDR
volker@16 1755 def PlotSubHist(aVar, aX, X0, daX, iaX, naX):
volker@16 1756 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1757 iLDR = -1
volker@16 1758 for LDRTrue in LDRrange:
volker@16 1759 iLDR = iLDR + 1
ulalume3@0 1760
binietoglou@19 1761 LDRmin[iLDR] = np.min(aA[iLDR, :])
binietoglou@19 1762 LDRmax[iLDR] = np.max(aA[iLDR, :])
binietoglou@19 1763 Rmin = LDRmin[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
binietoglou@19 1764 Rmax = LDRmax[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1765
binietoglou@19 1766 # plt.subplot(5,2,iLDR+1)
binietoglou@19 1767 plt.subplot(1, 5, iLDR + 1)
binietoglou@19 1768 (n, bins, patches) = plt.hist(aA[iLDR, :],
binietoglou@19 1769 bins=100, log=False,
binietoglou@19 1770 range=[Rmin, Rmax],
binietoglou@19 1771 alpha=0.5, normed=False, color='0.5', histtype='stepfilled')
ulalume3@0 1772
binietoglou@19 1773 for iaX in range(-naX, naX + 1):
binietoglou@19 1774 plt.hist(aA[iLDR, aX == iaX],
volker@16 1775 range=[Rmin, Rmax],
binietoglou@19 1776 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled',
binietoglou@19 1777 label=str(round(X0 + iaX * daX / naX, 5)))
volker@16 1778
volker@16 1779 if (iLDR == 2): plt.legend()
volker@16 1780
volker@16 1781 plt.tick_params(axis='both', labelsize=9)
volker@16 1782 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1783
binietoglou@19 1784 # plt.title(LID + ' ' + aVar, fontsize=18)
binietoglou@19 1785 # plt.ylabel('frequency', fontsize=10)
binietoglou@19 1786 # plt.xlabel('LDRcorr', fontsize=10)
binietoglou@19 1787 # fig.tight_layout()
binietoglou@19 1788 fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
binietoglou@19 1789 # plt.show()
binietoglou@19 1790 # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
binietoglou@19 1791 # plt.close
volker@16 1792 return
ulalume3@0 1793
binietoglou@19 1794
volker@23 1795 if (nDOLP > 0): PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP)
volker@16 1796 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1797 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1798 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1799 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1800 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1801 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1802 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1803 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1804 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1805 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1806 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1807 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1808 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1809 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1810 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1811 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1812 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1813 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1814 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1815 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1816 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1817
volker@16 1818 plt.show()
volker@16 1819 plt.close
volker@21 1820
volker@16 1821 '''
volker@21 1822 # --- Plot F11 histograms
volker@16 1823 print()
volker@16 1824 print(" ############################################################################## ")
volker@16 1825 print(Text1)
volker@16 1826 print()
volker@16 1827
volker@16 1828 iLDR = 5
volker@16 1829 for LDRTrue in LDRrange:
volker@16 1830 iLDR = iLDR - 1
volker@21 1831 #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0
volker@21 1832 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0
volker@16 1833 # Plot F11
volker@16 1834 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX):
volker@16 1835 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
volker@16 1836 iLDR = -1
volker@16 1837 for LDRTrue in LDRrange:
volker@16 1838 iLDR = iLDR + 1
volker@16 1839
volker@16 1840 #F11min[iLDR] = np.min(aF11corr[iLDR,:])
volker@16 1841 #F11max[iLDR] = np.max(aF11corr[iLDR,:])
volker@16 1842 #Rmin = F11min[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
volker@16 1843 #Rmax = F11max[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
volker@16 1844
volker@16 1845 #Rmin = 0.8
volker@16 1846 #Rmax = 1.2
ulalume3@0 1847
volker@16 1848 #plt.subplot(5,2,iLDR+1)
volker@16 1849 plt.subplot(1,5,iLDR+1)
volker@16 1850 (n, bins, patches) = plt.hist(aF11corr[iLDR,:],
volker@16 1851 bins=100, log=False,
volker@16 1852 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled')
volker@16 1853
volker@16 1854 for iaX in range(-naX,naX+1):
volker@16 1855 plt.hist(aF11corr[iLDR,aX == iaX],
volker@16 1856 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5)))
volker@16 1857
volker@16 1858 if (iLDR == 2): plt.legend()
volker@16 1859
volker@16 1860 plt.tick_params(axis='both', labelsize=9)
volker@16 1861 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1862
volker@16 1863 #plt.title(LID + ' ' + aVar, fontsize=18)
volker@16 1864 #plt.ylabel('frequency', fontsize=10)
volker@16 1865 #plt.xlabel('LDRcorr', fontsize=10)
volker@16 1866 #fig.tight_layout()
volker@16 1867 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
volker@16 1868 #plt.show()
volker@16 1869 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
volker@16 1870 #plt.close
volker@16 1871 return
ulalume3@0 1872
volker@23 1873 if (nDOLP > 0): PlotSubHistF11("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP)
volker@16 1874 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
volker@16 1875 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
volker@16 1876 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
volker@16 1877 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
volker@16 1878 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
volker@16 1879 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
volker@16 1880 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
volker@16 1881 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
volker@16 1882 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
volker@16 1883 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
volker@16 1884 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP)
volker@16 1885 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS)
volker@16 1886 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP)
volker@16 1887 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS)
volker@16 1888 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
volker@16 1889 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
volker@16 1890 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
volker@16 1891 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
volker@16 1892 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
volker@16 1893 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
volker@16 1894 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1895
volker@16 1896 plt.show()
volker@16 1897 plt.close
volker@21 1898
volker@16 1899 '''
volker@16 1900 '''
volker@16 1901 # only histogram
volker@16 1902 #print("******************* " + aVar + " *******************")
volker@16 1903 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10))
ulalume3@0 1904 iLDR = -1
ulalume3@0 1905 for LDRTrue in LDRrange:
ulalume3@0 1906 iLDR = iLDR + 1
ulalume3@0 1907 LDRmin[iLDR] = np.min(aA[iLDR,:])
ulalume3@0 1908 LDRmax[iLDR] = np.max(aA[iLDR,:])
volker@16 1909 Rmin = np.min(aA[iLDR,:]) * 0.999
volker@16 1910 Rmax = np.max(aA[iLDR,:]) * 1.001
volker@16 1911 plt.subplot(5,2,iLDR+1)
ulalume3@0 1912 (n, bins, patches) = plt.hist(aA[iLDR,:],
ulalume3@0 1913 range=[Rmin, Rmax],
volker@16 1914 bins=200, log=False, alpha=0.2, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1915 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1916 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
volker@16 1917 plt.show()
volker@16 1918 plt.close
volker@21 1919 # --- End of Plot F11 histograms
volker@16 1920 '''
ulalume3@0 1921
volker@16 1922 # --- Plot LDRmin, LDRmax
volker@16 1923 fig2 = plt.figure()
binietoglou@19 1924 plt.plot(LDRrange, LDRmax - LDRrange, linewidth=2.0, color='b')
binietoglou@19 1925 plt.plot(LDRrange, LDRmin - LDRrange, linewidth=2.0, color='g')
ulalume3@0 1926
volker@16 1927 plt.xlabel('LDRtrue', fontsize=18)
volker@16 1928 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14)
volker@16 1929 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18)
binietoglou@19 1930 # plt.ylimit(-0.07, 0.07)
volker@16 1931 plt.show()
volker@16 1932 plt.close
ulalume3@0 1933
volker@16 1934 # --- Save LDRmin, LDRmax to file
volker@16 1935 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python
volker@16 1936 with open('output_files\LDR_min_max_' + LID + '.dat', 'w') as f:
volker@16 1937 with redirect_stdout(f):
volker@16 1938 print(LID)
volker@16 1939 print("LDRtrue, LDRmin, LDRmax")
volker@16 1940 for i in range(len(LDRrange)):
volker@16 1941 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrange[i], LDRmin[i], LDRmax[i]))
ulalume3@0 1942
volker@16 1943 '''
volker@16 1944 # --- Plot K over LDRCal
volker@16 1945 fig3 = plt.figure()
volker@16 1946 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aX[4,:], linewidth=2.0, color='b')
ulalume3@0 1947
volker@16 1948 plt.xlabel('LDRCal', fontsize=18)
volker@16 1949 plt.ylabel('K', fontsize=14)
volker@16 1950 plt.title(LID, fontsize=18)
volker@16 1951 plt.show()
volker@16 1952 plt.close
volker@16 1953 '''
ulalume3@0 1954
ulalume3@0 1955 # Additional plot routines ======>
ulalume3@0 1956 '''
ulalume3@0 1957 #******************************************************************************
ulalume3@0 1958 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel)
ulalume3@0 1959 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1960 LDRCorra = np.arange(1.,100.)
ulalume3@0 1961 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1962 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT))
ulalume3@0 1963 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1964 #
ulalume3@0 1965 #fig = plt.figure()
ulalume3@0 1966 plt.plot(LDRa,LDRCorra-LDRa)
ulalume3@0 1967 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1968 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16)
ulalume3@0 1969 plt.xlabel('LDR', fontsize=18)
ulalume3@0 1970 plt.ylabel('LDRCorr - LDR', fontsize=16)
ulalume3@0 1971 #plt.savefig('test.png')
ulalume3@0 1972 #
ulalume3@0 1973 '''
ulalume3@0 1974 '''
ulalume3@0 1975 #******************************************************************************
ulalume3@0 1976 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue
ulalume3@0 1977 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1978 LDRsima = np.arange(1.,100.)
ulalume3@0 1979
ulalume3@0 1980 atruea = (1.-LDRa)/(1+LDRa)
ulalume3@0 1981 Ita = TiT*TiO*IinL*(GT+atruea*HT)
ulalume3@0 1982 Ira = TiR*TiO*IinL*(GR+atruea*HR)
ulalume3@0 1983 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file
ulalume3@0 1984 if Y == -1.: LDRsima = 1./LDRsima
ulalume3@0 1985 #
ulalume3@0 1986 #fig = plt.figure()
ulalume3@0 1987 plt.plot(LDRa,LDRsima)
ulalume3@0 1988 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1989 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10)
ulalume3@0 1990 plt.xlabel('LDRtrue', fontsize=18)
ulalume3@0 1991 plt.ylabel('LDRsim', fontsize=16)
ulalume3@0 1992 #plt.savefig('test.png')
ulalume3@0 1993 #
ulalume3@0 1994 '''

mercurial