|
1 # This Python script will be executed from within the main lidar_correction_ghk.py |
|
2 # Probably it will be better in the future to let the main script rather read a conguration file, |
|
3 # which might improve the portability of the code within an executable. |
|
4 # Due to problems I had with some two letter variables, most variables are now with at least |
|
5 # three letters mixed small and capital. |
|
6 # To be used with lidar_correction_ghk.py ver. 0.9.5 and larger |
|
7 |
|
8 # Do you want to calculate the errors? If not, just the GHK-parameters are determined. |
|
9 Error_Calc = True |
|
10 |
|
11 # Header to identify the lidar system |
|
12 EID = "li" # Earlinet station ID |
|
13 LID = "PollyXT Lacros Limassol" # Additional lidar ID (short descriptive text) |
|
14 print(" Lidar system :", EID, ", ", LID) |
|
15 |
|
16 # +++ IL Laser and +-Uncertainty |
|
17 Qin, dQin, nQin = 1.0, 0.0, 0 # second Stokes vector parameter; default 1 => linear polarization 0.999 => LDR = 0.0005 |
|
18 Vin, dVin, nVin = 0.0, 0.0, 0 # fourth Stokes vector parameter; default 0 => corresponds to LDR 0.0005 with DOP 1 |
|
19 RotL, dRotL, nRotL = 90.0, 1.0, 1 #alpha; rotation of laser polarization in degrees; alle wellenlängen im PollyXT Lacros sind vertical zum opt. Tisch polarisiert. |
|
20 |
|
21 # +++ ME Emitter optics and +-Uncertainty; default = no emitter optics |
|
22 DiE, dDiE, nDiE = 0.0, 0.02, 0 # Diattenuation |
|
23 TiE = 1.0 # Unpolarized transmittance |
|
24 RetE, dRetE, nRetE = 0., 180., 0 # Retardance in degrees |
|
25 RotE, dRotE, nRotE = 0., 1.0, 0 # beta: Rotation of the optical element in degrees |
|
26 |
|
27 # +++ MO Receiver optics including telescope |
|
28 DiO, dDiO, nDiO = 0.0, 0.0, 0 # Diattenuation |
|
29 TiO = 1.0 # Unpolarized transmittance |
|
30 RetO, dRetO, nRetO = 0., 180., 0 # Retardance in degrees |
|
31 RotO, dRotO, nRotO = 0., 0.5, 0 # gamma: Rotation of the optical element in degrees |
|
32 |
|
33 # +++++ PBS MT Transmitting path defined with TS, TP, PolFilter extinction ratio ERaT, and +-Uncertainty |
|
34 # --- Polarizing beam splitter transmitting path |
|
35 TP, dTP, nTP = 0.50, 1.0, 0 # transmittance of the PBS for parallel polarized light |
|
36 TS, dTS, nTS = 0.50, 1.0, 0 # transmittance of the PBS for cross polarized light |
|
37 RetT, dRetT, nRetT = 0.0, 180., 0 # Retardance in degrees |
|
38 # --- Pol.Filter behind transmitted path of PBS |
|
39 ERaT, dERaT, nERaT = 0.00075, 0.00025, 0 # Extinction ratio |
|
40 RotaT, dRotaT, nRotaT = 0., 1., 1 # Rotation of the Pol.-filter in degrees; usually close to 0° because TP >> TS, but for PollyXTs it can also be close to 90° |
|
41 # -- |
|
42 TiT = 0.5 * (TP + TS) # do not change this |
|
43 DiT = (TP-TS)/(TP+TS) # do not change this |
|
44 DaT = (1-ERaT)/(1+ERaT) # do not change this |
|
45 TaT = 0.5*(1+ERaT) # do not change this |
|
46 |
|
47 # +++++ PBS MR Reflecting path defined with RS, RP, and cleaning PolFilter extinction ratio ERaR and +-Uncertainty |
|
48 # ---- for PBS without absorption the change of RS and RP must depend on the change of TP and TS. Hence the values and uncertainties are not independent. |
|
49 RS_RP_depend_on_TS_TP = True |
|
50 # --- Polarizing beam splitter reflecting path |
|
51 if(RS_RP_depend_on_TS_TP): |
|
52 RP, dRP, nRP = 1-TP, 0.00, 0 # do not change this |
|
53 RS, dRS, nRS = 1-TS, 0.00, 0 # do not change this |
|
54 else: |
|
55 RP, dRP, nRP = 0.5, 0.01, 0 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for parallel polarized light |
|
56 RS, dRS, nRS = 0.5, 0.01, 0 # change this if RS_RP_depend_on_TS_TP = False; reflectance of the PBS for cross polarized light |
|
57 RetR, dRetR, nRetR = 0.0, 180., 0 # Retardance in degrees |
|
58 # --- Pol.Filter behind reflected path of PBS |
|
59 ERaR, dERaR, nERaR = 1.0, 0.0, 0 # Extinction ratio |
|
60 RotaR, dRotaR, nRotaR = 0., 1., 0 # Rotation of the Pol.-filter in degrees; usually close to 90° because RS >> RP, but for PollyXTs it can also be close to 0° |
|
61 # -- |
|
62 TiR = 0.5 * (RP + RS) # do not change this |
|
63 DiR = (RP-RS)/(RP+RS) # do not change this |
|
64 DaR = (1-ERaR)/(1+ERaR) # do not change this |
|
65 TaR = 0.5*(1+ERaR) # do not change this |
|
66 |
|
67 # NEW --- Additional ND filter transmission (attenuation) during the calibration |
|
68 TCalT, dTCalT, nTCalT = 1, 0.01, 0 # transmitting path, default 1, 0, 0 |
|
69 TCalR, dTCalR, nTCalR = 1, 0.0001, 0 # reflecting path, default 1, 0, 0 |
|
70 |
|
71 # +++ Orientation of the PBS with respect to the reference plane (see Improvements_of_lidar_correction_ghk_ver.0.9.8_190124.pdf) |
|
72 # Y = +1: polarisation in reference plane is finally transmitted, |
|
73 # Y = -1: polarisation in reference plane is finally reflected. |
|
74 Y = +1. |
|
75 |
|
76 # +++ Calibrator |
|
77 # --- Calibrator Type used; defined by matrix values below |
|
78 TypeC = 3 #Type of calibrator: 1 = mechanical rotator; 2 = hwp rotator (fixed retardation); 3 = linear polarizer; 4 = qwp; 5 = circular polarizer; 6 = real HWP calibration +-22.5° |
|
79 # --- Calibrator Location |
|
80 LocC = 3 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS |
|
81 # --- MC Calibrator parameters |
|
82 if TypeC == 1: #mechanical rotator |
|
83 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation |
|
84 TiC = 1. |
|
85 RetC, dRetC, nRetC = 0., 0., 0 # Retardance in degrees |
|
86 RotC, dRotC, nRotC = 0., 1.0, 1 #constant calibrator rotation offset epsilon |
|
87 # Rotation error without calibrator: if False, then epsilon = 0 for normal measurements |
|
88 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 1 calibrator |
|
89 elif TypeC == 2: # HWP simulated by rotator without retardance! |
|
90 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0 |
|
91 TiC = 1. |
|
92 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees |
|
93 #NOTE: use here twice the HWP-rotation-angle |
|
94 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon |
|
95 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 2 calibrator |
|
96 elif TypeC == 3: # linear polarizer calibrator. Diattenuation DiC = (1-ERC)/(1+ERC); ERC = extinction ratio of calibrator |
|
97 DiC, dDiC, nDiC = 0.9985, 0.0005, 1 # Diattenuation; ideal 1.0 |
|
98 TiC = 0.4 # ideal 0.5 |
|
99 RetC, dRetC, nRetC = 0., 0., 0 # Retardance in degrees |
|
100 RotC, dRotC, nRotC = 0.0, 0.1, 0 #constant calibrator rotation offset epsilon |
|
101 RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator |
|
102 elif TypeC == 4: # QWP calibrator |
|
103 DiC, dDiC, nDiC = 0.0, 0., 0 # Diattenuation; ideal 0.0 |
|
104 TiC = 1.0 # ideal 0.5 |
|
105 RetC, dRetC, nRetC = 90., 0., 0 # Retardance in degrees |
|
106 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon |
|
107 RotationErrorEpsilonForNormalMeasurements = False # is False for TypeC == 4 calibrator |
|
108 elif TypeC == 6: # real half-wave plate rotator calibration at +-22.5° => rotated_diattenuator_X22x5deg.odt |
|
109 DiC, dDiC, nDiC = 0., 0., 0 # Diattenuation; ideal 0.0 |
|
110 TiC = 1. |
|
111 RetC, dRetC, nRetC = 180., 0., 0 # Retardance in degrees |
|
112 #Note: use real HWP angles here |
|
113 RotC, dRotC, nRotC = 0.0, 0.1, 1 #constant calibrator rotation offset epsilon |
|
114 RotationErrorEpsilonForNormalMeasurements = True # is in general True for TypeC == 6 calibrator |
|
115 else: |
|
116 print ('calibrator not implemented yet') |
|
117 sys.exit() |
|
118 |
|
119 # --- LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements in calibration range with almost clean air (first guess) |
|
120 # LDRCal,dLDRCal,nLDRCal= 0.2, 0.15, 1 # spans most of the atmospheric depolarisation variability |
|
121 LDRCal,dLDRCal,nLDRCal= 0.009, 0.005, 1 # spans the interference filter influence |
|
122 |
|
123 # ==================================================== |
|
124 # NOTE: there is no need to change anything below. |
|
125 # ==================================================== |
|
126 # !!! don't change anything in this section !!! |
|
127 bPlotEtax = False # plot error histogramms for Etax |
|
128 # NEW *** Only for signal noise errors *** |
|
129 nNCal = 0 # error nNCal, calibration signals: one-sigma (fixed) in nNCal steps to left and right |
|
130 nNI = 0 # error nNI, 0° signals: one-sigma (fixed) in nNI steps to left and right; NI signals are calculated from NCalT and NCalR in main programm, but noise is assumed to be independent. |
|
131 |
|
132 # --- number of photon counts in the signal summed up in the calibration range during the calibration measurements |
|
133 NCalT = 40000 # default 1e6, assumed the same in +45° and -45° signals; counts with ND-filter TCalT |
|
134 NCalR = 40000 # default 1e6, assumed the same in +45° and -45° signals; counts with ND-filter TCalR |
|
135 NILfac = 1 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2 |
|
136 # LDRmeas below will be used to calculate IR and IT of 0° signals. |
|
137 # calculate signal counts only from parallel 0° signal assuming the same electronic amplification in both channels; overwrites above values |
|
138 CalcFrom0deg = True |
|
139 NI = 100000000 #number of photon counts in the parallel 0°-signal 40000 |
|
140 |
|
141 if(CalcFrom0deg): |
|
142 # either eFactT or eFacR is = 1 => rel. amplification |
|
143 eFacT = 1 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1 |
|
144 eFacR = 1 # rel. amplification of reflected channel, approximate values are sufficient; def. = 1 |
|
145 NILfac = 1 # (relative duration (laser shots) of standard (0°) measurement to calibration measurements) * (range of std. meas. smoothing / calibration range); example: 100000#/5000# * 100/1000 = 2 |
|
146 |
|
147 NCalT = NI / NILfac * TCalT * eFacT # photon counts in transmitted signal during calibration |
|
148 NCalR = NI / NILfac * TCalR * eFacR # photon counts in reflected signal during calibration |
|
149 # LDRmeas below will be used to calculate IR and IT of 0° signals. |
|
150 # NEW *** End of signal noise error parameters *** |
|
151 |
|
152 # --- LDRtrue for simulation of measurement => LDRsim |
|
153 LDRtrue = 0.004 |
|
154 LDRtrue2 = 0.004 |
|
155 |
|
156 # --- measured LDRm will be corrected with calculated parameters GHK |
|
157 LDRmeas = 0.3 |
|
158 |
|
159 # --- this is just for correct transfer of the variables to the main file |
|
160 Qin0, dQin, nQin = Qin, dQin, nQin |
|
161 Vin0, dVin, nVin = Vin, dVin, nVin |
|
162 RotL0, dRotL, nRotL = RotL, dRotL, nRotL |
|
163 # Emitter |
|
164 DiE0, dDiE, nDiE = DiE, dDiE, nDiE |
|
165 RetE0, dRetE, nRetE = RetE, dRetE, nRetE |
|
166 RotE0, dRotE, nRotE = RotE, dRotE, nRotE |
|
167 # Receiver |
|
168 DiO0, dDiO, nDiO = DiO, dDiO, nDiO |
|
169 RetO0, dRetO, nRetO = RetO, dRetO, nRetO |
|
170 RotO0, dRotO, nRotO = RotO, dRotO, nRotO |
|
171 # Calibrator |
|
172 DiC0, dDiC, nDiC = DiC, dDiC, nDiC |
|
173 RetC0, dRetC, nRetC = RetC, dRetC, nRetC |
|
174 RotC0, dRotC, nRotC = RotC, dRotC, nRotC |
|
175 # PBS |
|
176 TP0, dTP, nTP = TP, dTP, nTP |
|
177 TS0, dTS, nTS = TS, dTS, nTS |
|
178 RetT0, dRetT, nRetT = RetT, dRetT, nRetT |
|
179 |
|
180 ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT |
|
181 RotaT0,dRotaT,nRotaT= RotaT,dRotaT,nRotaT |
|
182 |
|
183 RP0, dRP, nRP = RP, dRP, nRP |
|
184 RS0, dRS, nRS = RS, dRS, nRS |
|
185 RetR0, dRetR, nRetR = RetR, dRetR, nRetR |
|
186 |
|
187 ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR |
|
188 RotaR0,dRotaR,nRotaR= RotaR,dRotaR,nRotaR |
|
189 |
|
190 LDRCal0,dLDRCal,nLDRCal=LDRCal,dLDRCal,nLDRCal |