lidar_correction_ghk.py

Mon, 14 Nov 2016 15:27:23 +0100

author
Volker Freudenthaler <volker.freudenthaler@lmu.de>
date
Mon, 14 Nov 2016 15:27:23 +0100
changeset 7
e57ad6a684d1
parent 5
9d5aa2422c02
child 9
349178d9e658
permissions
-rw-r--r--

test2

ulalume3@0 1 # -*- coding: utf-8 -*-
ulalume3@0 2 """
ulalume3@0 3 Copyright 2016 Volker Freudenthaler
ulalume3@0 4
ulalume3@0 5 Licensed under the EUPL, Version 1.1 only (the "Licence").
ulalume3@0 6
ulalume3@0 7 You may not use this work except in compliance with the Licence.
ulalume3@0 8 A copy of the licence is distributed with the code. Alternatively, you may obtain
ulalume3@0 9 a copy of the Licence at:
ulalume3@0 10
ulalume3@0 11 https://joinup.ec.europa.eu/community/eupl/og_page/eupl
ulalume3@0 12
ulalume3@0 13 Unless required by applicable law or agreed to in writing, software distributed
ulalume3@0 14 under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS
ulalume3@0 15 OF ANY KIND, either express or implied. See the Licence for the specific language governing
ulalume3@0 16 permissions and limitations under the Licence.
ulalume3@0 17
ulalume3@0 18 Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf
ulalume3@0 19 With equations code from Appendix C
volker@7 20 Python 3.4.2 ,,
ulalume3@0 21 """
ulalume3@0 22 #!/usr/bin/env python3
ulalume3@0 23 from __future__ import print_function
ulalume3@0 24 #import math
ulalume3@0 25 import numpy as np
ulalume3@0 26 import sys
ulalume3@0 27 import os
ulalume3@0 28
ulalume3@0 29 #import seaborn as sns
ulalume3@0 30 import matplotlib.pyplot as plt
ulalume3@0 31 from time import clock
ulalume3@0 32
ulalume3@0 33 #from matplotlib.backends.backend_pdf import PdfPages
ulalume3@0 34 #pdffile = '{}.pdf'.format('path')
ulalume3@0 35 #pp = PdfPages(pdffile)
ulalume3@0 36 ## pp.savefig can be called multiple times to save to multiple pages
ulalume3@0 37 #pp.savefig()
ulalume3@0 38 #pp.close()
ulalume3@0 39
ulalume3@0 40 from contextlib import contextmanager
ulalume3@0 41 @contextmanager
ulalume3@0 42 def redirect_stdout(new_target):
ulalume3@0 43 old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout
ulalume3@0 44 try:
ulalume3@0 45 yield new_target # run some code with the replaced stdout
ulalume3@0 46 finally:
ulalume3@0 47 sys.stdout.flush()
ulalume3@0 48 sys.stdout = old_target # restore to the previous value
ulalume3@0 49 '''
ulalume3@0 50 real_raw_input = vars(__builtins__).get('raw_input',input)
ulalume3@0 51 '''
ulalume3@0 52 try:
ulalume3@0 53 import __builtin__
ulalume3@0 54 input = getattr(__builtin__, 'raw_input')
ulalume3@0 55 except (ImportError, AttributeError):
ulalume3@0 56 pass
ulalume3@0 57
ulalume3@0 58 from distutils.util import strtobool
ulalume3@0 59 def user_yes_no_query(question):
ulalume3@0 60 sys.stdout.write('%s [y/n]\n' % question)
ulalume3@0 61 while True:
ulalume3@0 62 try:
ulalume3@0 63 return strtobool(input().lower())
ulalume3@0 64 except ValueError:
ulalume3@0 65 sys.stdout.write('Please respond with \'y\' or \'n\'.\n')
ulalume3@0 66
ulalume3@0 67 #if user_yes_no_query('want to exit?') == 1: sys.exit()
ulalume3@0 68
ulalume3@0 69 '''
ulalume3@0 70 ## {{{ http://code.activestate.com/recipes/577058/ (r2)
ulalume3@0 71 def query_yes_no(question, default="yes"):
ulalume3@0 72 valid = {"yes":"yes", "y":"yes", "ye":"yes",
ulalume3@0 73 "no":"no", "n":"no"}
ulalume3@0 74 if default == None:
ulalume3@0 75 prompt = " [y/n] "
ulalume3@0 76 elif default == "yes":
ulalume3@0 77 prompt = " [Y/n] "
ulalume3@0 78 elif default == "no":
ulalume3@0 79 prompt = " [y/N] "
ulalume3@0 80 else:
ulalume3@0 81 raise ValueError("invalid default answer: '%s'" % default)
ulalume3@0 82
ulalume3@0 83 while 1:
ulalume3@0 84 sys.stdout.write(question + prompt)
ulalume3@0 85 choice = input().lower()
ulalume3@0 86 if default is not None and choice == '':
ulalume3@0 87 return default
ulalume3@0 88 elif choice in valid.keys():
ulalume3@0 89 return valid[choice]
ulalume3@0 90 else:
ulalume3@0 91 sys.stdout.write("Please respond with 'yes' or 'no' "\
ulalume3@0 92 "(or 'y' or 'n').\n")
ulalume3@0 93 ## end of http://code.activestate.com/recipes/577058/ }}}
ulalume3@0 94 '''
ulalume3@0 95 abspath = os.path.abspath(__file__)
ulalume3@0 96 dname = os.path.dirname(abspath)
ulalume3@0 97 fname = os.path.basename(abspath)
ulalume3@0 98 os.chdir(dname)
ulalume3@0 99
ulalume3@0 100 #PrintToOutputFile = True
ulalume3@0 101
ulalume3@0 102 sqr05 = 0.5**0.5
ulalume3@0 103
ulalume3@0 104 # ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below
ulalume3@0 105 LID = "internal"
ulalume3@0 106 EID = "internal"
ulalume3@0 107 # --- IL Laser IL and +-Uncertainty
ulalume3@0 108 bL = 1. #degree of linear polarization; default 1
ulalume3@0 109 RotL, dRotL, nRotL = 0.0, 0.0, 1 #alpha; rotation of laser polarization in degrees; default 0
ulalume3@0 110 # --- ME Emitter and +-Uncertainty
ulalume3@0 111 DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation
ulalume3@0 112 TiE = 1. # Unpolarized transmittance
ulalume3@0 113 RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees
ulalume3@0 114 RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees
ulalume3@0 115 # --- MO Receiver Optics including telescope
ulalume3@0 116 DiO, dDiO, nDiO = -0.055, 0.003, 1
ulalume3@0 117 TiO = 0.9
ulalume3@0 118 RetO, dRetO, nRetO = 0., 180.0, 2
ulalume3@0 119 RotO, dRotO, nRotO = 0., 0.1, 1 #gamma
ulalume3@0 120 # --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty
ulalume3@0 121 TP, dTP, nTP = 0.98, 0.02, 1
ulalume3@0 122 TS, dTS, nTS = 0.001, 0.001, 1
ulalume3@0 123 TiT = 0.5 * (TP + TS)
ulalume3@0 124 DiT = (TP-TS)/(TP+TS)
ulalume3@0 125 # PolFilter
ulalume3@0 126 RetT, dRetT, nRetT = 0., 180., 0
ulalume3@0 127 ERaT, dERaT, nERaT = 0.001, 0.001, 1
ulalume3@0 128 RotaT, dRotaT, nRotaT = 0., 3., 1
ulalume3@0 129 DaT = (1-ERaT)/(1+ERaT)
ulalume3@0 130 TaT = 0.5*(1+ERaT)
ulalume3@0 131 # --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty
ulalume3@0 132 RS, dRS, nRS = 1 - TS, 0., 0
ulalume3@0 133 RP, dRP, nRP = 1 - TP, 0., 0
ulalume3@0 134 TiR = 0.5 * (RP + RS)
ulalume3@0 135 DiR = (RP-RS)/(RP+RS)
ulalume3@0 136 # PolFilter
ulalume3@0 137 RetR, dRetR, nRetR = 0., 180., 0
ulalume3@0 138 ERaR, dERaR, nERaR = 0.001, 0.001, 1
ulalume3@0 139 RotaR,dRotaR,nRotaR = 90., 3., 1
ulalume3@0 140 DaR = (1-ERaR)/(1+ERaR)
ulalume3@0 141 TaR = 0.5*(1+ERaR)
ulalume3@0 142
ulalume3@0 143 # Parellel signal detected in the transmitted channel => Y = 1, or in the reflected channel => Y = -1
ulalume3@0 144 Y = -1.
ulalume3@0 145
ulalume3@0 146 # Calibrator = type defined by matrix values
ulalume3@0 147 LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4
ulalume3@0 148
ulalume3@0 149 TypeC = 3 # linear polarizer calibrator
ulalume3@0 150 # example with extinction ratio 0.001
ulalume3@0 151 DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0
ulalume3@0 152 TiC = 0.5 # ideal 0.5
ulalume3@0 153 RetC, dRetC, nRetC = 0., 0., 0
ulalume3@0 154 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator offset epsilon
ulalume3@0 155 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
ulalume3@0 156
ulalume3@0 157 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
ulalume3@0 158 RotationErrorEpsilonForNormalMeasurements = True
ulalume3@0 159
ulalume3@0 160 # LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess)
ulalume3@0 161 LDRCal0,dLDRCal,nLDRCal= 0.25, 0.04, 1
ulalume3@0 162 LDRCal = LDRCal0
ulalume3@0 163 # measured LDRm will be corrected with calculated parameters
ulalume3@0 164 LDRmeas = 0.015
ulalume3@0 165 # LDRtrue for simulation of measurement => LDRsim
ulalume3@0 166 LDRtrue = 0.5
ulalume3@0 167 LDRtrue2 = 0.004
ulalume3@0 168
ulalume3@0 169 # Initialize other values to 0
ulalume3@0 170 ER, nER, dER = 0.001, 0, 0.001
ulalume3@0 171 K = 0.
ulalume3@0 172 Km = 0.
ulalume3@0 173 Kp = 0.
ulalume3@0 174 LDRcorr = 0.
ulalume3@0 175 Eta = 0.
ulalume3@0 176 Ir = 0.
ulalume3@0 177 It = 0.
ulalume3@0 178 h = 1.
ulalume3@0 179
ulalume3@0 180 Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS']
ulalume3@0 181 Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer', 'real HWP +-22.5°']
ulalume3@0 182 dY = ['reflected channel', '', 'transmitted channel']
ulalume3@0 183
ulalume3@0 184 # end of initial definition of variables
ulalume3@0 185 # *******************************************************************************************************************************
ulalume3@0 186
ulalume3@0 187 # --- Read actual lidar system parameters from ./optic_input.py (must be in the same directory)
ulalume3@0 188
ulalume3@0 189 #InputFile = 'optic_input_ver6e_POLIS_355.py'
ulalume3@0 190 #InputFile = 'optic_input_ver6e_POLIS_355_JA.py'
ulalume3@0 191 #InputFile = 'optic_input_ver6c_POLIS_532.py'
ulalume3@0 192 #InputFile = 'optic_input_ver6e_POLIS_532.py'
ulalume3@0 193 #InputFile = 'optic_input_ver8c_POLIS_532.py'
ulalume3@0 194 #InputFile = 'optic_input_ver6e_MUSA.py'
ulalume3@0 195 #InputFile = 'optic_input_ver6e_MUSA_JA.py'
ulalume3@0 196 #InputFile = 'optic_input_ver6e_PollyXTSea.py'
ulalume3@0 197 #InputFile = 'optic_input_ver6e_PollyXTSea_JA.py'
ulalume3@0 198 #InputFile = 'optic_input_ver6e_PollyXT_RALPH.py'
ulalume3@0 199 #InputFile = 'optic_input_ver8c_PollyXT_RALPH.py'
ulalume3@0 200 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_2.py'
ulalume3@0 201 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_3.py'
ulalume3@0 202 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_4.py'
ulalume3@0 203 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_5.py'
ulalume3@0 204 #InputFile = 'optic_input_ver8c_PollyXT_RALPH_6.py'
ulalume3@0 205 InputFile = 'optic_input_ver8c_PollyXT_RALPH_7.py'
ulalume3@0 206 #InputFile = 'optic_input_ver8a_MOHP_DPL_355.py'
ulalume3@0 207 #InputFile = 'optic_input_ver9_MOHP_DPL_355.py'
ulalume3@0 208 #InputFile = 'optic_input_ver6e_RALI.py'
ulalume3@0 209 #InputFile = 'optic_input_ver6e_RALI_JA.py'
ulalume3@0 210 #InputFile = 'optic_input_ver6e_RALI_new.py'
ulalume3@0 211 #InputFile = 'optic_input_ver6e_RALI_act.py'
ulalume3@0 212 #InputFile = 'optic_input_ver6e_MULHACEN.py'
ulalume3@0 213 #InputFile = 'optic_input_ver6e_MULHACEN_JA.py'
ulalume3@0 214 #InputFile = 'optic_input_ver6e-IPRAL.py'
ulalume3@0 215 #InputFile = 'optic_input_ver6e-IPRAL_JA.py'
ulalume3@0 216 #InputFile = 'optic_input_ver6e-LB21.py'
ulalume3@0 217 #InputFile = 'optic_input_ver6e-LB21_JA.py'
ulalume3@0 218 #InputFile = 'optic_input_ver6e_Bertha_b_355.py'
ulalume3@0 219 #InputFile = 'optic_input_ver6e_Bertha_b_532.py'
ulalume3@0 220 #InputFile = 'optic_input_ver6e_Bertha_b_1064.py'
ulalume3@0 221
ulalume3@0 222 '''
ulalume3@0 223 print("From ", dname)
ulalume3@0 224 print("Running ", fname)
ulalume3@0 225 print("Reading input file ", InputFile, " for")
ulalume3@0 226 '''
ulalume3@0 227 input_path = os.path.join('.', 'system_settings', InputFile)
ulalume3@0 228 # this works with Python 2 - and 3?
ulalume3@0 229 exec(open(input_path).read(), globals())
ulalume3@0 230 # end of read actual system parameters
ulalume3@0 231
ulalume3@0 232 # --- Manual Parameter Change ---
ulalume3@0 233 # (use for quick parameter changes without changing the input file )
ulalume3@0 234 #DiO = 0.
ulalume3@0 235 #LDRtrue = 0.45
ulalume3@0 236 #LDRtrue2 = 0.004
ulalume3@0 237 #Y = -1
ulalume3@0 238 #LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
ulalume3@0 239 ##TypeC = 6 Don't change the TypeC here
ulalume3@0 240 #RotationErrorEpsilonForNormalMeasurements = True
ulalume3@0 241 #LDRCal = 0.25
ulalume3@0 242 #bL = 0.8
ulalume3@0 243 ## --- Errors
ulalume3@0 244 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
ulalume3@0 245
ulalume3@0 246 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
ulalume3@0 247 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
ulalume3@0 248 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
ulalume3@0 249
ulalume3@0 250 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
ulalume3@0 251 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
ulalume3@0 252 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
ulalume3@0 253
ulalume3@0 254 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
ulalume3@0 255 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
ulalume3@0 256 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
ulalume3@0 257
ulalume3@0 258 TP0, dTP, nTP = TP, dTP, nTP
ulalume3@0 259 TS0, dTS, nTS = TS, dTS, nTS
ulalume3@0 260 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
ulalume3@0 261
ulalume3@0 262 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
ulalume3@0 263 RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT
ulalume3@0 264
ulalume3@0 265 RP0, dRP, nRP = RP, dRP, nRP
ulalume3@0 266 RS0, dRS, nRS = RS, dRS, nRS
ulalume3@0 267 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
ulalume3@0 268
ulalume3@0 269 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
ulalume3@0 270 RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR
ulalume3@0 271
ulalume3@0 272 LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal
ulalume3@0 273 #LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,0
ulalume3@0 274 # ---------- End of manual parameter change
ulalume3@0 275
ulalume3@0 276 RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0
ulalume3@0 277 TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0 , ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0
ulalume3@0 278 LDRCal = LDRCal0
ulalume3@0 279 DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0,0,0,0,0,0
ulalume3@0 280
ulalume3@0 281 TiT = 0.5 * (TP + TS)
ulalume3@0 282 DiT = (TP-TS)/(TP+TS)
ulalume3@0 283 ZiT = (1. - DiT**2)**0.5
ulalume3@0 284 TiR = 0.5 * (RP + RS)
ulalume3@0 285 DiR = (RP-RS)/(RP+RS)
ulalume3@0 286 ZiR = (1. - DiR**2)**0.5
ulalume3@0 287
ulalume3@0 288 # --------------------------------------------------------
ulalume3@0 289 def Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal):
ulalume3@0 290 # ---- Do the calculations of bra-ket vectors
ulalume3@0 291 h = -1. if TypeC == 2 else 1
ulalume3@0 292 # from input file: assumed LDRCal for calibration measurements
ulalume3@0 293 aCal = (1.-LDRCal)/(1+LDRCal)
ulalume3@0 294 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
ulalume3@0 295 #ameas = (1.-LDRmeas)/(1+LDRmeas)
ulalume3@0 296 atrue = (1.-LDRtrue)/(1+LDRtrue)
ulalume3@0 297 #atrue2 = (1.-LDRtrue2)/(1+LDRtrue2)
ulalume3@0 298
ulalume3@0 299 # angles of emitter and laser and calibrator and receiver optics
ulalume3@0 300 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
ulalume3@0 301 S2a = np.sin(2*np.deg2rad(RotL))
ulalume3@0 302 C2a = np.cos(2*np.deg2rad(RotL))
ulalume3@0 303 S2b = np.sin(2*np.deg2rad(RotE))
ulalume3@0 304 C2b = np.cos(2*np.deg2rad(RotE))
ulalume3@0 305 S2ab = np.sin(np.deg2rad(2*RotL-2*RotE))
ulalume3@0 306 C2ab = np.cos(np.deg2rad(2*RotL-2*RotE))
ulalume3@0 307 S2g = np.sin(np.deg2rad(2*RotO))
ulalume3@0 308 C2g = np.cos(np.deg2rad(2*RotO))
ulalume3@0 309
ulalume3@0 310 # Laser with Degree of linear polarization DOLP = bL
ulalume3@0 311 IinL = 1.
ulalume3@0 312 QinL = bL
ulalume3@0 313 UinL = 0.
ulalume3@0 314 VinL = (1. - bL**2)**0.5
ulalume3@0 315
ulalume3@0 316 # Stokes Input Vector rotation Eq. E.4
ulalume3@0 317 A = C2a*QinL - S2a*UinL
ulalume3@0 318 B = S2a*QinL + C2a*UinL
ulalume3@0 319 # Stokes Input Vector rotation Eq. E.9
ulalume3@0 320 C = C2ab*QinL - S2ab*UinL
ulalume3@0 321 D = S2ab*QinL + C2ab*UinL
ulalume3@0 322
ulalume3@0 323 # emitter optics
ulalume3@0 324 CosE = np.cos(np.deg2rad(RetE))
ulalume3@0 325 SinE = np.sin(np.deg2rad(RetE))
ulalume3@0 326 ZiE = (1. - DiE**2)**0.5
ulalume3@0 327 WiE = (1. - ZiE*CosE)
ulalume3@0 328
ulalume3@0 329 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
ulalume3@0 330 # b = beta
ulalume3@0 331 IinE = (IinL + DiE*C)
ulalume3@0 332 QinE = (C2b*DiE*IinL + A + S2b*(WiE*D - ZiE*SinE*VinL))
ulalume3@0 333 UinE = (S2b*DiE*IinL + B - C2b*(WiE*D - ZiE*SinE*VinL))
ulalume3@0 334 VinE = (-ZiE*SinE*D + ZiE*CosE*VinL)
ulalume3@0 335
ulalume3@0 336 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 337 IinF = IinE
ulalume3@0 338 QinF = aCal*QinE
ulalume3@0 339 UinF = -aCal*UinE
ulalume3@0 340 VinF = (1.-2.*aCal)*VinE
ulalume3@0 341
ulalume3@0 342 # receiver optics
ulalume3@0 343 CosO = np.cos(np.deg2rad(RetO))
ulalume3@0 344 SinO = np.sin(np.deg2rad(RetO))
ulalume3@0 345 ZiO = (1. - DiO**2)**0.5
ulalume3@0 346 WiO = (1. - ZiO*CosO)
ulalume3@0 347
ulalume3@0 348 # calibrator
ulalume3@0 349 CosC = np.cos(np.deg2rad(RetC))
ulalume3@0 350 SinC = np.sin(np.deg2rad(RetC))
ulalume3@0 351 ZiC = (1. - DiC**2)**0.5
ulalume3@0 352 WiC = (1. - ZiC*CosC)
ulalume3@0 353
ulalume3@0 354 # Stokes Input Vector before the polarising beam splitter Eq. E.31
ulalume3@0 355 A = C2g*QinE - S2g*UinE
ulalume3@0 356 B = S2g*QinE + C2g*UinE
ulalume3@0 357
ulalume3@0 358 IinP = (IinE + DiO*aCal*A)
ulalume3@0 359 QinP = (C2g*DiO*IinE + aCal*QinE - S2g*(WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE))
ulalume3@0 360 UinP = (S2g*DiO*IinE - aCal*UinE + C2g*(WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE))
ulalume3@0 361 VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 362
ulalume3@0 363 #-------------------------
ulalume3@0 364 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
ulalume3@0 365 #F11sim = TiO*(IinE + DiO*atrue*A)/IinE
ulalume3@0 366 #-------------------------
ulalume3@0 367
ulalume3@0 368 # For PollyXT
ulalume3@0 369 # analyser
ulalume3@0 370 #RS = 1 - TS
ulalume3@0 371 #RP = 1 - TP
ulalume3@0 372
ulalume3@0 373 TiT = 0.5 * (TP + TS)
ulalume3@0 374 DiT = (TP-TS)/(TP+TS)
ulalume3@0 375 ZiT = (1. - DiT**2)**0.5
ulalume3@0 376 TiR = 0.5 * (RP + RS)
ulalume3@0 377 DiR = (RP-RS)/(RP+RS)
ulalume3@0 378 ZiR = (1. - DiR**2)**0.5
ulalume3@0 379 CosT = np.cos(np.deg2rad(RetT))
ulalume3@0 380 SinT = np.sin(np.deg2rad(RetT))
ulalume3@0 381 CosR = np.cos(np.deg2rad(RetR))
ulalume3@0 382 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 383
ulalume3@0 384 DaT = (1-ERaT)/(1+ERaT)
ulalume3@0 385 DaR = (1-ERaR)/(1+ERaR)
ulalume3@0 386 TaT = 0.5*(1+ERaT)
ulalume3@0 387 TaR = 0.5*(1+ERaR)
ulalume3@0 388
ulalume3@0 389 S2aT = np.sin(np.deg2rad(h*2*RotaT))
ulalume3@0 390 C2aT = np.cos(np.deg2rad(2*RotaT))
ulalume3@0 391 S2aR = np.sin(np.deg2rad(h*2*RotaR))
ulalume3@0 392 C2aR = np.cos(np.deg2rad(2*RotaR))
ulalume3@0 393
ulalume3@0 394 # Aanalyzer As before the PBS Eq. D.5
ulalume3@0 395 ATP1 = (1+C2aT*DaT*DiT)
ulalume3@0 396 ATP2 = Y*(DiT+C2aT*DaT)
ulalume3@0 397 ATP3 = Y*S2aT*DaT*ZiT*CosT
ulalume3@0 398 ATP4 = S2aT*DaT*ZiT*SinT
ulalume3@0 399 ATP = np.array([ATP1,ATP2,ATP3,ATP4])
ulalume3@0 400
ulalume3@0 401 ARP1 = (1+C2aR*DaR*DiR)
ulalume3@0 402 ARP2 = Y*(DiR+C2aR*DaR)
ulalume3@0 403 ARP3 = Y*S2aR*DaR*ZiR*CosR
ulalume3@0 404 ARP4 = S2aR*DaR*ZiR*SinR
ulalume3@0 405 ARP = np.array([ARP1,ARP2,ARP3,ARP4])
ulalume3@0 406
ulalume3@0 407 DTa = ATP2*Y/ATP1
ulalume3@0 408 DRa = ARP2*Y/ARP1
ulalume3@0 409
ulalume3@0 410 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
ulalume3@0 411 if LocC == 4: # Calibrator before the PBS
ulalume3@0 412 #print("Calibrator location not implemented yet")
ulalume3@0 413
ulalume3@0 414 #S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
ulalume3@0 415 #C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
ulalume3@0 416 S2e = np.sin(np.deg2rad(h*2*RotC))
ulalume3@0 417 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 418 # rotated AinP by epsilon Eq. C.3
ulalume3@0 419 ATP2e = C2e*ATP2 + S2e*ATP3
ulalume3@0 420 ATP3e = C2e*ATP3 - S2e*ATP2
ulalume3@0 421 ARP2e = C2e*ARP2 + S2e*ARP3
ulalume3@0 422 ARP3e = C2e*ARP3 - S2e*ARP2
ulalume3@0 423 ATPe = np.array([ATP1,ATP2e,ATP3e,ATP4])
ulalume3@0 424 ARPe = np.array([ARP1,ARP2e,ARP3e,ARP4])
ulalume3@0 425 # Stokes Input Vector before the polarising beam splitter Eq. E.31
ulalume3@0 426 A = C2g*QinE - S2g*UinE
ulalume3@0 427 B = S2g*QinE + C2g*UinE
ulalume3@0 428 #C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
ulalume3@0 429 Co = ZiO*SinO*VinE
ulalume3@0 430 Ca = (WiO*B - 2*ZiO*SinO*VinE)
ulalume3@0 431 #C = Co + aCal*Ca
ulalume3@0 432 #IinP = (IinE + DiO*aCal*A)
ulalume3@0 433 #QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
ulalume3@0 434 #UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
ulalume3@0 435 #VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 436 IinPo = IinE
ulalume3@0 437 QinPo = (C2g*DiO*IinE - S2g*Co)
ulalume3@0 438 UinPo = (S2g*DiO*IinE + C2g*Co)
ulalume3@0 439 VinPo = ZiO*CosO*VinE
ulalume3@0 440
ulalume3@0 441 IinPa = DiO*A
ulalume3@0 442 QinPa = QinE - S2g*Ca
ulalume3@0 443 UinPa = -UinE + C2g*Ca
ulalume3@0 444 VinPa = ZiO*(SinO*B - 2*CosO*VinE)
ulalume3@0 445
ulalume3@0 446 IinP = IinPo + aCal*IinPa
ulalume3@0 447 QinP = QinPo + aCal*QinPa
ulalume3@0 448 UinP = UinPo + aCal*UinPa
ulalume3@0 449 VinP = VinPo + aCal*VinPa
ulalume3@0 450 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
ulalume3@0 451 #QinPe = C2e*QinP + S2e*UinP
ulalume3@0 452 #UinPe = C2e*UinP - S2e*QinP
ulalume3@0 453 QinPoe = C2e*QinPo + S2e*UinPo
ulalume3@0 454 UinPoe = C2e*UinPo - S2e*QinPo
ulalume3@0 455 QinPae = C2e*QinPa + S2e*UinPa
ulalume3@0 456 UinPae = C2e*UinPa - S2e*QinPa
ulalume3@0 457 QinPe = C2e*QinP + S2e*UinP
ulalume3@0 458 UinPe = C2e*UinP - S2e*QinP
ulalume3@0 459
ulalume3@0 460 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 461 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 462 # parameters for calibration with aCal
ulalume3@0 463 AT = ATP1*IinP + h*ATP4*VinP
ulalume3@0 464 BT = ATP3e*QinP - h*ATP2e*UinP
ulalume3@0 465 AR = ARP1*IinP + h*ARP4*VinP
ulalume3@0 466 BR = ARP3e*QinP - h*ARP2e*UinP
ulalume3@0 467 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 468 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 469 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 470 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 471 GT = np.dot(ATP,IS1)
ulalume3@0 472 GR = np.dot(ARP,IS1)
ulalume3@0 473 HT = np.dot(ATP,IS2)
ulalume3@0 474 HR = np.dot(ARP,IS2)
ulalume3@0 475 else:
ulalume3@0 476 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 477 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 478 GT = np.dot(ATPe,IS1)
ulalume3@0 479 GR = np.dot(ARPe,IS1)
ulalume3@0 480 HT = np.dot(ATPe,IS2)
ulalume3@0 481 HR = np.dot(ARPe,IS2)
ulalume3@0 482 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 483 # parameters for calibration with aCal
ulalume3@0 484 AT = ATP1*IinP + ATP3e*UinPe + ZiC*CosC*(ATP2e*QinPe + ATP4*VinP)
ulalume3@0 485 BT = DiC*(ATP1*UinPe + ATP3e*IinP) - ZiC*SinC*(ATP2e*VinP - ATP4*QinPe)
ulalume3@0 486 AR = ARP1*IinP + ARP3e*UinPe + ZiC*CosC*(ARP2e*QinPe + ARP4*VinP)
ulalume3@0 487 BR = DiC*(ARP1*UinPe + ARP3e*IinP) - ZiC*SinC*(ARP2e*VinP - ARP4*QinPe)
ulalume3@0 488 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 489 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 490 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 491 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 492 GT = np.dot(ATP,IS1)
ulalume3@0 493 GR = np.dot(ARP,IS1)
ulalume3@0 494 HT = np.dot(ATP,IS2)
ulalume3@0 495 HR = np.dot(ARP,IS2)
ulalume3@0 496 else:
ulalume3@0 497 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)])
ulalume3@0 498 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)])
ulalume3@0 499 GT = np.dot(ATPe,IS1e)
ulalume3@0 500 GR = np.dot(ARPe,IS1e)
ulalume3@0 501 HT = np.dot(ATPe,IS2e)
ulalume3@0 502 HR = np.dot(ARPe,IS2e)
ulalume3@0 503 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 504 # parameters for calibration with aCal
ulalume3@0 505 AT = ATP1*IinP + sqr05*DiC*(ATP1*QinPe + ATP2e*IinP) + (1-0.5*WiC)*(ATP2e*QinPe + ATP3e*UinPe) + ZiC*(sqr05*SinC*(ATP3e*VinP-ATP4*UinPe) + ATP4*CosC*VinP)
ulalume3@0 506 BT = sqr05*DiC*(ATP1*UinPe + ATP3e*IinP) + 0.5*WiC*(ATP2e*UinPe + ATP3e*QinPe) - sqr05*ZiC*SinC*(ATP2e*VinP - ATP4*QinPe)
ulalume3@0 507 AR = ARP1*IinP + sqr05*DiC*(ARP1*QinPe + ARP2e*IinP) + (1-0.5*WiC)*(ARP2e*QinPe + ARP3e*UinPe) + ZiC*(sqr05*SinC*(ARP3e*VinP-ARP4*UinPe) + ARP4*CosC*VinP)
ulalume3@0 508 BR = sqr05*DiC*(ARP1*UinPe + ARP3e*IinP) + 0.5*WiC*(ARP2e*UinPe + ARP3e*QinPe) - sqr05*ZiC*SinC*(ARP2e*VinP - ARP4*QinPe)
ulalume3@0 509 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 510 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 511 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 512 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 513 GT = np.dot(ATP,IS1)
ulalume3@0 514 GR = np.dot(ARP,IS1)
ulalume3@0 515 HT = np.dot(ATP,IS2)
ulalume3@0 516 HR = np.dot(ARP,IS2)
ulalume3@0 517 else:
ulalume3@0 518 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)])
ulalume3@0 519 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)])
ulalume3@0 520 GT = np.dot(ATPe,IS1e)
ulalume3@0 521 GR = np.dot(ARPe,IS1e)
ulalume3@0 522 HT = np.dot(ATPe,IS2e)
ulalume3@0 523 HR = np.dot(ARPe,IS2e)
ulalume3@0 524 else:
ulalume3@0 525 print("Calibrator not implemented yet")
ulalume3@0 526 sys.exit()
ulalume3@0 527
ulalume3@0 528 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 529
ulalume3@0 530 #S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
ulalume3@0 531 #C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
ulalume3@0 532 S2e = np.sin(np.deg2rad(2*RotC))
ulalume3@0 533 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 534
ulalume3@0 535 # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt)
ulalume3@0 536 AF1 = np.array([1,C2g*DiO,S2g*DiO,0])
ulalume3@0 537 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO])
ulalume3@0 538 AF3 = np.array([S2g*DiO,S2g*C2g*WiO,1-C2g**2*WiO,C2g*ZiO*SinO])
ulalume3@0 539 AF4 = np.array([0,S2g*SinO,-C2g*SinO,CosO])
ulalume3@0 540
ulalume3@0 541 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4)
ulalume3@0 542 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4)
ulalume3@0 543 ATF2 = ATF[1]
ulalume3@0 544 ATF3 = ATF[2]
ulalume3@0 545 ARF2 = ARF[1]
ulalume3@0 546 ARF3 = ARF[2]
ulalume3@0 547
ulalume3@0 548 # rotated AinF by epsilon
ulalume3@0 549 ATF1 = ATF[0]
ulalume3@0 550 ATF4 = ATF[3]
ulalume3@0 551 ATF2e = C2e*ATF[1] + S2e*ATF[2]
ulalume3@0 552 ATF3e = C2e*ATF[2] - S2e*ATF[1]
ulalume3@0 553 ARF1 = ARF[0]
ulalume3@0 554 ARF4 = ARF[3]
ulalume3@0 555 ARF2e = C2e*ARF[1] + S2e*ARF[2]
ulalume3@0 556 ARF3e = C2e*ARF[2] - S2e*ARF[1]
ulalume3@0 557
ulalume3@0 558 ATFe = np.array([ATF1,ATF2e,ATF3e,ATF4])
ulalume3@0 559 ARFe = np.array([ARF1,ARF2e,ARF3e,ARF4])
ulalume3@0 560
ulalume3@0 561 QinEe = C2e*QinE + S2e*UinE
ulalume3@0 562 UinEe = C2e*UinE - S2e*QinE
ulalume3@0 563
ulalume3@0 564 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 565 IinF = IinE
ulalume3@0 566 QinF = aCal*QinE
ulalume3@0 567 UinF = -aCal*UinE
ulalume3@0 568 VinF = (1.-2.*aCal)*VinE
ulalume3@0 569
ulalume3@0 570 IinFo = IinE
ulalume3@0 571 QinFo = 0.
ulalume3@0 572 UinFo = 0.
ulalume3@0 573 VinFo = VinE
ulalume3@0 574
ulalume3@0 575 IinFa = 0.
ulalume3@0 576 QinFa = QinE
ulalume3@0 577 UinFa = -UinE
ulalume3@0 578 VinFa = -2.*VinE
ulalume3@0 579
ulalume3@0 580 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
ulalume3@0 581 QinFe = C2e*QinF + S2e*UinF
ulalume3@0 582 UinFe = C2e*UinF - S2e*QinF
ulalume3@0 583 QinFoe = C2e*QinFo + S2e*UinFo
ulalume3@0 584 UinFoe = C2e*UinFo - S2e*QinFo
ulalume3@0 585 QinFae = C2e*QinFa + S2e*UinFa
ulalume3@0 586 UinFae = C2e*UinFa - S2e*QinFa
ulalume3@0 587
ulalume3@0 588 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 589 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 590 # parameters for calibration with aCal
ulalume3@0 591 AT = ATF1*IinF + ATF4*h*VinF
ulalume3@0 592 BT = ATF3e*QinF - ATF2e*h*UinF
ulalume3@0 593 AR = ARF1*IinF + ARF4*h*VinF
ulalume3@0 594 BR = ARF3e*QinF - ARF2e*h*UinF
ulalume3@0 595 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 596 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 597 GT = ATF1*IinE + ATF4*VinE
ulalume3@0 598 GR = ARF1*IinE + ARF4*VinE
ulalume3@0 599 HT = ATF2*QinE - ATF3*UinE - ATF4*2*VinE
ulalume3@0 600 HR = ARF2*QinE - ARF3*UinE - ARF4*2*VinE
ulalume3@0 601 else:
ulalume3@0 602 GT = ATF1*IinE + ATF4*h*VinE
ulalume3@0 603 GR = ARF1*IinE + ARF4*h*VinE
ulalume3@0 604 HT = ATF2e*QinE - ATF3e*h*UinE - ATF4*h*2*VinE
ulalume3@0 605 HR = ARF2e*QinE - ARF3e*h*UinE - ARF4*h*2*VinE
ulalume3@0 606 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 607 # p = +45°, m = -45°
ulalume3@0 608 IF1e = np.array([IinF, ZiC*CosC*QinFe, UinFe, ZiC*CosC*VinF])
ulalume3@0 609 IF2e = np.array([DiC*UinFe, -ZiC*SinC*VinF, DiC*IinF, ZiC*SinC*QinFe])
ulalume3@0 610 AT = np.dot(ATFe,IF1e)
ulalume3@0 611 AR = np.dot(ARFe,IF1e)
ulalume3@0 612 BT = np.dot(ATFe,IF2e)
ulalume3@0 613 BR = np.dot(ARFe,IF2e)
ulalume3@0 614
ulalume3@0 615 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
ulalume3@0 616 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 617 IS1 = np.array([IinE,0,0,VinE])
ulalume3@0 618 IS2 = np.array([0,QinE,-UinE,-2*VinE])
ulalume3@0 619 GT = np.dot(ATF,IS1)
ulalume3@0 620 GR = np.dot(ARF,IS1)
ulalume3@0 621 HT = np.dot(ATF,IS2)
ulalume3@0 622 HR = np.dot(ARF,IS2)
ulalume3@0 623 else:
ulalume3@0 624 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)])
ulalume3@0 625 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)])
ulalume3@0 626 GT = np.dot(ATFe,IS1e)
ulalume3@0 627 GR = np.dot(ARFe,IS1e)
ulalume3@0 628 HT = np.dot(ATFe,IS2e)
ulalume3@0 629 HR = np.dot(ARFe,IS2e)
ulalume3@0 630
ulalume3@0 631 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 632 # parameters for calibration with aCal
ulalume3@0 633 IF1e = np.array([IinF+sqr05*DiC*QinFe, sqr05*DiC*IinF+(1-0.5*WiC)*QinFe, (1-0.5*WiC)*UinFe+sqr05*ZiC*SinC*VinF, -sqr05*ZiC*SinC*UinFe+ZiC*CosC*VinF])
ulalume3@0 634 IF2e = np.array([sqr05*DiC*UinFe, 0.5*WiC*UinFe-sqr05*ZiC*SinC*VinF, sqr05*DiC*IinF+0.5*WiC*QinFe, sqr05*ZiC*SinC*QinFe])
ulalume3@0 635 AT = np.dot(ATFe,IF1e)
ulalume3@0 636 AR = np.dot(ARFe,IF1e)
ulalume3@0 637 BT = np.dot(ATFe,IF2e)
ulalume3@0 638 BR = np.dot(ARFe,IF2e)
ulalume3@0 639
ulalume3@0 640 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 641 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 642 #IS1 = np.array([IinE,0,0,VinE])
ulalume3@0 643 #IS2 = np.array([0,QinE,-UinE,-2*VinE])
ulalume3@0 644 IS1 = np.array([IinFo,0,0,VinFo])
ulalume3@0 645 IS2 = np.array([0,QinFa,UinFa,VinFa])
ulalume3@0 646 GT = np.dot(ATF,IS1)
ulalume3@0 647 GR = np.dot(ARF,IS1)
ulalume3@0 648 HT = np.dot(ATF,IS2)
ulalume3@0 649 HR = np.dot(ARF,IS2)
ulalume3@0 650 else:
ulalume3@0 651 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)])
ulalume3@0 652 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)])
ulalume3@0 653 #IS1e = np.array([IinFo,0,0,VinFo])
ulalume3@0 654 #IS2e = np.array([0,QinFae,UinFae,VinFa])
ulalume3@0 655 GT = np.dot(ATFe,IS1e)
ulalume3@0 656 GR = np.dot(ARFe,IS1e)
ulalume3@0 657 HT = np.dot(ATFe,IS2e)
ulalume3@0 658 HR = np.dot(ARFe,IS2e)
ulalume3@0 659
ulalume3@0 660 else:
ulalume3@0 661 print('Calibrator not implemented yet')
ulalume3@0 662 sys.exit()
ulalume3@0 663
ulalume3@0 664 elif LocC == 2: # C behind emitter optics Eq.57 -------------------------------------------------------
ulalume3@0 665 #print("Calibrator location not implemented yet")
ulalume3@0 666 S2e = np.sin(np.deg2rad(2*RotC))
ulalume3@0 667 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 668
ulalume3@0 669 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
ulalume3@0 670 AF1 = np.array([1,C2g*DiO,S2g*DiO,0])
ulalume3@0 671 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO])
ulalume3@0 672 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO])
ulalume3@0 673 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO])
ulalume3@0 674
ulalume3@0 675 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4)
ulalume3@0 676 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4)
ulalume3@0 677 ATF1 = ATF[0]
ulalume3@0 678 ATF2 = ATF[1]
ulalume3@0 679 ATF3 = ATF[2]
ulalume3@0 680 ATF4 = ATF[3]
ulalume3@0 681 ARF1 = ARF[0]
ulalume3@0 682 ARF2 = ARF[1]
ulalume3@0 683 ARF3 = ARF[2]
ulalume3@0 684 ARF4 = ARF[3]
ulalume3@0 685
ulalume3@0 686 # AS with C behind the emitter
ulalume3@0 687 # terms without aCal
ulalume3@0 688 ATE1o, ARE1o = ATF1, ARF1
ulalume3@0 689 ATE2o, ARE2o = 0., 0.
ulalume3@0 690 ATE3o, ARE3o = 0., 0.
ulalume3@0 691 ATE4o, ARE4o = ATF4, ARF4
ulalume3@0 692 # terms with aCal
ulalume3@0 693 ATE1a, ARE1a = 0. , 0.
ulalume3@0 694 ATE2a, ARE2a = ATF2, ARF2
ulalume3@0 695 ATE3a, ARE3a = -ATF3, -ARF3
ulalume3@0 696 ATE4a, ARE4a = -2*ATF4, -2*ARF4
ulalume3@0 697 # rotated AinEa by epsilon
ulalume3@0 698 ATE2ae = C2e*ATF2 + S2e*ATF3
ulalume3@0 699 ATE3ae = -S2e*ATF2 - C2e*ATF3
ulalume3@0 700 ARE2ae = C2e*ARF2 + S2e*ARF3
ulalume3@0 701 ARE3ae = -S2e*ARF2 - C2e*ARF3
ulalume3@0 702
ulalume3@0 703 ATE1 = ATE1o
ulalume3@0 704 ATE2e = aCal*ATE2ae
ulalume3@0 705 ATE3e = aCal*ATE3ae
ulalume3@0 706 ATE4 = (1-2*aCal)*ATF4
ulalume3@0 707 ARE1 = ARE1o
ulalume3@0 708 ARE2e = aCal*ARE2ae
ulalume3@0 709 ARE3e = aCal*ARE3ae
ulalume3@0 710 ARE4 = (1-2*aCal)*ARF4
ulalume3@0 711
ulalume3@0 712 # rotated IinE
ulalume3@0 713 QinEe = C2e*QinE + S2e*UinE
ulalume3@0 714 UinEe = C2e*UinE - S2e*QinE
ulalume3@0 715
ulalume3@0 716 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 717 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
ulalume3@0 718 AT = ATE1o*IinE + (ATE4o+aCal*ATE4a)*h*VinE
ulalume3@0 719 BT = aCal * (ATE3ae*QinEe - ATE2ae*h*UinEe)
ulalume3@0 720 AR = ARE1o*IinE + (ARE4o+aCal*ARE4a)*h*VinE
ulalume3@0 721 BR = aCal * (ARE3ae*QinEe - ARE2ae*h*UinEe)
ulalume3@0 722
ulalume3@0 723 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 724 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 725 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 726 GT = ATE1o*IinE + ATE4o*h*VinE
ulalume3@0 727 GR = ARE1o*IinE + ARE4o*h*VinE
ulalume3@0 728 HT = ATE2a*QinE + ATE3a*h*UinEe + ATE4a*h*VinE
ulalume3@0 729 HR = ARE2a*QinE + ARE3a*h*UinEe + ARE4a*h*VinE
ulalume3@0 730 else:
ulalume3@0 731 GT = ATE1o*IinE + ATE4o*h*VinE
ulalume3@0 732 GR = ARE1o*IinE + ARE4o*h*VinE
ulalume3@0 733 HT = ATE2ae*QinE + ATE3ae*h*UinEe + ATE4a*h*VinE
ulalume3@0 734 HR = ARE2ae*QinE + ARE3ae*h*UinEe + ARE4a*h*VinE
ulalume3@0 735
ulalume3@0 736 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
ulalume3@0 737 # p = +45°, m = -45°
ulalume3@0 738 AT = ATE1*IinE + ZiC*CosC*(ATE2e*QinEe + ATE4*VinE) + ATE3e*UinEe
ulalume3@0 739 BT = DiC*(ATE1*UinEe + ATE3e*IinE) + ZiC*SinC*(ATE4*QinEe - ATE2e*VinE)
ulalume3@0 740 AR = ARE1*IinE + ZiC*CosC*(ARE2e*QinEe + ARE4*VinE) + ARE3e*UinEe
ulalume3@0 741 BR = DiC*(ARE1*UinEe + ARE3e*IinE) + ZiC*SinC*(ARE4*QinEe - ARE2e*VinE)
ulalume3@0 742
ulalume3@0 743 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 744 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 745 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 746 GT = ATE1o*IinE + ATE4o*VinE
ulalume3@0 747 GR = ARE1o*IinE + ARE4o*VinE
ulalume3@0 748 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE
ulalume3@0 749 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE
ulalume3@0 750 else:
ulalume3@0 751 D = IinE + DiC*QinEe
ulalume3@0 752 A = DiC*IinE + QinEe
ulalume3@0 753 B = ZiC*(CosC*UinEe + SinC*VinE)
ulalume3@0 754 C = -ZiC*(SinC*UinEe - CosC*VinE)
ulalume3@0 755 GT = ATE1o*D + ATE4o*C
ulalume3@0 756 GR = ARE1o*D + ARE4o*C
ulalume3@0 757 HT = ATE2a*A + ATE3a*B + ATE4a*C
ulalume3@0 758 HR = ARE2a*A + ARE3a*B + ARE4a*C
ulalume3@0 759
ulalume3@0 760 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 761 # p = +22.5°, m = -22.5°
ulalume3@0 762 IE1e = np.array([IinE+sqr05*DiC*QinEe, sqr05*DiC*IinE+(1-0.5*WiC)*QinEe, (1-0.5*WiC)*UinEe+sqr05*ZiC*SinC*VinE, -sqr05*ZiC*SinC*UinEe+ZiC*CosC*VinE])
ulalume3@0 763 IE2e = np.array([sqr05*DiC*UinEe, 0.5*WiC*UinEe-sqr05*ZiC*SinC*VinE, sqr05*DiC*IinE+0.5*WiC*QinEe, sqr05*ZiC*SinC*QinEe])
ulalume3@0 764 ATEe = np.array([ATE1,ATE2e,ATE3e,ATE4])
ulalume3@0 765 AREe = np.array([ARE1,ARE2e,ARE3e,ARE4])
ulalume3@0 766 AT = np.dot(ATEe,IE1e)
ulalume3@0 767 AR = np.dot(AREe,IE1e)
ulalume3@0 768 BT = np.dot(ATEe,IE2e)
ulalume3@0 769 BR = np.dot(AREe,IE2e)
ulalume3@0 770
ulalume3@0 771 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 772 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 773 GT = ATE1o*IinE + ATE4o*VinE
ulalume3@0 774 GR = ARE1o*IinE + ARE4o*VinE
ulalume3@0 775 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE
ulalume3@0 776 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE
ulalume3@0 777 else:
ulalume3@0 778 D = IinE + DiC*QinEe
ulalume3@0 779 A = DiC*IinE + QinEe
ulalume3@0 780 B = ZiC*(CosC*UinEe + SinC*VinE)
ulalume3@0 781 C = -ZiC*(SinC*UinEe - CosC*VinE)
ulalume3@0 782 GT = ATE1o*D + ATE4o*C
ulalume3@0 783 GR = ARE1o*D + ARE4o*C
ulalume3@0 784 HT = ATE2a*A + ATE3a*B + ATE4a*C
ulalume3@0 785 HR = ARE2a*A + ARE3a*B + ARE4a*C
ulalume3@0 786
ulalume3@0 787 else:
ulalume3@0 788 print('Calibrator not implemented yet')
ulalume3@0 789 sys.exit()
ulalume3@0 790
ulalume3@0 791 else:
ulalume3@0 792 print("Calibrator location not implemented yet")
ulalume3@0 793 sys.exit()
ulalume3@0 794
ulalume3@0 795 # Determination of the correction K of the calibration factor
ulalume3@0 796 IoutTp = TaT*TiT*TiO*TiE*(AT + BT)
ulalume3@0 797 IoutTm = TaT*TiT*TiO*TiE*(AT - BT)
ulalume3@0 798 IoutRp = TaR*TiR*TiO*TiE*(AR + BR)
ulalume3@0 799 IoutRm = TaR*TiR*TiO*TiE*(AR - BR)
ulalume3@0 800
ulalume3@0 801 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
ulalume3@0 802 Etapx = IoutRp/IoutTp
ulalume3@0 803 Etamx = IoutRm/IoutTm
ulalume3@0 804 Etax = (Etapx*Etamx)**0.5
ulalume3@0 805
ulalume3@0 806 Eta = (TaR*TiR)/(TaT*TiT) # Eta = Eta*/K Eq. 84
ulalume3@0 807 K = Etax / Eta
ulalume3@0 808
ulalume3@0 809 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
ulalume3@0 810 #Eta_test_p = (IoutRp/IoutTp)
ulalume3@0 811 #Eta_test_m = (IoutRm/IoutTm)
ulalume3@0 812 #Eta_test = (Eta_test_p*Eta_test_m)**0.5
ulalume3@0 813
ulalume3@0 814 # ----- Forward simulated signals and LDRsim with atrue; from input file
ulalume3@0 815 It = TaT*TiT*TiO*TiE*(GT+atrue*HT)
ulalume3@0 816 Ir = TaR*TiR*TiO*TiE*(GR+atrue*HR)
ulalume3@0 817 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
ulalume3@0 818 LDRsim = Ir/It # simulated uncorrected LDR with Y from input file
ulalume3@0 819 # Corrected LDRsimCorr from forward simulated LDRsim (atrue)
ulalume3@0 820 # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT))
ulalume3@0 821 if Y == -1.:
ulalume3@0 822 LDRsimx = 1./LDRsim
ulalume3@0 823 else:
ulalume3@0 824 LDRsimx = LDRsim
ulalume3@0 825
ulalume3@0 826 # The following is correct without doubt
ulalume3@0 827 #LDRCorr = (LDRsim*K/Etax*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT))
ulalume3@0 828
ulalume3@0 829 # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent
ulalume3@0 830 LDRCorr = (LDRsim/Eta*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim*K/Etax*(GT-HT))
ulalume3@0 831
ulalume3@0 832 TTa = TiT*TaT #*ATP1
ulalume3@0 833 TRa = TiR*TaR #*ARP1
ulalume3@0 834
ulalume3@0 835 F11sim = 1/(TiO*TiE)*((HR*Etax/K*It/TTa-HT*Ir/TRa)/(HR*GT-HT*GR)) # IL = 1, Etat = Etar = 1
ulalume3@0 836
ulalume3@0 837 return (GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim)
ulalume3@0 838 # *******************************************************************************************************************************
ulalume3@0 839
ulalume3@0 840 # --- CALC truth
ulalume3@0 841 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0)
ulalume3@0 842
ulalume3@0 843 # --------------------------------------------------------
ulalume3@0 844 with open('output_' + LID + '.dat', 'w') as f:
ulalume3@0 845 with redirect_stdout(f):
ulalume3@0 846 print("From ", dname)
ulalume3@0 847 print("Running ", fname)
ulalume3@0 848 print("Reading input file ", InputFile) #, " for Lidar system :", EID, ", ", LID)
ulalume3@0 849 print("for Lidar system: ", EID, ", ", LID)
ulalume3@0 850 # --- Print iput information*********************************
ulalume3@0 851 print(" --- Input parameters: value ±error / ±steps ----------------------")
ulalume3@0 852 print("{0:8} {1:8} {2:8.5f}; {3:8} {4:7.4f}±{5:7.4f}/{6:2d}".format("Laser: ", "DOLP = ", bL, " rotation alpha = ", RotL0, dRotL, nRotL))
ulalume3@0 853 print(" Diatt., Tunpol, Retard., Rotation (deg)")
ulalume3@0 854 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE))
ulalume3@0 855 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO))
ulalume3@0 856 print("{0:12} {1:7.4f}±{2:7.4f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format("Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC))
ulalume3@0 857 print("{0:12}".format(" --- Pol.-filter ---"))
ulalume3@0 858 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("ERT, ERR :", ERaT0, dERaT, nERaT, ERaR0, dERaR, nERaR))
ulalume3@0 859 print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format("RotaT , RotaR :", RotaT0, dRotaT, nRotaT, RotaR0,dRotaR,nRotaR))
ulalume3@0 860 print("{0:12}".format(" --- PBS ---"))
ulalume3@0 861 print("{0:12}{1:7.4f}±{2:7.4f}/{9:2d}, {3:7.4f}±{4:7.4f}/{10:2d}, {5:7.4f}±{6:7.4f}/{11:2d},{7:7.4f}±{8:7.4f}/{12:2d}".format("TP,TS,RP,RS :", TP0, dTP, TS0, dTS, RP0, dRP, RS0, dRS, nTP, nTS, nRP, nRS))
ulalume3@0 862 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format("DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y))
ulalume3@0 863 print("{0:12}".format(" --- Combined PBS + Pol.-filter ---"))
ulalume3@0 864 print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format("DTa,TTa,DRa,TRa: ", DTa0, TTa0, DRa0, TRa0))
ulalume3@0 865 print()
ulalume3@0 866 print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements)
ulalume3@0 867 #print ('LocC = ', LocC, Loc[LocC], '; TypeC = ',TypeC, Type[TypeC])
ulalume3@0 868 print(Type[TypeC], Loc[LocC], "; Parallel signal detected in", dY[int(Y+1)])
ulalume3@0 869 # end of print actual system parameters
ulalume3@0 870 # ******************************************************************************
ulalume3@0 871
ulalume3@0 872 #print()
ulalume3@0 873 #print(" --- LDRCal during calibration | simulated and corrected LDRs -------------")
ulalume3@0 874 #print("{0:8} |{1:8}->{2:8},{3:9}->{4:9} |{5:8}->{6:8}".format(" LDRCal"," LDRtrue", " LDRsim"," LDRtrue2", " LDRsim2", " LDRmeas", " LDRcorr"))
ulalume3@0 875 #print("{0:8.5f} |{1:8.5f}->{2:8.5f},{3:9.5f}->{4:9.5f} |{5:8.5f}->{6:8.5f}".format(LDRCal, LDRtrue, LDRsim, LDRtrue2, LDRsim2, LDRmeas, LDRCorr))
ulalume3@0 876 #print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
ulalume3@0 877 #print("{0:6.3f}±{1:5.3f}/{2:2d}|{3:8.5f}->{4:8.5f}->{5:8.5f}".format(LDRCal0, dLDRCal, nLDRCal, LDRtrue, LDRsimx, LDRCorr))
ulalume3@0 878 #print("{0:8} |{1:8}->{2:8}->{3:8}".format(" LDRCal"," LDRtrue", " LDRsimx", " LDRcorr"))
ulalume3@0 879 #print(" --- LDRCal during calibration")
ulalume3@0 880 print("{0:26}: {1:6.3f}±{2:5.3f}/{3:2d}".format("LDRCal during calibration", LDRCal0, dLDRCal, nLDRCal))
ulalume3@0 881
ulalume3@0 882 #print("{0:8}={1:8.5f};{2:8}={3:8.5f}".format(" IinP",IinP," F11sim",F11sim))
ulalume3@0 883 print()
ulalume3@0 884
ulalume3@0 885 K0List = np.zeros(3)
ulalume3@0 886 LDRsimxList = np.zeros(3)
ulalume3@0 887 LDRCalList = 0.004, 0.2, 0.45
ulalume3@0 888 for i,LDRCal in enumerate(LDRCalList):
ulalume3@0 889 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal)
ulalume3@0 890 K0List[i] = K0
ulalume3@0 891 LDRsimxList[i] = LDRsimx
ulalume3@0 892
ulalume3@0 893 print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:9},{6:9}".format(" GR", " GT", " HR", " HT", " K(0.004)", " K(0.2)", " K(0.45)"))
ulalume3@0 894 print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f}".format(GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2]))
ulalume3@0 895 print('========================================================================')
ulalume3@0 896
ulalume3@0 897 print("{0:9},{1:9},{2:9}".format(" LDRtrue", " LDRsimx", " LDRCorr"))
ulalume3@0 898 LDRtrueList = 0.004, 0.02, 0.2, 0.45
ulalume3@0 899 for i,LDRtrue in enumerate(LDRtrueList):
ulalume3@0 900 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0)
ulalume3@0 901 print("{0:9.5f},{1:9.5f},{2:9.5f}".format(LDRtrue, LDRsimx, LDRCorr))
ulalume3@0 902
ulalume3@0 903
ulalume3@0 904 file = open('output_' + LID + '.dat', 'r')
ulalume3@0 905 print (file.read())
ulalume3@0 906 file.close()
ulalume3@0 907
ulalume3@0 908 '''
ulalume3@0 909 if(PrintToOutputFile):
ulalume3@0 910 f = open('output_ver7.dat', 'w')
ulalume3@0 911 old_target = sys.stdout
ulalume3@0 912 sys.stdout = f
ulalume3@0 913
ulalume3@0 914 print("something")
ulalume3@0 915
ulalume3@0 916 if(PrintToOutputFile):
ulalume3@0 917 sys.stdout.flush()
ulalume3@0 918 f.close
ulalume3@0 919 sys.stdout = old_target
ulalume3@0 920 '''
ulalume3@0 921 # --- CALC again truth with LDRCal0 to reset all 0-values
ulalume3@0 922 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0)
ulalume3@0 923
ulalume3@0 924 # --- Start Errors calculation
ulalume3@0 925
ulalume3@0 926 iN = -1
ulalume3@0 927 N = ((nRotL*2+1)*
ulalume3@0 928 (nRotE*2+1)*(nRetE*2+1)*(nDiE*2+1)*
ulalume3@0 929 (nRotO*2+1)*(nRetO*2+1)*(nDiO*2+1)*
ulalume3@0 930 (nRotC*2+1)*(nRetC*2+1)*(nDiC*2+1)*
ulalume3@0 931 (nTP*2+1)*(nTS*2+1)*(nRP*2+1)*(nRS*2+1)*(nERaT*2+1)*(nERaR*2+1)*
ulalume3@0 932 (nRotaT*2+1)*(nRotaR*2+1)*(nRetT*2+1)*(nRetR*2+1)*(nLDRCal*2+1))
ulalume3@0 933 print("N = ",N ," ", end="")
ulalume3@0 934
ulalume3@0 935 if N > 1e6:
ulalume3@0 936 if user_yes_no_query('Warning: processing ' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
ulalume3@0 937 if N > 5e6:
ulalume3@0 938 if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format(N/4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit()
ulalume3@0 939
ulalume3@0 940 #if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit()
ulalume3@0 941
ulalume3@0 942 # --- Arrays for plotting ------
ulalume3@0 943 LDRmin = np.zeros(5)
ulalume3@0 944 LDRmax = np.zeros(5)
ulalume3@0 945 F11min = np.zeros(5)
ulalume3@0 946 F11max = np.zeros(5)
ulalume3@0 947
ulalume3@0 948 LDRrange = np.zeros(5)
ulalume3@0 949 LDRrange = 0.004, 0.02, 0.1, 0.3, 0.45
ulalume3@0 950 #aLDRsimx = np.zeros(N)
ulalume3@0 951 #aLDRsimx2 = np.zeros(N)
ulalume3@0 952 #aLDRcorr = np.zeros(N)
ulalume3@0 953 #aLDRcorr2 = np.zeros(N)
ulalume3@0 954 aERaT = np.zeros(N)
ulalume3@0 955 aERaR = np.zeros(N)
ulalume3@0 956 aRotaT = np.zeros(N)
ulalume3@0 957 aRotaR = np.zeros(N)
ulalume3@0 958 aRetT = np.zeros(N)
ulalume3@0 959 aRetR = np.zeros(N)
ulalume3@0 960 aTP = np.zeros(N)
ulalume3@0 961 aTS = np.zeros(N)
ulalume3@0 962 aRP = np.zeros(N)
ulalume3@0 963 aRS = np.zeros(N)
ulalume3@0 964 aDiE = np.zeros(N)
ulalume3@0 965 aDiO = np.zeros(N)
ulalume3@0 966 aDiC = np.zeros(N)
ulalume3@0 967 aRotC = np.zeros(N)
ulalume3@0 968 aRetC = np.zeros(N)
ulalume3@0 969 aRotL = np.zeros(N)
ulalume3@0 970 aRetE = np.zeros(N)
ulalume3@0 971 aRotE = np.zeros(N)
ulalume3@0 972 aRetO = np.zeros(N)
ulalume3@0 973 aRotO = np.zeros(N)
ulalume3@0 974 aLDRCal = np.zeros(N)
ulalume3@0 975 aA = np.zeros((5,N))
ulalume3@0 976 aX = np.zeros((5,N))
ulalume3@0 977 aF11corr = np.zeros((5,N))
ulalume3@0 978
ulalume3@0 979 atime = clock()
ulalume3@0 980 dtime = clock()
ulalume3@0 981
ulalume3@0 982 # --- Calc Error signals
ulalume3@0 983 #GT, HT, GR, HR, K, Eta, LDRsim = Calc(RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC, TP, TS)
ulalume3@0 984 # ---- Do the calculations of bra-ket vectors
ulalume3@0 985 h = -1. if TypeC == 2 else 1
ulalume3@0 986
ulalume3@0 987 # from input file: measured LDRm and true LDRtrue, LDRtrue2 =>
ulalume3@0 988 ameas = (1.-LDRmeas)/(1+LDRmeas)
ulalume3@0 989 atrue = (1.-LDRtrue)/(1+LDRtrue)
ulalume3@0 990 atrue2 = (1.-LDRtrue2)/(1+LDRtrue2)
ulalume3@0 991
ulalume3@0 992 for iLDRCal in range(-nLDRCal,nLDRCal+1):
ulalume3@0 993 # from input file: assumed LDRCal for calibration measurements
ulalume3@0 994 LDRCal = LDRCal0
ulalume3@0 995 if nLDRCal > 0: LDRCal = LDRCal0 + iLDRCal*dLDRCal/nLDRCal
ulalume3@0 996
ulalume3@0 997 GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0 = Calc(RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal)
ulalume3@0 998 aCal = (1.-LDRCal)/(1+LDRCal)
ulalume3@0 999 for iRotL, iRotE, iRetE, iDiE \
ulalume3@0 1000 in [(iRotL,iRotE,iRetE,iDiE)
ulalume3@0 1001 for iRotL in range(-nRotL,nRotL+1)
ulalume3@0 1002 for iRotE in range(-nRotE,nRotE+1)
ulalume3@0 1003 for iRetE in range(-nRetE,nRetE+1)
ulalume3@0 1004 for iDiE in range(-nDiE,nDiE+1)]:
ulalume3@0 1005
ulalume3@0 1006 if nRotL > 0: RotL = RotL0 + iRotL*dRotL/nRotL
ulalume3@0 1007 if nRotE > 0: RotE = RotE0 + iRotE*dRotE/nRotE
ulalume3@0 1008 if nRetE > 0: RetE = RetE0 + iRetE*dRetE/nRetE
ulalume3@0 1009 if nDiE > 0: DiE = DiE0 + iDiE*dDiE/nDiE
ulalume3@0 1010
ulalume3@0 1011 # angles of emitter and laser and calibrator and receiver optics
ulalume3@0 1012 # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon
ulalume3@0 1013 S2a = np.sin(2*np.deg2rad(RotL))
ulalume3@0 1014 C2a = np.cos(2*np.deg2rad(RotL))
ulalume3@0 1015 S2b = np.sin(2*np.deg2rad(RotE))
ulalume3@0 1016 C2b = np.cos(2*np.deg2rad(RotE))
ulalume3@0 1017 S2ab = np.sin(np.deg2rad(2*RotL-2*RotE))
ulalume3@0 1018 C2ab = np.cos(np.deg2rad(2*RotL-2*RotE))
ulalume3@0 1019
ulalume3@0 1020 # Laser with Degree of linear polarization DOLP = bL
ulalume3@0 1021 IinL = 1.
ulalume3@0 1022 QinL = bL
ulalume3@0 1023 UinL = 0.
ulalume3@0 1024 VinL = (1. - bL**2)**0.5
ulalume3@0 1025
ulalume3@0 1026 # Stokes Input Vector rotation Eq. E.4
ulalume3@0 1027 A = C2a*QinL - S2a*UinL
ulalume3@0 1028 B = S2a*QinL + C2a*UinL
ulalume3@0 1029 # Stokes Input Vector rotation Eq. E.9
ulalume3@0 1030 C = C2ab*QinL - S2ab*UinL
ulalume3@0 1031 D = S2ab*QinL + C2ab*UinL
ulalume3@0 1032
ulalume3@0 1033 # emitter optics
ulalume3@0 1034 CosE = np.cos(np.deg2rad(RetE))
ulalume3@0 1035 SinE = np.sin(np.deg2rad(RetE))
ulalume3@0 1036 ZiE = (1. - DiE**2)**0.5
ulalume3@0 1037 WiE = (1. - ZiE*CosE)
ulalume3@0 1038
ulalume3@0 1039 # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4
ulalume3@0 1040 # b = beta
ulalume3@0 1041 IinE = (IinL + DiE*C)
ulalume3@0 1042 QinE = (C2b*DiE*IinL + A + S2b*(WiE*D - ZiE*SinE*VinL))
ulalume3@0 1043 UinE = (S2b*DiE*IinL + B - C2b*(WiE*D - ZiE*SinE*VinL))
ulalume3@0 1044 VinE = (-ZiE*SinE*D + ZiE*CosE*VinL)
ulalume3@0 1045
ulalume3@0 1046 #-------------------------
ulalume3@0 1047 # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue
ulalume3@0 1048 #F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE
ulalume3@0 1049 #-------------------------
ulalume3@0 1050
ulalume3@0 1051 for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \
ulalume3@0 1052 in [(iRotO,iRetO,iDiO,iRotC,iRetC,iDiC,iTP,iTS,iRP,iRS,iERaT,iRotaT,iRetT,iERaR,iRotaR,iRetR )
ulalume3@0 1053 for iRotO in range(-nRotO,nRotO+1)
ulalume3@0 1054 for iRetO in range(-nRetO,nRetO+1)
ulalume3@0 1055 for iDiO in range(-nDiO,nDiO+1)
ulalume3@0 1056 for iRotC in range(-nRotC,nRotC+1)
ulalume3@0 1057 for iRetC in range(-nRetC,nRetC+1)
ulalume3@0 1058 for iDiC in range(-nDiC,nDiC+1)
ulalume3@0 1059 for iTP in range(-nTP,nTP+1)
ulalume3@0 1060 for iTS in range(-nTS,nTS+1)
ulalume3@0 1061 for iRP in range(-nRP,nRP+1)
ulalume3@0 1062 for iRS in range(-nRS,nRS+1)
ulalume3@0 1063 for iERaT in range(-nERaT,nERaT+1)
ulalume3@0 1064 for iRotaT in range(-nRotaT,nRotaT+1)
ulalume3@0 1065 for iRetT in range(-nRetT,nRetT+1)
ulalume3@0 1066 for iERaR in range(-nERaR,nERaR+1)
ulalume3@0 1067 for iRotaR in range(-nRotaR,nRotaR+1)
ulalume3@0 1068 for iRetR in range(-nRetR,nRetR+1)]:
ulalume3@0 1069
ulalume3@0 1070 iN = iN + 1
ulalume3@0 1071 if (iN == 10001):
ulalume3@0 1072 ctime = clock()
ulalume3@0 1073 print(" estimated time ", "{0:4.2f}".format(N/10000 * (ctime-atime)), "sec ") #, end="")
ulalume3@0 1074 print("\r elapsed time ", "{0:5.0f}".format((ctime-atime)), "sec ", end="\r")
ulalume3@0 1075 ctime = clock()
ulalume3@0 1076 if ((ctime - dtime) > 10):
ulalume3@0 1077 print("\r elapsed time ", "{0:5.0f}".format((ctime-atime)), "sec ", end="\r")
ulalume3@0 1078 dtime = ctime
ulalume3@0 1079
ulalume3@0 1080 if nRotO > 0: RotO = RotO0 + iRotO*dRotO/nRotO
ulalume3@0 1081 if nRetO > 0: RetO = RetO0 + iRetO*dRetO/nRetO
ulalume3@0 1082 if nDiO > 0: DiO = DiO0 + iDiO*dDiO/nDiO
ulalume3@0 1083 if nRotC > 0: RotC = RotC0 + iRotC*dRotC/nRotC
ulalume3@0 1084 if nRetC > 0: RetC = RetC0 + iRetC*dRetC/nRetC
ulalume3@0 1085 if nDiC > 0: DiC = DiC0 + iDiC*dDiC/nDiC
ulalume3@0 1086 if nTP > 0: TP = TP0 + iTP*dTP/nTP
ulalume3@0 1087 if nTS > 0: TS = TS0 + iTS*dTS/nTS
ulalume3@0 1088 if nRP > 0: RP = RP0 + iRP*dRP/nRP
ulalume3@0 1089 if nRS > 0: RS = RS0 + iRS*dRS/nRS
ulalume3@0 1090 if nERaT > 0: ERaT = ERaT0 + iERaT*dERaT/nERaT
ulalume3@0 1091 if nRotaT > 0:RotaT= RotaT0+ iRotaT*dRotaT/nRotaT
ulalume3@0 1092 if nRetT > 0: RetT = RetT0 + iRetT*dRetT/nRetT
ulalume3@0 1093 if nERaR > 0: ERaR = ERaR0 + iERaR*dERaR/nERaR
ulalume3@0 1094 if nRotaR > 0:RotaR= RotaR0+ iRotaR*dRotaR/nRotaR
ulalume3@0 1095 if nRetR > 0: RetR = RetR0 + iRetR*dRetR/nRetR
ulalume3@0 1096
ulalume3@0 1097 #print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN))
ulalume3@0 1098
ulalume3@0 1099 # receiver optics
ulalume3@0 1100 CosO = np.cos(np.deg2rad(RetO))
ulalume3@0 1101 SinO = np.sin(np.deg2rad(RetO))
ulalume3@0 1102 ZiO = (1. - DiO**2)**0.5
ulalume3@0 1103 WiO = (1. - ZiO*CosO)
ulalume3@0 1104 S2g = np.sin(np.deg2rad(2*RotO))
ulalume3@0 1105 C2g = np.cos(np.deg2rad(2*RotO))
ulalume3@0 1106 # calibrator
ulalume3@0 1107 CosC = np.cos(np.deg2rad(RetC))
ulalume3@0 1108 SinC = np.sin(np.deg2rad(RetC))
ulalume3@0 1109 ZiC = (1. - DiC**2)**0.5
ulalume3@0 1110 WiC = (1. - ZiC*CosC)
ulalume3@0 1111
ulalume3@0 1112 #For POLLY_XT
ulalume3@0 1113 # analyser
ulalume3@0 1114 #RS = 1 - TS
ulalume3@0 1115 #RP = 1 - TP
ulalume3@0 1116 TiT = 0.5 * (TP + TS)
ulalume3@0 1117 DiT = (TP-TS)/(TP+TS)
ulalume3@0 1118 ZiT = (1. - DiT**2)**0.5
ulalume3@0 1119 TiR = 0.5 * (RP + RS)
ulalume3@0 1120 DiR = (RP-RS)/(RP+RS)
ulalume3@0 1121 ZiR = (1. - DiR**2)**0.5
ulalume3@0 1122 CosT = np.cos(np.deg2rad(RetT))
ulalume3@0 1123 SinT = np.sin(np.deg2rad(RetT))
ulalume3@0 1124 CosR = np.cos(np.deg2rad(RetR))
ulalume3@0 1125 SinR = np.sin(np.deg2rad(RetR))
ulalume3@0 1126
ulalume3@0 1127 DaT = (1-ERaT)/(1+ERaT)
ulalume3@0 1128 DaR = (1-ERaR)/(1+ERaR)
ulalume3@0 1129 TaT = 0.5*(1+ERaT)
ulalume3@0 1130 TaR = 0.5*(1+ERaR)
ulalume3@0 1131
ulalume3@0 1132 S2aT = np.sin(np.deg2rad(h*2*RotaT))
ulalume3@0 1133 C2aT = np.cos(np.deg2rad(2*RotaT))
ulalume3@0 1134 S2aR = np.sin(np.deg2rad(h*2*RotaR))
ulalume3@0 1135 C2aR = np.cos(np.deg2rad(2*RotaR))
ulalume3@0 1136
ulalume3@0 1137 # Aanalyzer As before the PBS Eq. D.5
ulalume3@0 1138 ATP1 = (1+C2aT*DaT*DiT)
ulalume3@0 1139 ATP2 = Y*(DiT+C2aT*DaT)
ulalume3@0 1140 ATP3 = Y*S2aT*DaT*ZiT*CosT
ulalume3@0 1141 ATP4 = S2aT*DaT*ZiT*SinT
ulalume3@0 1142 ATP = np.array([ATP1,ATP2,ATP3,ATP4])
ulalume3@0 1143
ulalume3@0 1144 ARP1 = (1+C2aR*DaR*DiR)
ulalume3@0 1145 ARP2 = Y*(DiR+C2aR*DaR)
ulalume3@0 1146 ARP3 = Y*S2aR*DaR*ZiR*CosR
ulalume3@0 1147 ARP4 = S2aR*DaR*ZiR*SinR
ulalume3@0 1148 ARP = np.array([ARP1,ARP2,ARP3,ARP4])
ulalume3@0 1149
ulalume3@0 1150 TTa = TiT*TaT #*ATP1
ulalume3@0 1151 TRa = TiR*TaR #*ARP1
ulalume3@0 1152
ulalume3@0 1153 # ---- Calculate signals and correction parameters for diffeent locations and calibrators
ulalume3@0 1154 if LocC == 4: # Calibrator before the PBS
ulalume3@0 1155 #print("Calibrator location not implemented yet")
ulalume3@0 1156
ulalume3@0 1157 #S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC))
ulalume3@0 1158 #C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC))
ulalume3@0 1159 S2e = np.sin(np.deg2rad(h*2*RotC))
ulalume3@0 1160 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 1161 # rotated AinP by epsilon Eq. C.3
ulalume3@0 1162 ATP2e = C2e*ATP2 + S2e*ATP3
ulalume3@0 1163 ATP3e = C2e*ATP3 - S2e*ATP2
ulalume3@0 1164 ARP2e = C2e*ARP2 + S2e*ARP3
ulalume3@0 1165 ARP3e = C2e*ARP3 - S2e*ARP2
ulalume3@0 1166 ATPe = np.array([ATP1,ATP2e,ATP3e,ATP4])
ulalume3@0 1167 ARPe = np.array([ARP1,ARP2e,ARP3e,ARP4])
ulalume3@0 1168 # Stokes Input Vector before the polarising beam splitter Eq. E.31
ulalume3@0 1169 A = C2g*QinE - S2g*UinE
ulalume3@0 1170 B = S2g*QinE + C2g*UinE
ulalume3@0 1171 #C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE)
ulalume3@0 1172 Co = ZiO*SinO*VinE
ulalume3@0 1173 Ca = (WiO*B - 2*ZiO*SinO*VinE)
ulalume3@0 1174 #C = Co + aCal*Ca
ulalume3@0 1175 #IinP = (IinE + DiO*aCal*A)
ulalume3@0 1176 #QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C)
ulalume3@0 1177 #UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C)
ulalume3@0 1178 #VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE)
ulalume3@0 1179 IinPo = IinE
ulalume3@0 1180 QinPo = (C2g*DiO*IinE - S2g*Co)
ulalume3@0 1181 UinPo = (S2g*DiO*IinE + C2g*Co)
ulalume3@0 1182 VinPo = ZiO*CosO*VinE
ulalume3@0 1183
ulalume3@0 1184 IinPa = DiO*A
ulalume3@0 1185 QinPa = QinE - S2g*Ca
ulalume3@0 1186 UinPa = -UinE + C2g*Ca
ulalume3@0 1187 VinPa = ZiO*(SinO*B - 2*CosO*VinE)
ulalume3@0 1188
ulalume3@0 1189 IinP = IinPo + aCal*IinPa
ulalume3@0 1190 QinP = QinPo + aCal*QinPa
ulalume3@0 1191 UinP = UinPo + aCal*UinPa
ulalume3@0 1192 VinP = VinPo + aCal*VinPa
ulalume3@0 1193 # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3
ulalume3@0 1194 #QinPe = C2e*QinP + S2e*UinP
ulalume3@0 1195 #UinPe = C2e*UinP - S2e*QinP
ulalume3@0 1196 QinPoe = C2e*QinPo + S2e*UinPo
ulalume3@0 1197 UinPoe = C2e*UinPo - S2e*QinPo
ulalume3@0 1198 QinPae = C2e*QinPa + S2e*UinPa
ulalume3@0 1199 UinPae = C2e*UinPa - S2e*QinPa
ulalume3@0 1200 QinPe = C2e*QinP + S2e*UinP
ulalume3@0 1201 UinPe = C2e*UinP - S2e*QinP
ulalume3@0 1202
ulalume3@0 1203 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 1204 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 1205 # parameters for calibration with aCal
ulalume3@0 1206 AT = ATP1*IinP + h*ATP4*VinP
ulalume3@0 1207 BT = ATP3e*QinP - h*ATP2e*UinP
ulalume3@0 1208 AR = ARP1*IinP + h*ARP4*VinP
ulalume3@0 1209 BR = ARP3e*QinP - h*ARP2e*UinP
ulalume3@0 1210 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1211 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1212 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 1213 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 1214 GT = np.dot(ATP,IS1)
ulalume3@0 1215 GR = np.dot(ARP,IS1)
ulalume3@0 1216 HT = np.dot(ATP,IS2)
ulalume3@0 1217 HR = np.dot(ARP,IS2)
ulalume3@0 1218 else:
ulalume3@0 1219 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 1220 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 1221 GT = np.dot(ATPe,IS1)
ulalume3@0 1222 GR = np.dot(ARPe,IS1)
ulalume3@0 1223 HT = np.dot(ATPe,IS2)
ulalume3@0 1224 HR = np.dot(ARPe,IS2)
ulalume3@0 1225 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 1226 # parameters for calibration with aCal
ulalume3@0 1227 AT = ATP1*IinP + ATP3e*UinPe + ZiC*CosC*(ATP2e*QinPe + ATP4*VinP)
ulalume3@0 1228 BT = DiC*(ATP1*UinPe + ATP3e*IinP) - ZiC*SinC*(ATP2e*VinP - ATP4*QinPe)
ulalume3@0 1229 AR = ARP1*IinP + ARP3e*UinPe + ZiC*CosC*(ARP2e*QinPe + ARP4*VinP)
ulalume3@0 1230 BR = DiC*(ARP1*UinPe + ARP3e*IinP) - ZiC*SinC*(ARP2e*VinP - ARP4*QinPe)
ulalume3@0 1231 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1232 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1233 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 1234 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 1235 GT = np.dot(ATP,IS1)
ulalume3@0 1236 GR = np.dot(ARP,IS1)
ulalume3@0 1237 HT = np.dot(ATP,IS2)
ulalume3@0 1238 HR = np.dot(ARP,IS2)
ulalume3@0 1239 else:
ulalume3@0 1240 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)])
ulalume3@0 1241 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)])
ulalume3@0 1242 GT = np.dot(ATPe,IS1e)
ulalume3@0 1243 GR = np.dot(ARPe,IS1e)
ulalume3@0 1244 HT = np.dot(ATPe,IS2e)
ulalume3@0 1245 HR = np.dot(ARPe,IS2e)
ulalume3@0 1246 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 1247 # parameters for calibration with aCal
ulalume3@0 1248 AT = ATP1*IinP + sqr05*DiC*(ATP1*QinPe + ATP2e*IinP) + (1-0.5*WiC)*(ATP2e*QinPe + ATP3e*UinPe) + ZiC*(sqr05*SinC*(ATP3e*VinP-ATP4*UinPe) + ATP4*CosC*VinP)
ulalume3@0 1249 BT = sqr05*DiC*(ATP1*UinPe + ATP3e*IinP) + 0.5*WiC*(ATP2e*UinPe + ATP3e*QinPe) - sqr05*ZiC*SinC*(ATP2e*VinP - ATP4*QinPe)
ulalume3@0 1250 AR = ARP1*IinP + sqr05*DiC*(ARP1*QinPe + ARP2e*IinP) + (1-0.5*WiC)*(ARP2e*QinPe + ARP3e*UinPe) + ZiC*(sqr05*SinC*(ARP3e*VinP-ARP4*UinPe) + ARP4*CosC*VinP)
ulalume3@0 1251 BR = sqr05*DiC*(ARP1*UinPe + ARP3e*IinP) + 0.5*WiC*(ARP2e*UinPe + ARP3e*QinPe) - sqr05*ZiC*SinC*(ARP2e*VinP - ARP4*QinPe)
ulalume3@0 1252 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1253 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1254 IS1 = np.array([IinPo,QinPo,UinPo,VinPo])
ulalume3@0 1255 IS2 = np.array([IinPa,QinPa,UinPa,VinPa])
ulalume3@0 1256 GT = np.dot(ATP,IS1)
ulalume3@0 1257 GR = np.dot(ARP,IS1)
ulalume3@0 1258 HT = np.dot(ATP,IS2)
ulalume3@0 1259 HR = np.dot(ARP,IS2)
ulalume3@0 1260 else:
ulalume3@0 1261 IS1e = np.array([IinPo+DiC*QinPoe,DiC*IinPo+QinPoe,ZiC*(CosC*UinPoe+SinC*VinPo),-ZiC*(SinC*UinPoe-CosC*VinPo)])
ulalume3@0 1262 IS2e = np.array([IinPa+DiC*QinPae,DiC*IinPa+QinPae,ZiC*(CosC*UinPae+SinC*VinPa),-ZiC*(SinC*UinPae-CosC*VinPa)])
ulalume3@0 1263 GT = np.dot(ATPe,IS1e)
ulalume3@0 1264 GR = np.dot(ARPe,IS1e)
ulalume3@0 1265 HT = np.dot(ATPe,IS2e)
ulalume3@0 1266 HR = np.dot(ARPe,IS2e)
ulalume3@0 1267 else:
ulalume3@0 1268 print("Calibrator not implemented yet")
ulalume3@0 1269 sys.exit()
ulalume3@0 1270
ulalume3@0 1271 elif LocC == 3: # C before receiver optics Eq.57
ulalume3@0 1272
ulalume3@0 1273 #S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC))
ulalume3@0 1274 #C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC))
ulalume3@0 1275 S2e = np.sin(np.deg2rad(2*RotC))
ulalume3@0 1276 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 1277
ulalume3@0 1278 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
ulalume3@0 1279 AF1 = np.array([1,C2g*DiO,S2g*DiO,0])
ulalume3@0 1280 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO])
ulalume3@0 1281 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO])
ulalume3@0 1282 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO])
ulalume3@0 1283
ulalume3@0 1284 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4)
ulalume3@0 1285 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4)
ulalume3@0 1286 ATF1 = ATF[0]
ulalume3@0 1287 ATF2 = ATF[1]
ulalume3@0 1288 ATF3 = ATF[2]
ulalume3@0 1289 ATF4 = ATF[3]
ulalume3@0 1290 ARF1 = ARF[0]
ulalume3@0 1291 ARF2 = ARF[1]
ulalume3@0 1292 ARF3 = ARF[2]
ulalume3@0 1293 ARF4 = ARF[3]
ulalume3@0 1294
ulalume3@0 1295 # rotated AinF by epsilon
ulalume3@0 1296 ATF2e = C2e*ATF[1] + S2e*ATF[2]
ulalume3@0 1297 ATF3e = C2e*ATF[2] - S2e*ATF[1]
ulalume3@0 1298 ARF2e = C2e*ARF[1] + S2e*ARF[2]
ulalume3@0 1299 ARF3e = C2e*ARF[2] - S2e*ARF[1]
ulalume3@0 1300
ulalume3@0 1301 ATFe = np.array([ATF1,ATF2e,ATF3e,ATF4])
ulalume3@0 1302 ARFe = np.array([ARF1,ARF2e,ARF3e,ARF4])
ulalume3@0 1303
ulalume3@0 1304 QinEe = C2e*QinE + S2e*UinE
ulalume3@0 1305 UinEe = C2e*UinE - S2e*QinE
ulalume3@0 1306
ulalume3@0 1307 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 1308 IinF = IinE
ulalume3@0 1309 QinF = aCal*QinE
ulalume3@0 1310 UinF = -aCal*UinE
ulalume3@0 1311 VinF = (1.-2.*aCal)*VinE
ulalume3@0 1312
ulalume3@0 1313 IinFo = IinE
ulalume3@0 1314 QinFo = 0.
ulalume3@0 1315 UinFo = 0.
ulalume3@0 1316 VinFo = VinE
ulalume3@0 1317
ulalume3@0 1318 IinFa = 0.
ulalume3@0 1319 QinFa = QinE
ulalume3@0 1320 UinFa = -UinE
ulalume3@0 1321 VinFa = -2.*VinE
ulalume3@0 1322
ulalume3@0 1323 # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3
ulalume3@0 1324 QinFe = C2e*QinF + S2e*UinF
ulalume3@0 1325 UinFe = C2e*UinF - S2e*QinF
ulalume3@0 1326 QinFoe = C2e*QinFo + S2e*UinFo
ulalume3@0 1327 UinFoe = C2e*UinFo - S2e*QinFo
ulalume3@0 1328 QinFae = C2e*QinFa + S2e*UinFa
ulalume3@0 1329 UinFae = C2e*UinFa - S2e*QinFa
ulalume3@0 1330
ulalume3@0 1331 # Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 1332 if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4
ulalume3@0 1333 AT = ATF1*IinF + ATF4*h*VinF
ulalume3@0 1334 BT = ATF3e*QinF - ATF2e*h*UinF
ulalume3@0 1335 AR = ARF1*IinF + ARF4*h*VinF
ulalume3@0 1336 BR = ARF3e*QinF - ARF2e*h*UinF
ulalume3@0 1337
ulalume3@0 1338 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1339 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 1340 GT = ATF1*IinE + ATF4*VinE
ulalume3@0 1341 GR = ARF1*IinE + ARF4*VinE
ulalume3@0 1342 HT = ATF2*QinE - ATF3*UinE - ATF4*2*VinE
ulalume3@0 1343 HR = ARF2*QinE - ARF3*UinE - ARF4*2*VinE
ulalume3@0 1344 else:
ulalume3@0 1345 GT = ATF1*IinE + ATF4*h*VinE
ulalume3@0 1346 GR = ARF1*IinE + ARF4*h*VinE
ulalume3@0 1347 HT = ATF2e*QinE - ATF3e*h*UinE - ATF4*h*2*VinE
ulalume3@0 1348 HR = ARF2e*QinE - ARF3e*h*UinE - ARF4*h*2*VinE
ulalume3@0 1349
ulalume3@0 1350 elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5
ulalume3@0 1351 # p = +45°, m = -45°
ulalume3@0 1352 IF1e = np.array([IinF, ZiC*CosC*QinFe, UinFe, ZiC*CosC*VinF])
ulalume3@0 1353 IF2e = np.array([DiC*UinFe, -ZiC*SinC*VinF, DiC*IinF, ZiC*SinC*QinFe])
ulalume3@0 1354
ulalume3@0 1355 AT = np.dot(ATFe,IF1e)
ulalume3@0 1356 AR = np.dot(ARFe,IF1e)
ulalume3@0 1357 BT = np.dot(ATFe,IF2e)
ulalume3@0 1358 BR = np.dot(ARFe,IF2e)
ulalume3@0 1359
ulalume3@0 1360 # Correction paremeters for normal measurements; they are independent of LDR --- the same as for TypeC = 6
ulalume3@0 1361 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1362 IS1 = np.array([IinE,0,0,VinE])
ulalume3@0 1363 IS2 = np.array([0,QinE,-UinE,-2*VinE])
ulalume3@0 1364
ulalume3@0 1365 GT = np.dot(ATF,IS1)
ulalume3@0 1366 GR = np.dot(ARF,IS1)
ulalume3@0 1367 HT = np.dot(ATF,IS2)
ulalume3@0 1368 HR = np.dot(ARF,IS2)
ulalume3@0 1369 else:
ulalume3@0 1370 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)])
ulalume3@0 1371 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)])
ulalume3@0 1372 GT = np.dot(ATFe,IS1e)
ulalume3@0 1373 GR = np.dot(ARFe,IS1e)
ulalume3@0 1374 HT = np.dot(ATFe,IS2e)
ulalume3@0 1375 HR = np.dot(ARFe,IS2e)
ulalume3@0 1376
ulalume3@0 1377 elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 1378 # p = +22.5°, m = -22.5°
ulalume3@0 1379 IF1e = np.array([IinF+sqr05*DiC*QinFe, sqr05*DiC*IinF+(1-0.5*WiC)*QinFe, (1-0.5*WiC)*UinFe+sqr05*ZiC*SinC*VinF, -sqr05*ZiC*SinC*UinFe+ZiC*CosC*VinF])
ulalume3@0 1380 IF2e = np.array([sqr05*DiC*UinFe, 0.5*WiC*UinFe-sqr05*ZiC*SinC*VinF, sqr05*DiC*IinF+0.5*WiC*QinFe, sqr05*ZiC*SinC*QinFe])
ulalume3@0 1381
ulalume3@0 1382 AT = np.dot(ATFe,IF1e)
ulalume3@0 1383 AR = np.dot(ARFe,IF1e)
ulalume3@0 1384 BT = np.dot(ATFe,IF2e)
ulalume3@0 1385 BR = np.dot(ARFe,IF2e)
ulalume3@0 1386
ulalume3@0 1387 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1388 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1389 #IS1 = np.array([IinE,0,0,VinE])
ulalume3@0 1390 #IS2 = np.array([0,QinE,-UinE,-2*VinE])
ulalume3@0 1391 IS1 = np.array([IinFo,0,0,VinFo])
ulalume3@0 1392 IS2 = np.array([0,QinFa,UinFa,VinFa])
ulalume3@0 1393 GT = np.dot(ATF,IS1)
ulalume3@0 1394 GR = np.dot(ARF,IS1)
ulalume3@0 1395 HT = np.dot(ATF,IS2)
ulalume3@0 1396 HR = np.dot(ARF,IS2)
ulalume3@0 1397 else:
ulalume3@0 1398 #IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE])
ulalume3@0 1399 #IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)])
ulalume3@0 1400 IS1e = np.array([IinFo+DiC*QinFoe,DiC*IinFo+QinFoe,ZiC*(CosC*UinFoe+SinC*VinFo),-ZiC*(SinC*UinFoe-CosC*VinFo)])
ulalume3@0 1401 IS2e = np.array([IinFa+DiC*QinFae,DiC*IinFa+QinFae,ZiC*(CosC*UinFae+SinC*VinFa),-ZiC*(SinC*UinFae-CosC*VinFa)])
ulalume3@0 1402 GT = np.dot(ATFe,IS1e)
ulalume3@0 1403 GR = np.dot(ARFe,IS1e)
ulalume3@0 1404 HT = np.dot(ATFe,IS2e)
ulalume3@0 1405 HR = np.dot(ARFe,IS2e)
ulalume3@0 1406
ulalume3@0 1407
ulalume3@0 1408 else:
ulalume3@0 1409 print('Calibrator not implemented yet')
ulalume3@0 1410 sys.exit()
ulalume3@0 1411
ulalume3@0 1412 elif LocC == 2: # C behind emitter optics Eq.57
ulalume3@0 1413 #print("Calibrator location not implemented yet")
ulalume3@0 1414 S2e = np.sin(np.deg2rad(2*RotC))
ulalume3@0 1415 C2e = np.cos(np.deg2rad(2*RotC))
ulalume3@0 1416
ulalume3@0 1417 # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt)
ulalume3@0 1418 AF1 = np.array([1,C2g*DiO,S2g*DiO,0])
ulalume3@0 1419 AF2 = np.array([C2g*DiO,1-S2g**2*WiO,S2g*C2g*WiO,-S2g*ZiO*SinO])
ulalume3@0 1420 AF3 = np.array([S2g*DiO, S2g*C2g*WiO, 1-C2g**2*WiO, C2g*ZiO*SinO])
ulalume3@0 1421 AF4 = np.array([0, S2g*SinO, -C2g*SinO, CosO])
ulalume3@0 1422
ulalume3@0 1423 ATF = (ATP1*AF1+ATP2*AF2+ATP3*AF3+ATP4*AF4)
ulalume3@0 1424 ARF = (ARP1*AF1+ARP2*AF2+ARP3*AF3+ARP4*AF4)
ulalume3@0 1425 ATF1 = ATF[0]
ulalume3@0 1426 ATF2 = ATF[1]
ulalume3@0 1427 ATF3 = ATF[2]
ulalume3@0 1428 ATF4 = ATF[3]
ulalume3@0 1429 ARF1 = ARF[0]
ulalume3@0 1430 ARF2 = ARF[1]
ulalume3@0 1431 ARF3 = ARF[2]
ulalume3@0 1432 ARF4 = ARF[3]
ulalume3@0 1433
ulalume3@0 1434 # AS with C behind the emitter --------------------------------------------
ulalume3@0 1435 # terms without aCal
ulalume3@0 1436 ATE1o, ARE1o = ATF1, ARF1
ulalume3@0 1437 ATE2o, ARE2o = 0., 0.
ulalume3@0 1438 ATE3o, ARE3o = 0., 0.
ulalume3@0 1439 ATE4o, ARE4o = ATF4, ARF4
ulalume3@0 1440 # terms with aCal
ulalume3@0 1441 ATE1a, ARE1a = 0. , 0.
ulalume3@0 1442 ATE2a, ARE2a = ATF2, ARF2
ulalume3@0 1443 ATE3a, ARE3a = -ATF3, -ARF3
ulalume3@0 1444 ATE4a, ARE4a = -2*ATF4, -2*ARF4
ulalume3@0 1445 # rotated AinEa by epsilon
ulalume3@0 1446 ATE2ae = C2e*ATF2 + S2e*ATF3
ulalume3@0 1447 ATE3ae = -S2e*ATF2 - C2e*ATF3
ulalume3@0 1448 ARE2ae = C2e*ARF2 + S2e*ARF3
ulalume3@0 1449 ARE3ae = -S2e*ARF2 - C2e*ARF3
ulalume3@0 1450
ulalume3@0 1451 ATE1 = ATE1o
ulalume3@0 1452 ATE2e = aCal*ATE2ae
ulalume3@0 1453 ATE3e = aCal*ATE3ae
ulalume3@0 1454 ATE4 = (1-2*aCal)*ATF4
ulalume3@0 1455 ARE1 = ARE1o
ulalume3@0 1456 ARE2e = aCal*ARE2ae
ulalume3@0 1457 ARE3e = aCal*ARE3ae
ulalume3@0 1458 ARE4 = (1-2*aCal)*ARF4
ulalume3@0 1459
ulalume3@0 1460 # rotated IinE
ulalume3@0 1461 QinEe = C2e*QinE + S2e*UinE
ulalume3@0 1462 UinEe = C2e*UinE - S2e*QinE
ulalume3@0 1463
ulalume3@0 1464 # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal
ulalume3@0 1465 if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4
ulalume3@0 1466 AT = ATE1o*IinE + (ATE4o+aCal*ATE4a)*h*VinE
ulalume3@0 1467 BT = aCal * (ATE3ae*QinEe - ATE2ae*h*UinEe)
ulalume3@0 1468 AR = ARE1o*IinE + (ARE4o+aCal*ARE4a)*h*VinE
ulalume3@0 1469 BR = aCal * (ARE3ae*QinEe - ARE2ae*h*UinEe)
ulalume3@0 1470
ulalume3@0 1471 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1472 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 1473 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 1474 GT = ATE1o*IinE + ATE4o*h*VinE
ulalume3@0 1475 GR = ARE1o*IinE + ARE4o*h*VinE
ulalume3@0 1476 HT = ATE2a*QinE + ATE3a*h*UinEe + ATE4a*h*VinE
ulalume3@0 1477 HR = ARE2a*QinE + ARE3a*h*UinEe + ARE4a*h*VinE
ulalume3@0 1478 else:
ulalume3@0 1479 GT = ATE1o*IinE + ATE4o*h*VinE
ulalume3@0 1480 GR = ARE1o*IinE + ARE4o*h*VinE
ulalume3@0 1481 HT = ATE2ae*QinE + ATE3ae*h*UinEe + ATE4a*h*VinE
ulalume3@0 1482 HR = ARE2ae*QinE + ARE3ae*h*UinEe + ARE4a*h*VinE
ulalume3@0 1483
ulalume3@0 1484 elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5
ulalume3@0 1485 # p = +45°, m = -45°
ulalume3@0 1486 AT = ATE1*IinE + ZiC*CosC*(ATE2e*QinEe + ATE4*VinE) + ATE3e*UinEe
ulalume3@0 1487 BT = DiC*(ATE1*UinEe + ATE3e*IinE) + ZiC*SinC*(ATE4*QinEe - ATE2e*VinE)
ulalume3@0 1488 AR = ARE1*IinE + ZiC*CosC*(ARE2e*QinEe + ARE4*VinE) + ARE3e*UinEe
ulalume3@0 1489 BR = DiC*(ARE1*UinEe + ARE3e*IinE) + ZiC*SinC*(ARE4*QinEe - ARE2e*VinE)
ulalume3@0 1490
ulalume3@0 1491 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1492 if (not RotationErrorEpsilonForNormalMeasurements):
ulalume3@0 1493 # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F)
ulalume3@0 1494 GT = ATE1o*IinE + ATE4o*VinE
ulalume3@0 1495 GR = ARE1o*IinE + ARE4o*VinE
ulalume3@0 1496 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE
ulalume3@0 1497 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE
ulalume3@0 1498 else:
ulalume3@0 1499 D = IinE + DiC*QinEe
ulalume3@0 1500 A = DiC*IinE + QinEe
ulalume3@0 1501 B = ZiC*(CosC*UinEe + SinC*VinE)
ulalume3@0 1502 C = -ZiC*(SinC*UinEe - CosC*VinE)
ulalume3@0 1503 GT = ATE1o*D + ATE4o*C
ulalume3@0 1504 GR = ARE1o*D + ARE4o*C
ulalume3@0 1505 HT = ATE2a*A + ATE3a*B + ATE4a*C
ulalume3@0 1506 HR = ARE2a*A + ARE3a*B + ARE4a*C
ulalume3@0 1507
ulalume3@0 1508 elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt
ulalume3@0 1509 # p = +22.5°, m = -22.5°
ulalume3@0 1510 IE1e = np.array([IinE+sqr05*DiC*QinEe, sqr05*DiC*IinE+(1-0.5*WiC)*QinEe, (1-0.5*WiC)*UinEe+sqr05*ZiC*SinC*VinE, -sqr05*ZiC*SinC*UinEe+ZiC*CosC*VinE])
ulalume3@0 1511 IE2e = np.array([sqr05*DiC*UinEe, 0.5*WiC*UinEe-sqr05*ZiC*SinC*VinE, sqr05*DiC*IinE+0.5*WiC*QinEe, sqr05*ZiC*SinC*QinEe])
ulalume3@0 1512 ATEe = np.array([ATE1,ATE2e,ATE3e,ATE4])
ulalume3@0 1513 AREe = np.array([ARE1,ARE2e,ARE3e,ARE4])
ulalume3@0 1514 AT = np.dot(ATEe,IE1e)
ulalume3@0 1515 AR = np.dot(AREe,IE1e)
ulalume3@0 1516 BT = np.dot(ATEe,IE2e)
ulalume3@0 1517 BR = np.dot(AREe,IE2e)
ulalume3@0 1518
ulalume3@0 1519 # Correction paremeters for normal measurements; they are independent of LDR
ulalume3@0 1520 if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out
ulalume3@0 1521 GT = ATE1o*IinE + ATE4o*VinE
ulalume3@0 1522 GR = ARE1o*IinE + ARE4o*VinE
ulalume3@0 1523 HT = ATE2a*QinE + ATE3a*UinE + ATE4a*VinE
ulalume3@0 1524 HR = ARE2a*QinE + ARE3a*UinE + ARE4a*VinE
ulalume3@0 1525 else:
ulalume3@0 1526 D = IinE + DiC*QinEe
ulalume3@0 1527 A = DiC*IinE + QinEe
ulalume3@0 1528 B = ZiC*(CosC*UinEe + SinC*VinE)
ulalume3@0 1529 C = -ZiC*(SinC*UinEe - CosC*VinE)
ulalume3@0 1530 GT = ATE1o*D + ATE4o*C
ulalume3@0 1531 GR = ARE1o*D + ARE4o*C
ulalume3@0 1532 HT = ATE2a*A + ATE3a*B + ATE4a*C
ulalume3@0 1533 HR = ARE2a*A + ARE3a*B + ARE4a*C
ulalume3@0 1534
ulalume3@0 1535 else:
ulalume3@0 1536 print('Calibrator not implemented yet')
ulalume3@0 1537 sys.exit()
ulalume3@0 1538
ulalume3@0 1539 # Calibration signals with aCal => Determination of the correction K of the real calibration factor
ulalume3@0 1540 IoutTp = TaT*TiT*TiO*TiE*(AT + BT)
ulalume3@0 1541 IoutTm = TaT*TiT*TiO*TiE*(AT - BT)
ulalume3@0 1542 IoutRp = TaR*TiR*TiO*TiE*(AR + BR)
ulalume3@0 1543 IoutRm = TaR*TiR*TiO*TiE*(AR - BR)
ulalume3@0 1544 # --- Results and Corrections; electronic etaR and etaT are assumed to be 1
ulalume3@0 1545 #Eta = TiR/TiT # Eta = Eta*/K Eq. 84
ulalume3@0 1546 Etapx = IoutRp/IoutTp
ulalume3@0 1547 Etamx = IoutRm/IoutTm
ulalume3@0 1548 Etax = (Etapx*Etamx)**0.5
ulalume3@0 1549 K = Etax / Eta0
ulalume3@0 1550 #print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km))
ulalume3@0 1551 #print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km))
ulalume3@0 1552
ulalume3@0 1553 # For comparison with Volkers Libreoffice Müller Matrix spreadsheet
ulalume3@0 1554 #Eta_test_p = (IoutRp/IoutTp)
ulalume3@0 1555 #Eta_test_m = (IoutRm/IoutTm)
ulalume3@0 1556 #Eta_test = (Eta_test_p*Eta_test_m)**0.5
ulalume3@0 1557
ulalume3@0 1558 # *************************************************************************
ulalume3@0 1559 iLDR = -1
ulalume3@0 1560 for LDRTrue in LDRrange:
ulalume3@0 1561 iLDR = iLDR + 1
ulalume3@0 1562 atrue = (1-LDRTrue)/(1+LDRTrue)
ulalume3@0 1563 # ----- Forward simulated signals and LDRsim with atrue; from input file
ulalume3@0 1564 It = TaT*TiT*TiO*TiE*(GT+atrue*HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT)
ulalume3@0 1565 Ir = TaR*TiR*TiO*TiE*(GR+atrue*HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR)
ulalume3@0 1566
ulalume3@0 1567 # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file
ulalume3@0 1568 LDRsim = Ir/It # simulated uncorrected LDR with Y from input file
ulalume3@0 1569 '''
ulalume3@0 1570 if Y == 1.:
ulalume3@0 1571 LDRsimx = LDRsim
ulalume3@0 1572 LDRsimx2 = LDRsim2
ulalume3@0 1573 else:
ulalume3@0 1574 LDRsimx = 1./LDRsim
ulalume3@0 1575 LDRsimx2 = 1./LDRsim2
ulalume3@0 1576 '''
ulalume3@0 1577 # ----- Backward correction
ulalume3@0 1578 # Corrected LDRCorr from forward simulated LDRsim (atrue) with assumed true G0,H0,K0
ulalume3@0 1579 LDRCorr = (LDRsim*K0/Etax*(GT0+HT0)-(GR0+HR0))/((GR0-HR0)-LDRsim*K0/Etax*(GT0-HT0))
ulalume3@0 1580
ulalume3@0 1581 # -- F11corr from It and Ir and calibration EtaX
ulalume3@0 1582 Text1 = "F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1"
ulalume3@0 1583 F11corr = 1/(TiO*TiE)*((HR0*Etax/K0*It/TTa-HT0*Ir/TRa)/(HR0*GT0-HT0*GR0)) # IL = 1 Eq.(64)
ulalume3@0 1584
ulalume3@0 1585 #Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)"
ulalume3@0 1586 #F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64)
ulalume3@0 1587
ulalume3@0 1588 # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs)
ulalume3@0 1589 #Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1"
ulalume3@0 1590 #F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0))
ulalume3@0 1591 # !!! see below line 1673ff
ulalume3@0 1592
ulalume3@0 1593 aF11corr[iLDR,iN] = F11corr
ulalume3@0 1594 aA[iLDR,iN] = LDRCorr
ulalume3@0 1595
ulalume3@0 1596 aX[0,iN] = GR
ulalume3@0 1597 aX[1,iN] = GT
ulalume3@0 1598 aX[2,iN] = HR
ulalume3@0 1599 aX[3,iN] = HT
ulalume3@0 1600 aX[4,iN] = K
ulalume3@0 1601
ulalume3@0 1602 aLDRCal[iN] = iLDRCal
ulalume3@0 1603 aERaT[iN] = iERaT
ulalume3@0 1604 aERaR[iN] = iERaR
ulalume3@0 1605 aRotaT[iN] = iRotaT
ulalume3@0 1606 aRotaR[iN] = iRotaR
ulalume3@0 1607 aRetT[iN] = iRetT
ulalume3@0 1608 aRetR[iN] = iRetR
ulalume3@0 1609
ulalume3@0 1610 aRotL[iN] = iRotL
ulalume3@0 1611 aRotE[iN] = iRotE
ulalume3@0 1612 aRetE[iN] = iRetE
ulalume3@0 1613 aRotO[iN] = iRotO
ulalume3@0 1614 aRetO[iN] = iRetO
ulalume3@0 1615 aRotC[iN] = iRotC
ulalume3@0 1616 aRetC[iN] = iRetC
ulalume3@0 1617 aDiO[iN] = iDiO
ulalume3@0 1618 aDiE[iN] = iDiE
ulalume3@0 1619 aDiC[iN] = iDiC
ulalume3@0 1620 aTP[iN] = iTP
ulalume3@0 1621 aTS[iN] = iTS
ulalume3@0 1622 aRP[iN] = iRP
ulalume3@0 1623 aRS[iN] = iRS
ulalume3@0 1624
ulalume3@0 1625 # --- END loop
ulalume3@0 1626 btime = clock()
ulalume3@0 1627 print("\r done in ", "{0:5.0f}".format(btime-atime), "sec") #, end="\r")
ulalume3@0 1628
ulalume3@0 1629 # --- Plot -----------------------------------------------------------------
ulalume3@0 1630 #sns.set_style("whitegrid")
ulalume3@0 1631 #sns.set_palette("bright", 6)
ulalume3@0 1632
ulalume3@0 1633 '''
ulalume3@0 1634 fig2 = plt.figure()
ulalume3@0 1635 plt.plot(aA[2,:],'b.')
ulalume3@0 1636 plt.plot(aA[3,:],'r.')
ulalume3@0 1637 plt.plot(aA[4,:],'g.')
ulalume3@0 1638 #plt.plot(aA[6,:],'c.')
ulalume3@0 1639 plt.show
ulalume3@0 1640 '''
ulalume3@0 1641 # Plot LDR
ulalume3@0 1642 def PlotSubHist(aVar, aX, X0, daX, iaX, naX):
ulalume3@0 1643 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
ulalume3@0 1644 iLDR = -1
ulalume3@0 1645 for LDRTrue in LDRrange:
ulalume3@0 1646 iLDR = iLDR + 1
ulalume3@0 1647
ulalume3@0 1648 LDRmin[iLDR] = np.min(aA[iLDR,:])
ulalume3@0 1649 LDRmax[iLDR] = np.max(aA[iLDR,:])
ulalume3@0 1650 Rmin = LDRmin[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
ulalume3@0 1651 Rmax = LDRmax[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
ulalume3@0 1652
ulalume3@0 1653 #plt.subplot(5,2,iLDR+1)
ulalume3@0 1654 plt.subplot(1,5,iLDR+1)
ulalume3@0 1655 (n, bins, patches) = plt.hist(aA[iLDR,:],
ulalume3@0 1656 bins=100, log=False,
ulalume3@0 1657 range=[Rmin, Rmax],
ulalume3@0 1658 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1659
ulalume3@0 1660 for iaX in range(-naX,naX+1):
ulalume3@0 1661 plt.hist(aA[iLDR,aX == iaX],
ulalume3@0 1662 range=[Rmin, Rmax],
ulalume3@0 1663 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5)))
ulalume3@0 1664
ulalume3@0 1665 if (iLDR == 2): plt.legend()
ulalume3@0 1666
ulalume3@0 1667 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1668 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
ulalume3@0 1669
ulalume3@0 1670 #plt.title(LID + ' ' + aVar, fontsize=18)
ulalume3@0 1671 #plt.ylabel('frequency', fontsize=10)
ulalume3@0 1672 #plt.xlabel('LDRcorr', fontsize=10)
ulalume3@0 1673 #fig.tight_layout()
ulalume3@0 1674 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
ulalume3@0 1675 #plt.show()
ulalume3@0 1676 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
ulalume3@0 1677 #plt.close
ulalume3@0 1678 return
ulalume3@0 1679
ulalume3@0 1680 if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
ulalume3@0 1681 if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
ulalume3@0 1682 if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
ulalume3@0 1683 if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
ulalume3@0 1684 if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
ulalume3@0 1685 if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
ulalume3@0 1686 if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
ulalume3@0 1687 if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
ulalume3@0 1688 if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
ulalume3@0 1689 if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
ulalume3@0 1690 if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP)
ulalume3@0 1691 if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS)
ulalume3@0 1692 if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP)
ulalume3@0 1693 if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS)
ulalume3@0 1694 if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
ulalume3@0 1695 if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
ulalume3@0 1696 if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
ulalume3@0 1697 if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
ulalume3@0 1698 if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
ulalume3@0 1699 if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
ulalume3@0 1700 if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1701
ulalume3@0 1702 plt.show()
ulalume3@0 1703 plt.close
ulalume3@0 1704
ulalume3@0 1705 print()
ulalume3@0 1706 #print("IT(LDRtrue) devided by IT(LDRtrue = 0.004)")
ulalume3@0 1707 print(Text1)
ulalume3@0 1708 print()
ulalume3@0 1709
ulalume3@0 1710 iLDR = 5
ulalume3@0 1711 for LDRTrue in LDRrange:
ulalume3@0 1712 iLDR = iLDR - 1
ulalume3@0 1713 aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0
ulalume3@0 1714
ulalume3@0 1715 # Plot F11
ulalume3@0 1716 def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX):
ulalume3@0 1717 fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2))
ulalume3@0 1718 iLDR = -1
ulalume3@0 1719 for LDRTrue in LDRrange:
ulalume3@0 1720 iLDR = iLDR + 1
ulalume3@0 1721
ulalume3@0 1722 '''
ulalume3@0 1723 F11min[iLDR] = np.min(aF11corr[iLDR,:])
ulalume3@0 1724 F11max[iLDR] = np.max(aF11corr[iLDR,:])
ulalume3@0 1725 Rmin = F11min[iLDR] * 0.995 # np.min(aA[iLDR,:]) * 0.995
ulalume3@0 1726 Rmax = F11max[iLDR] * 1.005 # np.max(aA[iLDR,:]) * 1.005
ulalume3@0 1727 '''
ulalume3@0 1728 #Rmin = 0.8
ulalume3@0 1729 #Rmax = 1.2
ulalume3@0 1730
ulalume3@0 1731 #plt.subplot(5,2,iLDR+1)
ulalume3@0 1732 plt.subplot(1,5,iLDR+1)
ulalume3@0 1733 (n, bins, patches) = plt.hist(aF11corr[iLDR,:],
ulalume3@0 1734 bins=100, log=False,
ulalume3@0 1735 alpha=0.5, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1736
ulalume3@0 1737 for iaX in range(-naX,naX+1):
ulalume3@0 1738 plt.hist(aF11corr[iLDR,aX == iaX],
ulalume3@0 1739 bins=100, log=False, alpha=0.3, normed=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5)))
ulalume3@0 1740
ulalume3@0 1741 if (iLDR == 2): plt.legend()
ulalume3@0 1742
ulalume3@0 1743 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1744 #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
ulalume3@0 1745
ulalume3@0 1746 #plt.title(LID + ' ' + aVar, fontsize=18)
ulalume3@0 1747 #plt.ylabel('frequency', fontsize=10)
ulalume3@0 1748 #plt.xlabel('LDRcorr', fontsize=10)
ulalume3@0 1749 #fig.tight_layout()
ulalume3@0 1750 fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05)
ulalume3@0 1751 #plt.show()
ulalume3@0 1752 #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0)
ulalume3@0 1753 #plt.close
ulalume3@0 1754 return
ulalume3@0 1755
ulalume3@0 1756 if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL)
ulalume3@0 1757 if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE)
ulalume3@0 1758 if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE)
ulalume3@0 1759 if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE)
ulalume3@0 1760 if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO)
ulalume3@0 1761 if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO)
ulalume3@0 1762 if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO)
ulalume3@0 1763 if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC)
ulalume3@0 1764 if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC)
ulalume3@0 1765 if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC)
ulalume3@0 1766 if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP)
ulalume3@0 1767 if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS)
ulalume3@0 1768 if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP)
ulalume3@0 1769 if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS)
ulalume3@0 1770 if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT)
ulalume3@0 1771 if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR)
ulalume3@0 1772 if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT)
ulalume3@0 1773 if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR)
ulalume3@0 1774 if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT)
ulalume3@0 1775 if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR)
ulalume3@0 1776 if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal)
ulalume3@0 1777
ulalume3@0 1778 plt.show()
ulalume3@0 1779 plt.close
ulalume3@0 1780 '''
ulalume3@0 1781 # only histogram
ulalume3@0 1782 #print("******************* " + aVar + " *******************")
ulalume3@0 1783 fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10))
ulalume3@0 1784 iLDR = -1
ulalume3@0 1785 for LDRTrue in LDRrange:
ulalume3@0 1786 iLDR = iLDR + 1
ulalume3@0 1787 LDRmin[iLDR] = np.min(aA[iLDR,:])
ulalume3@0 1788 LDRmax[iLDR] = np.max(aA[iLDR,:])
ulalume3@0 1789 Rmin = np.min(aA[iLDR,:]) * 0.999
ulalume3@0 1790 Rmax = np.max(aA[iLDR,:]) * 1.001
ulalume3@0 1791 plt.subplot(5,2,iLDR+1)
ulalume3@0 1792 (n, bins, patches) = plt.hist(aA[iLDR,:],
ulalume3@0 1793 range=[Rmin, Rmax],
ulalume3@0 1794 bins=200, log=False, alpha=0.2, normed=False, color = '0.5', histtype='stepfilled')
ulalume3@0 1795 plt.tick_params(axis='both', labelsize=9)
ulalume3@0 1796 plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2)
ulalume3@0 1797 plt.show()
ulalume3@0 1798 plt.close
ulalume3@0 1799 '''
ulalume3@0 1800
ulalume3@0 1801 # --- Plot LDRmin, LDRmax
ulalume3@0 1802 fig2 = plt.figure()
ulalume3@0 1803 plt.plot(LDRrange,LDRmax-LDRrange, linewidth=2.0, color='b')
ulalume3@0 1804 plt.plot(LDRrange,LDRmin-LDRrange, linewidth=2.0, color='g')
ulalume3@0 1805
ulalume3@0 1806 plt.xlabel('LDRtrue', fontsize=18)
ulalume3@0 1807 plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14)
ulalume3@0 1808 plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18)
ulalume3@0 1809 #plt.ylimit(-0.07, 0.07)
ulalume3@0 1810 plt.show()
ulalume3@0 1811 plt.close
ulalume3@0 1812
ulalume3@0 1813 # --- Save LDRmin, LDRmax to file
ulalume3@0 1814 # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python
ulalume3@0 1815 with open('LDR_min_max_ver7_' + LID + '.dat', 'w') as f:
ulalume3@0 1816 with redirect_stdout(f):
ulalume3@0 1817 print(LID)
ulalume3@0 1818 print("LDRtrue, LDRmin, LDRmax")
ulalume3@0 1819 for i in range(len(LDRrange)):
ulalume3@0 1820 print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrange[i], LDRmin[i], LDRmax[i]))
ulalume3@0 1821
ulalume3@0 1822 '''
ulalume3@0 1823 # --- Plot K over LDRCal
ulalume3@0 1824 fig3 = plt.figure()
ulalume3@0 1825 plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aX[4,:], linewidth=2.0, color='b')
ulalume3@0 1826
ulalume3@0 1827 plt.xlabel('LDRCal', fontsize=18)
ulalume3@0 1828 plt.ylabel('K', fontsize=14)
ulalume3@0 1829 plt.title(LID, fontsize=18)
ulalume3@0 1830 plt.show()
ulalume3@0 1831 plt.close
ulalume3@0 1832 '''
ulalume3@0 1833
ulalume3@0 1834 # Additional plot routines ======>
ulalume3@0 1835 '''
ulalume3@0 1836 #******************************************************************************
ulalume3@0 1837 # 1. Plot LDRcorrected - LDR(measured Icross/Iparallel)
ulalume3@0 1838 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1839 LDRCorra = np.arange(1.,100.)
ulalume3@0 1840 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1841 LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT))
ulalume3@0 1842 if Y == - 1.: LDRa = 1./LDRa
ulalume3@0 1843 #
ulalume3@0 1844 #fig = plt.figure()
ulalume3@0 1845 plt.plot(LDRa,LDRCorra-LDRa)
ulalume3@0 1846 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1847 plt.suptitle('LDRcorrected - LDR(measured Icross/Iparallel)', fontsize=16)
ulalume3@0 1848 plt.xlabel('LDR', fontsize=18)
ulalume3@0 1849 plt.ylabel('LDRCorr - LDR', fontsize=16)
ulalume3@0 1850 #plt.savefig('test.png')
ulalume3@0 1851 #
ulalume3@0 1852 '''
ulalume3@0 1853 '''
ulalume3@0 1854 #******************************************************************************
ulalume3@0 1855 # 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue
ulalume3@0 1856 LDRa = np.arange(1.,100.)*0.005
ulalume3@0 1857 LDRsima = np.arange(1.,100.)
ulalume3@0 1858
ulalume3@0 1859 atruea = (1.-LDRa)/(1+LDRa)
ulalume3@0 1860 Ita = TiT*TiO*IinL*(GT+atruea*HT)
ulalume3@0 1861 Ira = TiR*TiO*IinL*(GR+atruea*HR)
ulalume3@0 1862 LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file
ulalume3@0 1863 if Y == -1.: LDRsima = 1./LDRsima
ulalume3@0 1864 #
ulalume3@0 1865 #fig = plt.figure()
ulalume3@0 1866 plt.plot(LDRa,LDRsima)
ulalume3@0 1867 plt.plot([0.,0.5],[0.,0.5])
ulalume3@0 1868 plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10)
ulalume3@0 1869 plt.xlabel('LDRtrue', fontsize=18)
ulalume3@0 1870 plt.ylabel('LDRsim', fontsize=16)
ulalume3@0 1871 #plt.savefig('test.png')
ulalume3@0 1872 #
ulalume3@0 1873 '''

mercurial