system_settings/optic_input_example_lidar.py

Fri, 25 Jan 2019 13:29:23 +0100

author
Volker Freudenthaler <volker.freudenthaler@lmu.de>
date
Fri, 25 Jan 2019 13:29:23 +0100
changeset 33
f0ef788be93e
parent 28
79fa4a41420f
permissions
-rw-r--r--

updated Improvements_of_lidar_correction_ghk_ver.0.9.8_190124.pdf

volker@12 1 # This Python script will be executed from within the main lidar_correction_ghk.py
volker@12 2 # Probably it will be better in the future to let the main script rather read a conguration file,
volker@12 3 # which might improve the portability of the code within an executable.
volker@12 4 # Due to problems I had with some two letter variables, most variables are now with at least
volker@12 5 # three letters mixed small and capital.
volker@28 6 # Error calculation?
volker@28 7 # False: only calculate the GHK-parameters. True: calculate also errors. Can take a long time.
volker@16 8 Error_Calc = True
volker@16 9
volker@12 10 # Header to identify the lidar system
volker@17 11 #
volker@28 12 EID = "xx" # Earlinet station ID
volker@12 13 LID = "example lidar" # Additional lidar ID (short descriptive text)
volker@12 14 print(" Lidar system :", EID, ", ", LID)
volker@12 15
volker@28 16 # +++ IL Laser beam polarisation and +-Uncertainty
volker@23 17 DOLP, dDOLP, nDOLP = 0.995, 0.005, 1 #degree of linear polarization; default 1
volker@16 18 RotL, dRotL, nRotL = 0., 2., 1 #alpha; rotation of laser polarization in degrees; default 0
volker@13 19
volker@13 20 # +++ ME Emitter optics and +-Uncertainty; default = no emitter optics
volker@28 21 DiE, dDiE, nDiE = 0.0, 0.1, 0 # Diattenuation; default 0
volker@28 22 TiE = 1.0 # Unpolarized transmittance; default 1
volker@28 23 RetE, dRetE, nRetE = 0., 180., 0 # Retardance in degrees; default 0
volker@28 24 RotE, dRotE, nRotE = 0., 1., 0 # beta: Rotation of optical element in degrees; default 0
volker@12 25
volker@13 26 # +++ MO Receiver optics including telescope
volker@28 27 DiO, dDiO, nDiO = 0.0, 0.2, 1 # Diattenuation; default 0
volker@28 28 TiO = 1.0 # Unpolarized transmittance; default 1
volker@28 29 RetO, dRetO, nRetO = 0., 180., 0 # Retardance in degrees; default 0
volker@28 30 RotO, dRotO, nRotO = 0., 0.1, 0 #gamma: Rotation of the optical element in degrees; default 0
volker@13 31
volker@13 32 # +++++ PBS MT Transmitting path defined with TS, TP, PolFilter extinction ratio ERaT, and +-Uncertainty
volker@13 33 # --- Polarizing beam splitter transmitting path
volker@26 34 TP, dTP, nTP = 0.95, 0.01, 1 # transmittance of the PBS for parallel polarized light
volker@28 35 TS, dTS, nTS = 0.005, 0.001, 1 # transmittance of the PBS for cross polarized light
volker@13 36 RetT, dRetT, nRetT = 0.0, 180., 0 # Retardance in degrees
volker@13 37 # --- Pol.Filter behind transmitted path of PBS
volker@28 38 ERaT, dERaT, nERaT = 0.001, 0.001, 0 # Extinction ratio
volker@28 39 RotaT, dRotaT, nRotaT = 0., 1., 0 # Rotation of the Pol.-filter in degrees; usually close to 0° because TP >> TS, but for PollyXTs it can also be close to 90°
volker@13 40 # --
volker@28 41 TiT = 0.5 * (TP + TS) # do not change this
volker@28 42 DiT = (TP-TS)/(TP+TS) # do not change this
volker@28 43 DaT = (1-ERaT)/(1+ERaT) # do not change this
volker@28 44 TaT = 0.5*(1+ERaT) # do not change this
volker@12 45
volker@28 46 # +++++ PBS MR Reflecting path defined with RS, RP, and cleaning PolFilter extinction ratio ERaR and +-Uncertainty
volker@13 47 # ---- for PBS without absorption the change of RS and RP must depend on the change of TP and TS. Hence the values and uncertainties are not independent.
volker@28 48 RS_RP_depend_on_TS_TP = True
volker@13 49 # --- Polarizing beam splitter reflecting path
volker@13 50 if(RS_RP_depend_on_TS_TP):
volker@13 51 RP, dRP, nRP = 1-TP, 0.00, 0 # do not change this
volker@13 52 RS, dRS, nRS = 1-TS, 0.00, 0 # do not change this
volker@13 53 else:
volker@26 54 RP, dRP, nRP = 0.05, 0.01, 1 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for parallel polarized light
volker@26 55 RS, dRS, nRS = 0.98, 0.01, 1 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for cross polarized light
volker@26 56 RetR, dRetR, nRetR = 0.0, 180., 0 # Retardance in degrees
volker@13 57 # --- Pol.Filter behind reflected path of PBS
volker@16 58 ERaR, dERaR, nERaR = 0.001, 0.001, 1 # Extinction ratio
volker@16 59 RotaR, dRotaR, nRotaR = 90., 1., 1 # Rotation of the Pol.-filter in degrees; usually 90° because RS >> RP, but for PollyXTs it can also be 0°
volker@13 60 # --
volker@28 61 TiR = 0.5 * (RP + RS) # do not change this
volker@28 62 DiR = (RP-RS)/(RP+RS) # do not change this
volker@28 63 DaR = (1-ERaR)/(1+ERaR) # do not change this
volker@28 64 TaR = 0.5*(1+ERaR) # do not change this
volker@28 65 # NEW --- Additional ND filter transmission (attenuation) during the calibration
volker@28 66 TCalT, dTCalT, nTCalT = 1, 0.01, 0 # transmitting path, default 1, 0, 0
volker@28 67 TCalR, dTCalR, nTCalR = 0.1, 0.001, 1 # reflecting path, default 1, 0, 0
volker@12 68
volker@28 69 # +++ Orientation of the PBS with respect to the reference plane (see Improvements_of_lidar_correction_ghk_ver.0.9.8_190124.pdf)
volker@28 70 # Y = +1: polarisation in reference plane is finally transmitted,
volker@28 71 # Y = -1: polarisation in reference plane is finally reflected.
volker@13 72 Y = +1.
volker@12 73
volker@28 74 # +++ Calibrator
volker@28 75
volker@12 76 # --- Calibrator Type used; defined by matrix values below
volker@12 77 TypeC = 3 #Type of calibrator: 1 = mechanical rotator; 2 = hwp rotator (fixed retardation); 3 = linear polarizer; 4 = qwp; 5 = circular polarizer; 6 = real HWP calibration +-22.5°
volker@28 78
volker@28 79 # --- Calibrator Location
volker@28 80 LocC = 3 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS
volker@13 81 # --- MC Calibrator parameters
volker@12 82 if TypeC == 1: #mechanical rotator
volker@26 83 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation
volker@12 84 TiC = 1.
volker@26 85 RetC, dRetC, nRetC = 0., 0., 0 # Retardance in degrees
volker@26 86 RotC, dRotC, nRotC = 0., 0.1, 1 #constant calibrator rotation offset epsilon
volker@12 87 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements
volker@12 88 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 1 calibrator
volker@28 89 elif TypeC == 2: # HWP simulated by rotator without retardance!
volker@26 90 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0
volker@12 91 TiC = 1.
volker@26 92 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees
volker@12 93 #NOTE: use here twice the HWP-rotation-angle
volker@26 94 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
volker@12 95 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 2 calibrator
volker@16 96 elif TypeC == 3: # linear polarizer calibrator. Diattenuation DiC = (1-ERC)/(1+ERC); ERC = extinction ratio of calibrator
volker@28 97 DiC, dDiC, nDiC = 0.9998, 0.00019, 1 # Diattenuation; ideal 1.0
volker@16 98 TiC = 0.4 # ideal 0.5
volker@28 99 RetC, dRetC, nRetC = 0., 180., 3 # Retardance in degrees
volker@26 100 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator rotation offset epsilon
volker@12 101 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator
volker@12 102 elif TypeC == 4: # QWP calibrator
volker@26 103 DiC, dDiC, nDiC = 0.0, 0., 0 # Diattenuation; ideal 0.0
volker@12 104 TiC = 1.0 # ideal 0.5
volker@26 105 RetC, dRetC, nRetC = 90., 0., 0 # Retardance in degrees
volker@26 106 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
volker@12 107 RotationErrorEpsilonForNormalMeasurements = False # is False for TypeC == 4 calibrator
volker@26 108 elif TypeC == 6: # real half-wave plate rotator calibration at +-22.5° => rotated_diattenuator_X22x5deg.odt
volker@26 109 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0
volker@12 110 TiC = 1.
volker@26 111 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees
volker@12 112 #Note: use real HWP angles here
volker@26 113 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon
volker@12 114 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 6 calibrator
volker@12 115 else:
volker@12 116 print ('calibrator not implemented yet')
volker@12 117 sys.exit()
volker@12 118
volker@16 119 # --- LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements in calibration range with almost clean air (first guess)
volker@28 120 LDRCal,dLDRCal,nLDRCal= 0.2, 0.15, 1 # spans most of the atmospheric depolarisation variability
volker@28 121 # LDRCal,dLDRCal,nLDRCal= 0.009, 0.005, 1 # spans the interference filter influence
volker@21 122
volker@12 123 # ====================================================
volker@12 124 # NOTE: there is no need to change anything below.
volker@28 125 # ====================================================
volker@28 126 # !!! don't change anything in this section !!!
volker@28 127 # NEW ***
volker@28 128 bPlotEtax = False # plot error histogramms for Etax
volker@28 129
volker@28 130 # *** Only for signal noise errors ***
volker@28 131 nNCal = 0 # error nNCal, calibration signals: one-sigma in steps to left and right
volker@28 132 nNI = 0 # error nNI, 0° signals: one-sigma in steps to left and right; NI signals are calculated from NCalT and NCalR in main programm, but noise is assumed to be independent.
volker@28 133
volker@28 134 # --- number of photon counts in the signal summed up in the calibration range during the calibration measurements
volker@28 135 NCalT = 28184 # default 1e6, assumed the same in +45° and -45° signals
volker@28 136 NCalR = 28184 # default 1e6, assumed the same in +45° and -45° signals
volker@28 137 NILfac = 2 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2
volker@28 138 # LDRmeas below will be used to calculate IR and IT of 0° signals.
volker@28 139 # calculate signal counts only from parallel 0° signal assuming the same electronic amplification in both channels; overwrites above values
volker@28 140 CalcFrom0deg = True
volker@28 141 NI = 1e5 #number of photon counts in the parallel 0°-signal
volker@28 142
volker@28 143 if(CalcFrom0deg):
volker@28 144 # either eFactT or eFacR is = 1 => rel. amplification
volker@28 145 eFacT = 1 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1
volker@28 146 eFacR = 10 # rel. amplification of reflected channel, approximate values are sufficient; def. = 1
volker@28 147 NILfac = 2 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2
volker@28 148
volker@28 149 NCalT = NI / NILfac * TCalT * eFacT # photon counts in transmitted signal during calibration
volker@28 150 NCalR = NI / NILfac * TCalR * eFacR # photon counts in reflected signal during calibration
volker@28 151 # LDRmeas below will be used to calculate IR and IT of 0° signals.
volker@28 152 # NEW *** End of signal noise error parameters ***
volker@28 153
volker@12 154
volker@12 155 # --- LDRtrue for simulation of measurement => LDRsim
volker@12 156 LDRtrue = 0.4
volker@12 157 LDRtrue2 = 0.004
volker@12 158
volker@12 159 # --- measured LDRm will be corrected with calculated parameters GHK
volker@12 160 LDRmeas = 0.3
volker@12 161
volker@12 162 # --- this is just for correct transfer of the variables to the main file
volker@23 163 DOLP0, dDOLP, nDOLP = DOLP, dDOLP, nDOLP
volker@12 164 RotL0, dRotL, nRotL = RotL, dRotL, nRotL
volker@12 165 # Emitter
volker@12 166 DiE0, dDiE, nDiE = DiE, dDiE, nDiE
volker@12 167 RetE0, dRetE, nRetE = RetE, dRetE, nRetE
volker@12 168 RotE0, dRotE, nRotE = RotE, dRotE, nRotE
volker@12 169 # Receiver
volker@12 170 DiO0, dDiO, nDiO = DiO, dDiO, nDiO
volker@12 171 RetO0, dRetO, nRetO = RetO, dRetO, nRetO
volker@12 172 RotO0, dRotO, nRotO = RotO, dRotO, nRotO
volker@12 173 # Calibrator
volker@12 174 DiC0, dDiC, nDiC = DiC, dDiC, nDiC
volker@12 175 RetC0, dRetC, nRetC = RetC, dRetC, nRetC
volker@12 176 RotC0, dRotC, nRotC = RotC, dRotC, nRotC
volker@12 177 # PBS
volker@12 178 TP0, dTP, nTP = TP, dTP, nTP
volker@12 179 TS0, dTS, nTS = TS, dTS, nTS
volker@12 180 RetT0, dRetT, nRetT = RetT, dRetT, nRetT
volker@12 181
volker@12 182 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT
volker@12 183 RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT
volker@12 184
volker@12 185 RP0, dRP, nRP = RP, dRP, nRP
volker@12 186 RS0, dRS, nRS = RS, dRS, nRS
volker@12 187 RetR0, dRetR, nRetR = RetR, dRetR, nRetR
volker@12 188
volker@12 189 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR
volker@12 190 RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR
volker@12 191
volker@12 192 LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal

mercurial