Sat, 30 May 2020 00:58:15 +0200
Updated version 0.9.8e5
GHK_0.9.8e4_Py3.7.py | file | annotate | diff | comparison | revisions | |
GHK_0.9.8e5_Py3.7.py | file | annotate | diff | comparison | revisions | |
Improvements_of_lidar_correction_ghk_200529.pdf | file | annotate | diff | comparison | revisions | |
Improvements_of_the_GHK_script_200529.pdf | file | annotate | diff | comparison | revisions |
--- a/GHK_0.9.8e4_Py3.7.py Fri May 29 23:57:43 2020 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2899 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Copyright 2016, 2019 Volker Freudenthaler - -Licensed under the EUPL, Version 1.1 only (the "Licence"). - -You may not use this work except in compliance with the Licence. -A copy of the licence is distributed with the code. Alternatively, you may obtain -a copy of the Licence at: - -https://joinup.ec.europa.eu/community/eupl/og_page/eupl - -Unless required by applicable law or agreed to in writing, software distributed -under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS -OF ANY KIND, either express or implied. See the Licence for the specific language governing -permissions and limitations under the Licence. - -Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf -With equations code from Appendix C -Python 3.7, seaborn 0.9.0 - -Code description: - -From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR) -because of the cross talk between the channles and systematic errors of a lidar system. -http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors, -with which the measured signals can be corrected. -This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K). -The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to -uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the -gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true" -GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRCorr), -which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue. -A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal -in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for -"assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error -calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol -content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005). - -Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file. - -Ver. 0.9.7: includes the random error (signal noise) of the calibration and standard measurements -Changes: - Line 1687 Eta = (TaR * TiR) / (TaT * TiT) - Line 1691 K = Etax / Eta # K of the real system; but correction in Line 1721 with K0 / Etax - should work with nTCalT = nTCalR = 0 -Ver. 0.9.7b: - ToDo: include error due to TCalT und TCalR => determination of NCalT and NCalR etc. in error calculation line 1741ff - combined error loops iNI and INCal for signals -Ver. 0.9.7c: individual error loops for each of the six signals -Ver. 0.9.7c2: different calculation of the signal noise errors -Ver. 0.9.7c3: n.a.different calculation of the signal noise errors -Ver. 0.9.7c4: test to speed up the loops for error calculation by moving them just before the actual calculation: still some code errors -Ver. 0.9.8: - - correct calculation of Eta for cleaned anaylsers considering the combined transmission Eta = (TaT* TiT)(1 + cos2RotaT * DaT * DiT) and (TaR * TiR)(1 + cos2RotaR * DaR * DiR) according to the papers supplement Eqs. (S.10.10.1) ff - - calculation of the PLDR from LDR and BSR, BSR, and LDRm - - ND-filters can be added for the calibration measurements in the transmitted (TCalT) and the reflected path (TCalR) in order to include their uncertainties in the error calculation. -Ver. 0.9.8b: change from "TTa = TiT * TaT" to "TTa = TiT * TaT * ATPT" etc. (compare ver 0.9.8 with 0.9.8b) removes - - the strong Tp dependence of the errors - - the factor 2 in the GH parameters - - see c:\technik\Optik\Polarizers\DepCal\ApplOpt\GH-parameters-190114.odt -Ver. 0.9.8c: includes error of Etax -Ver. 0.9.8d: Eta0, K0 etc in error loop replaced by Eta0y, K0y etc. Changes in signal noise calculations -Ver. 0.9.8e: ambiguous laser spec. DOLP (no discrimination between left and right circular polarisation) replaced by Stokes parameters Qin, Uin -Ver. 0.9.8e2: Added plot of LDRsim, Etax, Etapx, Etamx; LDRCorr and aLDRcorr consistently named -Ver. 0.9.8e3: Change of OutputFile name; Change of Ir and It noise if (CalcFrom0deg) = False; (Different calculation of error contributions tested but not implemented) -Ver. 0.9.8e4: text changed for y=+-1 (see line 274 ff and line 1044 ff - - ======================================================== -simulation: LDRsim = Ir / It with variable parameters (possible truths) - G,H,Eta,Etax,K - It = TaT * TiT * ATP1 * TiO * TiE * (GT + atrue * HT) - LDRsim = Ir / It -consistency test: is forward simulation and correction consistent? - LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) => atrue? -assumed true: G0,H0,Eta0,Etax0,K0 => actual retrievals of LDRCorr - => correct possible truths with assumed true G0,H0,Eta0 - measure: It, Ir, EtaX - coorect it with: G0,H0,K0 - LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim0 / (Etax / K0) * (GT0 - HT0)) -""" -# Comment: The code might works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements. -from __future__ import print_function -# !/usr/bin/env python3 - -import os -import sys - -from scipy.stats import kurtosis -from scipy.stats import skew -# use: kurtosis(data, fisher=True,bias=False) => 0; skew(data,bias=False) => 0 -# Comment: the seaborn library makes nicer plots, but the code works also without it. -import numpy as np -import matplotlib.pyplot as plt - -try: - import seaborn as sns - - sns_loaded = True -except ImportError: - sns_loaded = False - -# from time import clock # python 2 -from timeit import default_timer as clock - -# from matplotlib.backends.backend_pdf import PdfPages -# pdffile = '{}.pdf'.format('path') -# pp = PdfPages(pdffile) -## pp.savefig can be called multiple times to save to multiple pages -# pp.savefig() -# pp.close() - -from contextlib import contextmanager - -@contextmanager -def redirect_stdout(new_target): - old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout - try: - yield new_target # run some code with the replaced stdout - finally: - sys.stdout.flush() - sys.stdout = old_target # restore to the previous value - -''' -real_raw_input = vars(__builtins__).get('raw_input',input) -''' -try: - import __builtin__ - - input = getattr(__builtin__, 'raw_input') -except (ImportError, AttributeError): - pass - -from distutils.util import strtobool - - -def user_yes_no_query(question): - sys.stdout.write('%s [y/n]\n' % question) - while True: - try: - return strtobool(input().lower()) - except ValueError: - sys.stdout.write('Please respond with \'y\' or \'n\'.\n') - - -# if user_yes_no_query('want to exit?') == 1: sys.exit() - -abspath = os.path.abspath(__file__) -dname = os.path.dirname(abspath) -fname = os.path.basename(abspath) -os.chdir(dname) - -# PrintToOutputFile = True - -sqr05 = 0.5 ** 0.5 - -# ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below -# Do you want to calculate the errors? If not, just the GHK-parameters are determined. -Error_Calc = True -LID = "internal" -EID = "internal" -# --- IL Laser IL and +-Uncertainty -Qin, dQin, nQin = 1., 0.0, 0 # second Stokes vector parameter; default 1 => linear polarization -Vin, dVin, nVin = 0., 0.0, 0 # fourth Stokes vector parameter -RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0 -# IL = 1e5 #photons in the laser beam, including detection efficiency of the telescope, atmodspheric and r^2 attenuation -# --- ME Emitter and +-Uncertainty -DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation -TiE = 1. # Unpolarized transmittance -RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees -RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees -# --- MO Receiver Optics including telescope -DiO, dDiO, nDiO = -0.055, 0.003, 1 -TiO = 0.9 -RetO, dRetO, nRetO = 0., 180.0, 2 -RotO, dRotO, nRotO = 0., 0.1, 1 # gamma -# --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty -TP, dTP, nTP = 0.98, 0.02, 1 -TS, dTS, nTS = 0.001, 0.001, 1 -TiT = 0.5 * (TP + TS) -DiT = (TP - TS) / (TP + TS) -# PolFilter -RetT, dRetT, nRetT = 0., 180., 0 -ERaT, dERaT, nERaT = 0.001, 0.001, 1 -RotaT, dRotaT, nRotaT = 0., 3., 1 -DaT = (1 - ERaT) / (1 + ERaT) -TaT = 0.5 * (1 + ERaT) -# --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty -RS_RP_depend_on_TS_TP = False -if (RS_RP_depend_on_TS_TP): - RP, dRP, nRP = 1 - TP, 0.0, 0 - RS, dRS, nRS = 1 - TS, 0.0, 0 -else: - RP, dRP, nRP = 0.05, 0.01, 1 - RS, dRS, nRS = 0.98, 0.01, 1 -TiR = 0.5 * (RP + RS) -DiR = (RP - RS) / (RP + RS) -# PolFilter -RetR, dRetR, nRetR = 0., 180., 0 -ERaR, dERaR, nERaR = 0.001, 0.001, 1 -RotaR, dRotaR, nRotaR = 90., 3., 1 -DaR = (1 - ERaR) / (1 + ERaR) -TaR = 0.5 * (1 + ERaR) - -# +++ Orientation of the PBS with respect to the reference plane (see Polarisation-orientation.png and Polarisation-orientation-2.png in /system_settings) -# Y = +1: PBS incidence plane is parallel to reference plane and polarisation in reference plane is finally transmitted. -# Y = -1: PBS incidence plane is perpendicular to reference plane and polarisation in reference plane is finally reflected. -Y = 1. - -# Calibrator = type defined by matrix values -LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4 - -# --- Additional attenuation (transmission of the ND-filter) during the calibration -TCalT, dTCalT, nTCalT = 1, 0., 0 # transmitting path; error calc not working yet -TCalR, dTCalR, nTCalR = 1, 0., 0 # reflecting path; error calc not working yet - -# *** signal noise error calculation -# --- number of photon counts in the signal summed up in the calibration range during the calibration measurements -NCalT = 1e6 # default 1e6, assumed the same in +45° and -45° signals -NCalR = 1e6 # default 1e6, assumed the same in +45° and -45° signals -NILfac = 1.0 # duration of standard (0°) measurement relative to calibration measurements -nNCal = 0 # error nNCal: one-sigma in steps to left and right for calibration signals -nNI = 0 # error nNI: one-sigma in steps to left and right for 0° signals -NI = 50000 #number of photon counts in the parallel 0°-signal -eFacT = 1.0 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1 -eFacR = 10.0 -IoutTp0, IoutTp, dIoutTp0 = 0.5, 0.5, 0.0 -IoutTm0, IoutTm, dIoutTm0 = 0.5, 0.5, 0.0 -IoutRp0, IoutRp, dIoutRp0 = 0.5, 0.5, 0.0 -IoutRm0, IoutRm, dIoutRm0 = 0.5, 0.5, 0.0 -It0, It, dIt0 = 1 , 1, 0 -Ir0, Ir, dTr0 = 1 , 1, 0 -CalcFrom0deg = True - -TypeC = 3 # linear polarizer calibrator -# example with extinction ratio 0.001 -DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0 -TiC = 0.5 # ideal 0.5 -RetC, dRetC, nRetC = 0.0, 0.0, 0 -RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon -RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator - -# Rotation error without calibrator: if False, then epsilon = 0 for normal measurements -RotationErrorEpsilonForNormalMeasurements = True -# BSR backscatter ratio -# BSR, dBSR, nBSR = 10, 0.05, 1 -BSR = np.zeros(5) -BSR = [1.1, 2, 5, 10., 50.] -# theoretical molecular LDR LDRm -LDRm, dLDRm, nLDRm = 0.004, 0.001, 1 -# LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) -LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1 -LDRCal = LDRCal0 -# measured LDRm will be corrected with calculated parameters -LDRmeas = 0.015 -# LDRtrue for simulation of measurement => LDRsim -LDRtrue = 0.004 -LDRtrue2 = 0.004 -LDRunCorr = 1. -# Initialize other values to 0 -ER, nER, dER = 0.001, 0, 0.001 -K = 0. -Km = 0. -Kp = 0. -LDRCorr = 0. -Eta = 0. -Ir = 0. -It = 0. -h = 1. - -Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS'] -Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer', - 'real HWP +-22.5°'] - -bPlotEtax = False - -# end of initial definition of variables -# ******************************************************************************************************************************* -# --- Read actual lidar system parameters from optic_input.py (must be in the programs sub-directory 'system_settings') -# ******************************************************************************************************************************* - -# InputFile = 'optic_input_example_2_1.py' -# InputFile = 'ALidar-355-F-3-3c2-0.9.8d.py' -# InputFile = 'Polarimeter-4C3-ver0.98e.py' -# InputFile = 'Polarimeter-4A-ver0.98e.py' -InputFile = 'optic_input_raym-200-02-18-ver0.9.8e.py' -InputFile = 'optic_input_raym-200-04-17-ver0.9.8e.py' -InputFile = 'optic_input_raym-200-04-17-ver0.9.8e-extended.py' -InputFile = 'Adam_ver0.98.py' -InputFile = 'MUSA-B3A-ver0.98e.py' -InputFile = 'MUSA-B4A-ver0.98e.py' -# InputFile = 'MUSA-A3C-ver0.98e.py' -InputFile = 'optic_input_ver0.98e_LILI_532_May2020.py' -InputFile = 'optic_input_ver0.98e_LILI_532_May2020_RotL=90.py' -InputFile = 'optic_input_0.9.8e4-PollyXT_Lacros.py' -InputFile = 'optic_input_UPC-lidar_0.9.8e4.py' -InputFile = 'optic_input_UV-Pot-ver0.9.8e.py' -InputFile = 'optic_input_0.9.8e4-PollyXT_Lacros.py' -InputFile = 'optic_input_example_lidar_ver0.9.8e.py' - -# ******************************************************************************************************************************* - -''' -print("From ", dname) -print("Running ", fname) -print("Reading input file ", InputFile, " for") -''' -input_path = os.path.join('.', 'system_settings', InputFile) -# this works with Python 2 and 3! -exec(open(input_path).read(), globals()) -# end of read actual system parameters - - -# --- Manual Parameter Change --- -# (use for quick parameter changes without changing the input file ) -# DiO = 0. -# LDRtrue = 0.45 -# LDRtrue2 = 0.004 -# Y = -1 -# LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS -# #TypeC = 6 Don't change the TypeC here -# RotationErrorEpsilonForNormalMeasurements = True -# LDRCal = 0.25 -# # --- Errors -Qin0, dQin, nQin = Qin, dQin, nQin -Vin0, dVin, nVin = Vin, dVin, nVin -RotL0, dRotL, nRotL = RotL, dRotL, nRotL - -DiE0, dDiE, nDiE = DiE, dDiE, nDiE -RetE0, dRetE, nRetE = RetE, dRetE, nRetE -RotE0, dRotE, nRotE = RotE, dRotE, nRotE - -DiO0, dDiO, nDiO = DiO, dDiO, nDiO -RetO0, dRetO, nRetO = RetO, dRetO, nRetO -RotO0, dRotO, nRotO = RotO, dRotO, nRotO - -DiC0, dDiC, nDiC = DiC, dDiC, nDiC -RetC0, dRetC, nRetC = RetC, dRetC, nRetC -RotC0, dRotC, nRotC = RotC, dRotC, nRotC - -TP0, dTP, nTP = TP, dTP, nTP -TS0, dTS, nTS = TS, dTS, nTS -RetT0, dRetT, nRetT = RetT, dRetT, nRetT - -ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT -RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT - -RP0, dRP, nRP = RP, dRP, nRP -RS0, dRS, nRS = RS, dRS, nRS -RetR0, dRetR, nRetR = RetR, dRetR, nRetR - -ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR -RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR - -LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal - -# BSR0, dBSR, nBSR = BSR, dBSR, nBSR -LDRm0, dLDRm, nLDRm = LDRm, dLDRm, nLDRm -# ---------- End of manual parameter change - -RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0 -TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0 -LDRCal = LDRCal0 -DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0., 0., 0., 0., 0., 0. -TCalT0, TCalR0 = TCalT, TCalR - -TiT = 0.5 * (TP + TS) -DiT = (TP - TS) / (TP + TS) -ZiT = (1. - DiT ** 2) ** 0.5 -TiR = 0.5 * (RP + RS) -DiR = (RP - RS) / (RP + RS) -ZiR = (1. - DiR ** 2) ** 0.5 - -C2aT = np.cos(np.deg2rad(2. * RotaT)) -C2aR = np.cos(np.deg2rad(2. * RotaR)) -ATPT = float(1. + C2aT * DaT * DiT) -ARPT = float(1. + C2aR * DaR * DiR) -TTa = TiT * TaT * ATPT # unpolarized transmission -TRa = TiR * TaR * ARPT # unpolarized transmission -Eta0 = TRa / TTa - -# --- alternative texts for output -dY = ['perpendicular', '', 'parallel'] -dY2 = ['reflected', '', 'transmitted'] -if ((abs(RotL) < 45 and Y == 1) or (abs(RotL) >= 45 and Y == -1)): - dY3 = "Parallel laser polarisation is detected in transmitted channel" -else: - dY3 = "Parallel laser polarisation is detected in reflected channel" - -# --- check input errors -if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1: - print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") - sys.exit() - -# --- this subroutine is for the calculation of the PLDR from LDR, BSR, and LDRm ------------------- -def CalcPLDR(LDR, BSR, LDRm): - PLDR = (BSR * (1. + LDRm) * LDR - LDRm * (1. + LDR)) / (BSR * (1. + LDRm) - (1. + LDR)) - return (PLDR) -# --- this subroutine is for the calculation with certain fixed parameters ------------------------ -def Calc(TCalT, TCalR, NCalT, NCalR, Qin, Vin, RotL, RotE, RetE, DiE, RotO, RetO, DiO, - RotC, RetC, DiC, TP, TS, RP, RS, - ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal): - # ---- Do the calculations of bra-ket vectors - h = -1. if TypeC == 2 else 1 - # from input file: assumed LDRCal for calibration measurements - aCal = (1. - LDRCal) / (1. + LDRCal) - atrue = (1. - LDRtrue) / (1. + LDRtrue) - - # angles of emitter and laser and calibrator and receiver optics - # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon - S2a = np.sin(2 * np.deg2rad(RotL)) - C2a = np.cos(2 * np.deg2rad(RotL)) - S2b = np.sin(2 * np.deg2rad(RotE)) - C2b = np.cos(2 * np.deg2rad(RotE)) - S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) - C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) - S2g = np.sin(np.deg2rad(2 * RotO)) - C2g = np.cos(np.deg2rad(2 * RotO)) - - # Laser with Degree of linear polarization DOLP - IinL = 1. - QinL = Qin - UinL = 0. - VinL = Vin - # VinL = (1. - DOLP ** 2) ** 0.5 - - # Stokes Input Vector rotation Eq. E.4 - A = C2a * QinL - S2a * UinL - B = S2a * QinL + C2a * UinL - # Stokes Input Vector rotation Eq. E.9 - C = C2ab * QinL - S2ab * UinL - D = S2ab * QinL + C2ab * UinL - - # emitter optics - CosE = np.cos(np.deg2rad(RetE)) - SinE = np.sin(np.deg2rad(RetE)) - ZiE = (1. - DiE ** 2) ** 0.5 - WiE = (1. - ZiE * CosE) - - # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 - # b = beta - IinE = (IinL + DiE * C) - QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) - UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) - VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) - - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - IinF = IinE - QinF = aCal * QinE - UinF = -aCal * UinE - VinF = (1. - 2. * aCal) * VinE - - # receiver optics - CosO = np.cos(np.deg2rad(RetO)) - SinO = np.sin(np.deg2rad(RetO)) - ZiO = (1. - DiO ** 2) ** 0.5 - WiO = (1. - ZiO * CosO) - - # calibrator - CosC = np.cos(np.deg2rad(RetC)) - SinC = np.sin(np.deg2rad(RetC)) - ZiC = (1. - DiC ** 2) ** 0.5 - WiC = (1. - ZiC * CosC) - - # Stokes Input Vector before the polarising beam splitter Eq. E.31 - A = C2g * QinE - S2g * UinE - B = S2g * QinE + C2g * UinE - - IinP = (IinE + DiO * aCal * A) - QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) - UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) - VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1. - 2. * aCal) * VinE) - - # ------------------------- - # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue - # F11sim = TiO*(IinE + DiO*atrue*A)/IinE - # ------------------------- - - # analyser - if (RS_RP_depend_on_TS_TP): - RS = 1. - TS - RP = 1. - TP - - TiT = 0.5 * (TP + TS) - DiT = (TP - TS) / (TP + TS) - ZiT = (1. - DiT ** 2) ** 0.5 - TiR = 0.5 * (RP + RS) - DiR = (RP - RS) / (RP + RS) - ZiR = (1. - DiR ** 2) ** 0.5 - CosT = np.cos(np.deg2rad(RetT)) - SinT = np.sin(np.deg2rad(RetT)) - CosR = np.cos(np.deg2rad(RetR)) - SinR = np.sin(np.deg2rad(RetR)) - - DaT = (1. - ERaT) / (1. + ERaT) - DaR = (1. - ERaR) / (1. + ERaR) - TaT = 0.5 * (1. + ERaT) - TaR = 0.5 * (1. + ERaR) - - S2aT = np.sin(np.deg2rad(h * 2 * RotaT)) - C2aT = np.cos(np.deg2rad(2 * RotaT)) - S2aR = np.sin(np.deg2rad(h * 2 * RotaR)) - C2aR = np.cos(np.deg2rad(2 * RotaR)) - - # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter - ATPT = (1. + C2aT * DaT * DiT) # unpolarized transmission correction - TTa = TiT * TaT * ATPT # unpolarized transmission - ATP1 = 1. - ATP2 = Y * (DiT + C2aT * DaT) / ATPT - ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT - ATP4 = S2aT * DaT * ZiT * SinT / ATPT - ATP = np.array([ATP1, ATP2, ATP3, ATP4]) - DTa = ATP2 * Y - - ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction - TRa = TiR * TaR * ARPT # unpolarized transmission - ARP1 = 1 - ARP2 = Y * (DiR + C2aR * DaR) / ARPT - ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT - ARP4 = S2aR * DaR * ZiR * SinR / ARPT - ARP = np.array([ARP1, ARP2, ARP3, ARP4]) - DRa = ARP2 * Y - - - # ---- Calculate signals and correction parameters for diffeent locations and calibrators - if LocC == 4: # Calibrator before the PBS - # print("Calibrator location not implemented yet") - - # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) - # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) - S2e = np.sin(np.deg2rad(h * 2 * RotC)) - C2e = np.cos(np.deg2rad(2 * RotC)) - # rotated AinP by epsilon Eq. C.3 - ATP2e = C2e * ATP2 + S2e * ATP3 - ATP3e = C2e * ATP3 - S2e * ATP2 - ARP2e = C2e * ARP2 + S2e * ARP3 - ARP3e = C2e * ARP3 - S2e * ARP2 - ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) - ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) - # Stokes Input Vector before the polarising beam splitter Eq. E.31 - A = C2g * QinE - S2g * UinE - B = S2g * QinE + C2g * UinE - # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) - Co = ZiO * SinO * VinE - Ca = (WiO * B - 2 * ZiO * SinO * VinE) - # C = Co + aCal*Ca - # IinP = (IinE + DiO*aCal*A) - # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) - # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) - # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) - IinPo = IinE - QinPo = (C2g * DiO * IinE - S2g * Co) - UinPo = (S2g * DiO * IinE + C2g * Co) - VinPo = ZiO * CosO * VinE - - IinPa = DiO * A - QinPa = QinE - S2g * Ca - UinPa = -UinE + C2g * Ca - VinPa = ZiO * (SinO * B - 2 * CosO * VinE) - - IinP = IinPo + aCal * IinPa - QinP = QinPo + aCal * QinPa - UinP = UinPo + aCal * UinPa - VinP = VinPo + aCal * VinPa - # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 - # QinPe = C2e*QinP + S2e*UinP - # UinPe = C2e*UinP - S2e*QinP - QinPoe = C2e * QinPo + S2e * UinPo - UinPoe = C2e * UinPo - S2e * QinPo - QinPae = C2e * QinPa + S2e * UinPa - UinPae = C2e * UinPa - S2e * QinPa - QinPe = C2e * QinP + S2e * UinP - UinPe = C2e * UinP - S2e * QinP - - # Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 - # parameters for calibration with aCal - AT = ATP1 * IinP + h * ATP4 * VinP - BT = ATP3e * QinP - h * ATP2e * UinP - AR = ARP1 * IinP + h * ARP4 * VinP - BR = ARP3e * QinP - h * ARP2e * UinP - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATPe, IS1) - GR = np.dot(ARPe, IS1) - HT = np.dot(ATPe, IS2) - HR = np.dot(ARPe, IS2) - elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 - # parameters for calibration with aCal - AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) - BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) - AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) - BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), - -ZiC * (SinC * UinPoe - CosC * VinPo)]) - IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), - -ZiC * (SinC * UinPae - CosC * VinPa)]) - GT = np.dot(ATPe, IS1e) - GR = np.dot(ARPe, IS1e) - HT = np.dot(ATPe, IS2e) - HR = np.dot(ARPe, IS2e) - elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # parameters for calibration with aCal - AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1. - 0.5 * WiC) * ( - ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) - BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( - ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) - AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1. - 0.5 * WiC) * ( - ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) - BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( - ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), - -ZiC * (SinC * UinPoe - CosC * VinPo)]) - IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), - -ZiC * (SinC * UinPae - CosC * VinPa)]) - GT = np.dot(ATPe, IS1e) - GR = np.dot(ARPe, IS1e) - HT = np.dot(ATPe, IS2e) - HR = np.dot(ARPe, IS2e) - else: - print("Calibrator not implemented yet") - sys.exit() - - elif LocC == 3: # C before receiver optics Eq.57 - - # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) - # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) - S2e = np.sin(np.deg2rad(2. * RotC)) - C2e = np.cos(np.deg2rad(2. * RotC)) - - # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt) - AF1 = np.array([1., C2g * DiO, S2g * DiO, 0.]) - AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) - AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) - AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) - - ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) - ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) - ATF2 = ATF[1] - ATF3 = ATF[2] - ARF2 = ARF[1] - ARF3 = ARF[2] - - # rotated AinF by epsilon - ATF1 = ATF[0] - ATF4 = ATF[3] - ATF2e = C2e * ATF[1] + S2e * ATF[2] - ATF3e = C2e * ATF[2] - S2e * ATF[1] - ARF1 = ARF[0] - ARF4 = ARF[3] - ARF2e = C2e * ARF[1] + S2e * ARF[2] - ARF3e = C2e * ARF[2] - S2e * ARF[1] - - ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) - ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) - - QinEe = C2e * QinE + S2e * UinE - UinEe = C2e * UinE - S2e * QinE - - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - IinF = IinE - QinF = aCal * QinE - UinF = -aCal * UinE - VinF = (1. - 2. * aCal) * VinE - - IinFo = IinE - QinFo = 0. - UinFo = 0. - VinFo = VinE - - IinFa = 0. - QinFa = QinE - UinFa = -UinE - VinFa = -2. * VinE - - # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 - QinFe = C2e * QinF + S2e * UinF - UinFe = C2e * UinF - S2e * QinF - QinFoe = C2e * QinFo + S2e * UinFo - UinFoe = C2e * UinFo - S2e * QinFo - QinFae = C2e * QinFa + S2e * UinFa - UinFae = C2e * UinFa - S2e * QinFa - - # Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 - # parameters for calibration with aCal - AT = ATF1 * IinF + ATF4 * h * VinF - BT = ATF3e * QinF - ATF2e * h * UinF - AR = ARF1 * IinF + ARF4 * h * VinF - BR = ARF3e * QinF - ARF2e * h * UinF - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - GT = ATF1 * IinE + ATF4 * VinE - GR = ARF1 * IinE + ARF4 * VinE - HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE - HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE - else: - GT = ATF1 * IinE + ATF4 * h * VinE - GR = ARF1 * IinE + ARF4 * h * VinE - HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE - HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE - elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 - # p = +45°, m = -45° - IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) - IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) - AT = np.dot(ATFe, IF1e) - AR = np.dot(ARFe, IF1e) - BT = np.dot(ATFe, IF2e) - BR = np.dot(ARFe, IF2e) - - # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinE, 0., 0., VinE]) - IS2 = np.array([0., QinE, -UinE, -2. * VinE]) - GT = np.dot(ATF, IS1) - GR = np.dot(ARF, IS1) - HT = np.dot(ATF, IS2) - HR = np.dot(ARF, IS2) - else: - IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), - -ZiC * (SinC * UinFoe - CosC * VinFo)]) - IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), - -ZiC * (SinC * UinFae - CosC * VinFa)]) - GT = np.dot(ATFe, IS1e) - GR = np.dot(ARFe, IS1e) - HT = np.dot(ATFe, IS2e) - HR = np.dot(ARFe, IS2e) - - elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # parameters for calibration with aCal - IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1. - 0.5 * WiC) * QinFe, - (1. - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, - -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) - IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, - sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) - AT = np.dot(ATFe, IF1e) - AR = np.dot(ARFe, IF1e) - BT = np.dot(ATFe, IF2e) - BR = np.dot(ARFe, IF2e) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - # IS1 = np.array([IinE,0,0,VinE]) - # IS2 = np.array([0,QinE,-UinE,-2*VinE]) - IS1 = np.array([IinFo, 0., 0., VinFo]) - IS2 = np.array([0., QinFa, UinFa, VinFa]) - GT = np.dot(ATF, IS1) - GR = np.dot(ARF, IS1) - HT = np.dot(ATF, IS2) - HR = np.dot(ARF, IS2) - else: - IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), - -ZiC * (SinC * UinFoe - CosC * VinFo)]) - IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), - -ZiC * (SinC * UinFae - CosC * VinFa)]) - # IS1e = np.array([IinFo,0,0,VinFo]) - # IS2e = np.array([0,QinFae,UinFae,VinFa]) - GT = np.dot(ATFe, IS1e) - GR = np.dot(ARFe, IS1e) - HT = np.dot(ATFe, IS2e) - HR = np.dot(ARFe, IS2e) - - else: - print('Calibrator not implemented yet') - sys.exit() - - elif LocC == 2: # C behind emitter optics Eq.57 ------------------------------------------------------- - # print("Calibrator location not implemented yet") - S2e = np.sin(np.deg2rad(2. * RotC)) - C2e = np.cos(np.deg2rad(2. * RotC)) - - # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) - AF1 = np.array([1, C2g * DiO, S2g * DiO, 0.]) - AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) - AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) - AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) - - ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) - ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) - ATF1 = ATF[0] - ATF2 = ATF[1] - ATF3 = ATF[2] - ATF4 = ATF[3] - ARF1 = ARF[0] - ARF2 = ARF[1] - ARF3 = ARF[2] - ARF4 = ARF[3] - - # AS with C behind the emitter - # terms without aCal - ATE1o, ARE1o = ATF1, ARF1 - ATE2o, ARE2o = 0., 0. - ATE3o, ARE3o = 0., 0. - ATE4o, ARE4o = ATF4, ARF4 - # terms with aCal - ATE1a, ARE1a = 0., 0. - ATE2a, ARE2a = ATF2, ARF2 - ATE3a, ARE3a = -ATF3, -ARF3 - ATE4a, ARE4a = -2. * ATF4, -2. * ARF4 - # rotated AinEa by epsilon - ATE2ae = C2e * ATF2 + S2e * ATF3 - ATE3ae = -S2e * ATF2 - C2e * ATF3 - ARE2ae = C2e * ARF2 + S2e * ARF3 - ARE3ae = -S2e * ARF2 - C2e * ARF3 - - ATE1 = ATE1o - ATE2e = aCal * ATE2ae - ATE3e = aCal * ATE3ae - ATE4 = (1 - 2 * aCal) * ATF4 - ARE1 = ARE1o - ARE2e = aCal * ARE2ae - ARE3e = aCal * ARE3ae - ARE4 = (1 - 2 * aCal) * ARF4 - - # rotated IinE - QinEe = C2e * QinE + S2e * UinE - UinEe = C2e * UinE - S2e * QinE - - # Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 - AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE - BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) - AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE - BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - GT = ATE1o * IinE + ATE4o * h * VinE - GR = ARE1o * IinE + ARE4o * h * VinE - HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE - HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE - else: - GT = ATE1o * IinE + ATE4o * h * VinE - GR = ARE1o * IinE + ARE4o * h * VinE - HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE - HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE - - elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 - # p = +45°, m = -45° - AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe - BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) - AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe - BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - GT = ATE1o * IinE + ATE4o * VinE - GR = ARE1o * IinE + ARE4o * VinE - HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE - HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE - else: - D = IinE + DiC * QinEe - A = DiC * IinE + QinEe - B = ZiC * (CosC * UinEe + SinC * VinE) - C = -ZiC * (SinC * UinEe - CosC * VinE) - GT = ATE1o * D + ATE4o * C - GR = ARE1o * D + ARE4o * C - HT = ATE2a * A + ATE3a * B + ATE4a * C - HR = ARE2a * A + ARE3a * B + ARE4a * C - - elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # p = +22.5°, m = -22.5° - IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, - (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, - -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) - IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, - sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) - ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) - AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) - AT = np.dot(ATEe, IE1e) - AR = np.dot(AREe, IE1e) - BT = np.dot(ATEe, IE2e) - BR = np.dot(AREe, IE2e) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - GT = ATE1o * IinE + ATE4o * VinE - GR = ARE1o * IinE + ARE4o * VinE - HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE - HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE - else: - D = IinE + DiC * QinEe - A = DiC * IinE + QinEe - B = ZiC * (CosC * UinEe + SinC * VinE) - C = -ZiC * (SinC * UinEe - CosC * VinE) - GT = ATE1o * D + ATE4o * C - GR = ARE1o * D + ARE4o * C - HT = ATE2a * A + ATE3a * B + ATE4a * C - HR = ARE2a * A + ARE3a * B + ARE4a * C - - else: - print('Calibrator not implemented yet') - sys.exit() - - else: - print("Calibrator location not implemented yet") - sys.exit() - - # Determination of the correction K of the calibration factor. - IoutTp = TTa * TiC * TiO * TiE * (AT + BT) - IoutTm = TTa * TiC * TiO * TiE * (AT - BT) - IoutRp = TRa * TiC * TiO * TiE * (AR + BR) - IoutRm = TRa * TiC * TiO * TiE * (AR - BR) - # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 - Etapx = IoutRp / IoutTp - Etamx = IoutRm / IoutTm - Etax = (Etapx * Etamx) ** 0.5 - - Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84 => K = Eta* / Eta; equation corrected according to the papers supplement Eqs. (S.10.10.1) ff - K = Etax / Eta - - # For comparison with Volkers Libreoffice Müller Matrix spreadsheet - # Eta_test_p = (IoutRp/IoutTp) - # Eta_test_m = (IoutRm/IoutTm) - # Eta_test = (Eta_test_p*Eta_test_m)**0.5 - - # ----- random error calculation ---------- - # noise must be calculated with the photon counts of measured signals; - # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent - # normalised noise errors - if (CalcFrom0deg): - dIoutTp = (NCalT * IoutTp) ** -0.5 - dIoutTm = (NCalT * IoutTm) ** -0.5 - dIoutRp = (NCalR * IoutRp) ** -0.5 - dIoutRm = (NCalR * IoutRm) ** -0.5 - else: - dIoutTp = (NCalT ** -0.5) - dIoutTm = (NCalT ** -0.5) - dIoutRp = (NCalR ** -0.5) - dIoutRm = (NCalR ** -0.5) - # Forward simulated 0°-signals with LDRCal with atrue; from input file - - It = TTa * TiO * TiE * (GT + atrue * HT) - Ir = TRa * TiO * TiE * (GR + atrue * HR) - # relative standard deviation of standard signals with LDRmeas; assumed to be statisitcally independent - if (CalcFrom0deg): # this works! - dIt = ((It * NI * eFacT) ** -0.5) - dIr = ((Ir * NI * eFacR) ** -0.5) - ''' - dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) - dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) - ''' - else: # does this work? Why not as above? - dIt = ((NCalT * 2 * NILfac / TCalT ) ** -0.5) - dIr = ((NCalR * 2 * NILfac / TCalR) ** -0.5) - - # ----- Forward simulated LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file - LDRsim = Ir / It # simulated uncorrected LDR with Y from input file - # Corrected LDRsimCorr from forward simulated LDRsim (atrue) - # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT)) - ''' - if ((Y == -1.) and (abs(RotL0) < 45)) or ((Y == +1.) and (abs(RotL0) > 45)): - LDRsimx = 1. / LDRsim / Etax - else: - LDRsimx = LDRsim / Etax - ''' - LDRsimx = LDRsim - - # The following is correct without doubt - # LDRCorr = (LDRsim/(Etax/K)*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim/(Etax/K)*(GT-HT)) - - # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent - LDRCorr = (LDRsim / (Etax / K) * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / (Etax / K) * (GT - HT)) - # here we could also use Eta instead of Etax / K => how to test whether Etax is correct? => comparison with MüllerMatrix simulation! - # Without any correction: only measured It, Ir, EtaX are used - LDRunCorr = LDRsim / Etax - # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) - - #LDRCorr = LDRsimx # for test only - - F11sim = 1 / (TiO * TiE) * ((HR * Eta * It - HT * Ir) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta - - return (IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, - GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim, LDRunCorr) - - - -# ******************************************************************************************************************************* - -# --- CALC with assumed true parameters from the input file -LDRtrue = LDRtrue2 -IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ -GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ -Calc(TCalT, TCalR, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) -Etax0 = K0 * Eta0 -Etapx0 = IoutRp0 / IoutTp0 -Etamx0 = IoutRm0 / IoutTm0 -# --- Print parameters to console and output file -OutputFile = 'output_' + InputFile[0:-3] + '_' + fname[0:-3] +'.dat' -with open('output_files\\' + OutputFile, 'w') as f: - with redirect_stdout(f): - print("From ", dname) - print("Running ", fname) - print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID) - print("for Lidar system: ", EID, ", ", LID) - # --- Print iput information********************************* - print(" --- Input parameters: value ±error / ±steps ----------------------") - print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("Laser: ", "Qin =", Qin0, dQin, nQin)) - print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Vin =", Vin0, dVin, nVin)) - print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Rotation alpha = ", RotL0, dRotL, nRotL)) - print("{0:7}{1:15} {2:8.4f} {3:17}".format("", "=> DOP", ((Qin ** 2 + Vin ** 2) ** 0.5), " (degree of polarisation)")) - - print("Optic: Diatt., Tunpol, Retard., Rotation (deg)") - print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( - "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE)) - print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( - "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO)) - print("{0:12} {1:9.6f}±{2:9.6f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( - "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC)) - print("{0:12}".format(" Pol.-filter ------ ")) - print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( - "ERT, RotT :", ERaT0, dERaT, nERaT, RotaT0, dRotaT, nRotaT)) - print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( - "ERR, RotR :", ERaR0, dERaR, nERaR, RotaR0, dRotaR, nRotaR)) - print("{0:12}".format(" PBS ------ ")) - print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( - "TP,TS :", TP0, dTP, nTP, TS0, dTS, nTS)) - print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( - "RP,RS :", RP0, dRP, nRP, RS0, dRS, nRS)) - print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format( - "DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y)) - print("{0:12}".format(" Combined PBS + Pol.-filter ------ ")) - print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format( - "DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0)) - print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format( - "LDRCal during calibration in calibration range", LDRCal0, dLDRCal, nLDRCal)) - print("{0:12}".format(" --- Additional ND filter attenuation (transmission) during the calibration ---")) - print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( - "TCalT,TCalR :", TCalT0, dTCalT, nTCalT, TCalR0, dTCalR, nTCalR)) - print() - print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements) - print(Type[TypeC], Loc[LocC]) - print("PBS incidence plane is ", dY[int(Y + 1)], "to reference plane and polarisation in reference plane is finally", dY2[int(Y + 1)]) - print(dY3) - print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP) - # end of print actual system parameters - # ****************************************************************************** - - - print() - - K0List = np.zeros(7) - LDRsimxList = np.zeros(7) - LDRCalList = 0.0, 0.004, 0.02, 0.1, 0.2, 0.3, 0.45 - # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work. - # Still with assumed true parameters in input file - - ''' - facIt = NCalT / TCalT0 * NILfac - facIr = NCalR / TCalR0 * NILfac - ''' - facIt = NI * eFacT - facIr = NI * eFacR - if (bPlotEtax): - # check error signals - # dIs are relative stdevs - print("LDRCal, IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp,dIoutTm,dIoutRp,dIoutRm,dIt, dIr") - - for i, LDRCal in enumerate(LDRCalList): - IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ - GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ - Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) - K0List[i] = K0 - LDRsimxList[i] = LDRsimx - - if (bPlotEtax): - # check error signals - print( "{:0.2f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(LDRCal, IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) - #print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) - # end check error signals - print('===========================================================================================================') - print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9},{7:9},{8:9},{9:9},{10:9}".format( - " GR", " GT", " HR", " HT", " K(0.000)", " K(0.004)", " K(0.02)", " K(0.1)", " K(0.2)", " K(0.3)", " K(0.45)")) - print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f},{7:9.5f},{8:9.5f},{9:9.5f},{10:9.5f}".format( - GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2], K0List[3], K0List[4], K0List[5], K0List[6])) - print('===========================================================================================================') - print() - print("Errors from neglecting GHK corrections and/or calibration:") - print("{0:>10},{1:>10},{2:>10},{3:>10},{4:>10},{5:>10}".format( - "LDRtrue", "LDRunCorr", "1/LDRunCorr", "LDRsimx", "1/LDRsimx", "LDRCorr")) - - aF11sim0 = np.zeros(5) - LDRrange = np.zeros(5) - LDRsim0 = np.zeros(5) - LDRrange = [0.004, 0.02, 0.1, 0.3, 0.45] # list - LDRrange[0] = LDRtrue2 # value in the input file; default 0.004 - - # The loop over LDRtrueList is only for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work. - # LDRsimx = LDRsim = Ir / It or 1/LDRsim - # Still with assumed true parameters in input file - for i, LDRtrue in enumerate(LDRrange): - #for LDRtrue in LDRrange: - IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ - GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ - Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) - print("{0:10.5f},{1:10.5f},{2:10.5f},{3:10.5f},{4:10.5f},{5:10.5f}".format(LDRtrue, LDRunCorr, 1/LDRunCorr, LDRsimx, 1/LDRsimx, LDRCorr)) - aF11sim0[i] = F11sim0 - LDRsim0[i] = Ir / It - # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals - print("LDRsimx = LDR of the nominal system directly from measured signals without calibration and GHK-corrections") - print("LDRunCorr = LDR of the nominal system directly from measured signals with calibration but without GHK-corrections; electronic amplifications = 1 assumed") - print("LDRCorr = LDR calibrated and GHK-corrected") - print() - print("Errors from signal noise:") - print("Signal counts: NI, NCalT, NCalR, NILfac, nNCal, nNI, stdev(NI)/NI = {0:10.0f},{1:10.0f},{2:10.0f},{3:3.0f},{4:2.0f},{5:2.0f},{6:8.5f}".format( - NI, NCalT, NCalR, NILfac, nNCal, nNI, 1.0 / NI ** 0.5)) - print() - print() - '''# das muß wieder weg - print("IoutTp, IoutTm, IoutRp, IoutRm, It , Ir , dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr") - LDRCal = 0.01 - for i, LDRtrue in enumerate(LDRrange): - IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ - GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ - Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) - print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format( - IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, - dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) - aF11sim0[i] = F11sim0 - # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals - # bis hierher weg - ''' - -file = open('output_files\\' + OutputFile, 'r') -print(file.read()) -file.close() - -# --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values -LDRtrue = LDRtrue2 -IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ -GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ -Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) -Etax0 = K0 * Eta0 -Etapx0 = IoutRp0 / IoutTp0 -Etamx0 = IoutRm0 / IoutTm0 -''' -if(PrintToOutputFile): - f = open('output_ver7.dat', 'w') - old_target = sys.stdout - sys.stdout = f - - print("something") - -if(PrintToOutputFile): - sys.stdout.flush() - f.close - sys.stdout = old_target -''' -if (Error_Calc): - # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values - LDRtrue = LDRtrue2 - IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ - GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ - Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, - RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, - ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) - Etax0 = K0 * Eta0 - Etapx0 = IoutRp0 / IoutTp0 - Etamx0 = IoutRm0 / IoutTm0 - - # --- Start Error calculation with variable parameters ------------------------------------------------------------------ - # error nNCal: one-sigma in steps to left and right for calibration signals - # error nNI: one-sigma in steps to left and right for 0° signals - - iN = -1 - N = ((nTCalT * 2 + 1) * (nTCalR * 2 + 1) * - (nNCal * 2 + 1) ** 4 * (nNI * 2 + 1) ** 2 * - (nQin * 2 + 1) * (nVin * 2 + 1) * (nRotL * 2 + 1) * - (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) * - (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) * - (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) * - (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) * - (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1)) - print("number of system variations N = ", N, " ", end="") - - if N > 1e6: - if user_yes_no_query('Warning: processing ' + str( - N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() - if N > 5e6: - if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format( - N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit() - - # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() - - # --- Arrays for plotting ------ - LDRmin = np.zeros(5) - LDRmax = np.zeros(5) - LDRstd = np.zeros(5) - LDRmean = np.zeros(5) - LDRmedian = np.zeros(5) - LDRskew = np.zeros(5) - LDRkurt = np.zeros(5) - LDRsimmin = np.zeros(5) - LDRsimmax = np.zeros(5) - LDRsimmean = np.zeros(5) - - F11min = np.zeros(5) - F11max = np.zeros(5) - Etaxmin = np.zeros(5) - Etaxmax = np.zeros(5) - - aQin = np.zeros(N) - aVin = np.zeros(N) - aERaT = np.zeros(N) - aERaR = np.zeros(N) - aRotaT = np.zeros(N) - aRotaR = np.zeros(N) - aRetT = np.zeros(N) - aRetR = np.zeros(N) - aTP = np.zeros(N) - aTS = np.zeros(N) - aRP = np.zeros(N) - aRS = np.zeros(N) - aDiE = np.zeros(N) - aDiO = np.zeros(N) - aDiC = np.zeros(N) - aRotC = np.zeros(N) - aRetC = np.zeros(N) - aRotL = np.zeros(N) - aRetE = np.zeros(N) - aRotE = np.zeros(N) - aRetO = np.zeros(N) - aRotO = np.zeros(N) - aLDRCal = np.zeros(N) - aNCalTp = np.zeros(N) - aNCalTm = np.zeros(N) - aNCalRp = np.zeros(N) - aNCalRm = np.zeros(N) - aNIt = np.zeros(N) - aNIr = np.zeros(N) - aTCalT = np.zeros(N) - aTCalR = np.zeros(N) - - # each np.zeros((LDRrange, N)) array has the same N-dependency - aLDRcorr = np.zeros((5, N)) - aLDRsim = np.zeros((5, N)) - aF11corr = np.zeros((5, N)) - aPLDR = np.zeros((5, N)) - aEtax = np.zeros((5, N)) - aEtapx = np.zeros((5, N)) - aEtamx = np.zeros((5, N)) - - # np.zeros((GHKs, N)) - aGHK = np.zeros((5, N)) - - atime = clock() - dtime = clock() - - # --- Calc Error signals - # ---- Do the calculations of bra-ket vectors - h = -1. if TypeC == 2 else 1 - - for iLDRCal in range(-nLDRCal, nLDRCal + 1): - # from input file: LDRCal for calibration measurements - LDRCal = LDRCal0 - if nLDRCal > 0: - LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal - # provides the intensities of the calibration measurements at various LDRCal for signal noise errors - # IoutTp, IoutTm, IoutRp, IoutRm, dIoutTp, dIoutTm, dIoutRp, dIoutRm - - aCal = (1. - LDRCal) / (1. + LDRCal) - for iQin, iVin, iRotL, iRotE, iRetE, iDiE \ - in [(iQin, iVin, iRotL, iRotE, iRetE, iDiE) - for iQin in range(-nQin, nQin + 1) - for iVin in range(-nVin, nVin + 1) - for iRotL in range(-nRotL, nRotL + 1) - for iRotE in range(-nRotE, nRotE + 1) - for iRetE in range(-nRetE, nRetE + 1) - for iDiE in range(-nDiE, nDiE + 1)]: - - if nQin > 0: Qin = Qin0 + iQin * dQin / nQin - if nVin > 0: Vin = Vin0 + iVin * dVin / nVin - if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL - if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE - if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE - if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE - - if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1.0: - print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") - sys.exit() - # angles of emitter and laser and calibrator and receiver optics - # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon - S2a = np.sin(2 * np.deg2rad(RotL)) - C2a = np.cos(2 * np.deg2rad(RotL)) - S2b = np.sin(2 * np.deg2rad(RotE)) - C2b = np.cos(2 * np.deg2rad(RotE)) - S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) - C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) - - # Laser with Degree of linear polarization DOLP - IinL = 1. - QinL = Qin - UinL = 0. - VinL = Vin - # VinL = (1. - DOLP ** 2) ** 0.5 - - # Stokes Input Vector rotation Eq. E.4 - A = C2a * QinL - S2a * UinL - B = S2a * QinL + C2a * UinL - # Stokes Input Vector rotation Eq. E.9 - C = C2ab * QinL - S2ab * UinL - D = S2ab * QinL + C2ab * UinL - - # emitter optics - CosE = np.cos(np.deg2rad(RetE)) - SinE = np.sin(np.deg2rad(RetE)) - ZiE = (1. - DiE ** 2) ** 0.5 - WiE = (1. - ZiE * CosE) - - # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 - # b = beta - IinE = (IinL + DiE * C) - QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) - UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) - VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) - - # ------------------------- - # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue - # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE - # ------------------------- - - for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \ - in [ - (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR) - for iRotO in range(-nRotO, nRotO + 1) - for iRetO in range(-nRetO, nRetO + 1) - for iDiO in range(-nDiO, nDiO + 1) - for iRotC in range(-nRotC, nRotC + 1) - for iRetC in range(-nRetC, nRetC + 1) - for iDiC in range(-nDiC, nDiC + 1) - for iTP in range(-nTP, nTP + 1) - for iTS in range(-nTS, nTS + 1) - for iRP in range(-nRP, nRP + 1) - for iRS in range(-nRS, nRS + 1) - for iERaT in range(-nERaT, nERaT + 1) - for iRotaT in range(-nRotaT, nRotaT + 1) - for iRetT in range(-nRetT, nRetT + 1) - for iERaR in range(-nERaR, nERaR + 1) - for iRotaR in range(-nRotaR, nRotaR + 1) - for iRetR in range(-nRetR, nRetR + 1)]: - - if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO - if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO - if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO - if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC - if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC - if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC - if nTP > 0: TP = TP0 + iTP * dTP / nTP - if nTS > 0: TS = TS0 + iTS * dTS / nTS - if nRP > 0: RP = RP0 + iRP * dRP / nRP - if nRS > 0: RS = RS0 + iRS * dRS / nRS - if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT - if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT - if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT - if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR - if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR - if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR - - # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN)) - - # receiver optics - CosO = np.cos(np.deg2rad(RetO)) - SinO = np.sin(np.deg2rad(RetO)) - ZiO = (1. - DiO ** 2) ** 0.5 - WiO = (1. - ZiO * CosO) - S2g = np.sin(np.deg2rad(2 * RotO)) - C2g = np.cos(np.deg2rad(2 * RotO)) - # calibrator - CosC = np.cos(np.deg2rad(RetC)) - SinC = np.sin(np.deg2rad(RetC)) - ZiC = (1. - DiC ** 2) ** 0.5 - WiC = (1. - ZiC * CosC) - - # analyser - # For POLLY_XTs - if (RS_RP_depend_on_TS_TP): - RS = 1.0 - TS - RP = 1.0 - TP - TiT = 0.5 * (TP + TS) - DiT = (TP - TS) / (TP + TS) - ZiT = (1. - DiT ** 2.) ** 0.5 - TiR = 0.5 * (RP + RS) - DiR = (RP - RS) / (RP + RS) - ZiR = (1. - DiR ** 2.) ** 0.5 - CosT = np.cos(np.deg2rad(RetT)) - SinT = np.sin(np.deg2rad(RetT)) - CosR = np.cos(np.deg2rad(RetR)) - SinR = np.sin(np.deg2rad(RetR)) - - # cleaning pol-filter - DaT = (1.0 - ERaT) / (1.0 + ERaT) - DaR = (1.0 - ERaR) / (1.0 + ERaR) - TaT = 0.5 * (1.0 + ERaT) - TaR = 0.5 * (1.0 + ERaR) - - S2aT = np.sin(np.deg2rad(h * 2.0 * RotaT)) - C2aT = np.cos(np.deg2rad(2.0 * RotaT)) - S2aR = np.sin(np.deg2rad(h * 2.0 * RotaR)) - C2aR = np.cos(np.deg2rad(2.0 * RotaR)) - - # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter - ATPT = (1 + C2aT * DaT * DiT) # unpolarized transmission correction - TTa = TiT * TaT * ATPT # unpolarized transmission - ATP1 = 1.0 - ATP2 = Y * (DiT + C2aT * DaT) / ATPT - ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT - ATP4 = S2aT * DaT * ZiT * SinT / ATPT - ATP = np.array([ATP1, ATP2, ATP3, ATP4]) - DTa = ATP2 * Y - - ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction - TRa = TiR * TaR * ARPT # unpolarized transmission - ARP1 = 1 - ARP2 = Y * (DiR + C2aR * DaR) / ARPT - ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT - ARP4 = S2aR * DaR * ZiR * SinR / ARPT - ARP = np.array([ARP1, ARP2, ARP3, ARP4]) - DRa = ARP2 * Y - - # ---- Calculate signals and correction parameters for diffeent locations and calibrators - if LocC == 4: # Calibrator before the PBS - # print("Calibrator location not implemented yet") - - # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) - # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) - S2e = np.sin(np.deg2rad(h * 2 * RotC)) - C2e = np.cos(np.deg2rad(2 * RotC)) - # rotated AinP by epsilon Eq. C.3 - ATP2e = C2e * ATP2 + S2e * ATP3 - ATP3e = C2e * ATP3 - S2e * ATP2 - ARP2e = C2e * ARP2 + S2e * ARP3 - ARP3e = C2e * ARP3 - S2e * ARP2 - ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) - ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) - # Stokes Input Vector before the polarising beam splitter Eq. E.31 - A = C2g * QinE - S2g * UinE - B = S2g * QinE + C2g * UinE - # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) - Co = ZiO * SinO * VinE - Ca = (WiO * B - 2 * ZiO * SinO * VinE) - # C = Co + aCal*Ca - # IinP = (IinE + DiO*aCal*A) - # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) - # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) - # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) - IinPo = IinE - QinPo = (C2g * DiO * IinE - S2g * Co) - UinPo = (S2g * DiO * IinE + C2g * Co) - VinPo = ZiO * CosO * VinE - - IinPa = DiO * A - QinPa = QinE - S2g * Ca - UinPa = -UinE + C2g * Ca - VinPa = ZiO * (SinO * B - 2 * CosO * VinE) - - IinP = IinPo + aCal * IinPa - QinP = QinPo + aCal * QinPa - UinP = UinPo + aCal * UinPa - VinP = VinPo + aCal * VinPa - # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 - # QinPe = C2e*QinP + S2e*UinP - # UinPe = C2e*UinP - S2e*QinP - QinPoe = C2e * QinPo + S2e * UinPo - UinPoe = C2e * UinPo - S2e * QinPo - QinPae = C2e * QinPa + S2e * UinPa - UinPae = C2e * UinPa - S2e * QinPa - QinPe = C2e * QinP + S2e * UinP - UinPe = C2e * UinP - S2e * QinP - - # Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 - # parameters for calibration with aCal - AT = ATP1 * IinP + h * ATP4 * VinP - BT = ATP3e * QinP - h * ATP2e * UinP - AR = ARP1 * IinP + h * ARP4 * VinP - BR = ARP3e * QinP - h * ARP2e * UinP - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATPe, IS1) - GR = np.dot(ARPe, IS1) - HT = np.dot(ATPe, IS2) - HR = np.dot(ARPe, IS2) - elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 - # parameters for calibration with aCal - AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) - BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) - AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) - BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1e = np.array( - [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), - -ZiC * (SinC * UinPoe - CosC * VinPo)]) - IS2e = np.array( - [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), - -ZiC * (SinC * UinPae - CosC * VinPa)]) - GT = np.dot(ATPe, IS1e) - GR = np.dot(ARPe, IS1e) - HT = np.dot(ATPe, IS2e) - HR = np.dot(ARPe, IS2e) - elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # parameters for calibration with aCal - AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * ( - ATP2e * QinPe + ATP3e * UinPe) + ZiC * ( - sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) - BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( - ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) - AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * ( - ARP2e * QinPe + ARP3e * UinPe) + ZiC * ( - sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) - BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( - ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) - IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) - GT = np.dot(ATP, IS1) - GR = np.dot(ARP, IS1) - HT = np.dot(ATP, IS2) - HR = np.dot(ARP, IS2) - else: - IS1e = np.array( - [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), - -ZiC * (SinC * UinPoe - CosC * VinPo)]) - IS2e = np.array( - [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), - -ZiC * (SinC * UinPae - CosC * VinPa)]) - GT = np.dot(ATPe, IS1e) - GR = np.dot(ARPe, IS1e) - HT = np.dot(ATPe, IS2e) - HR = np.dot(ARPe, IS2e) - else: - print("Calibrator not implemented yet") - sys.exit() - - elif LocC == 3: # C before receiver optics Eq.57 - - # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) - # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) - S2e = np.sin(np.deg2rad(2 * RotC)) - C2e = np.cos(np.deg2rad(2 * RotC)) - - # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) - AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) - AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) - AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) - AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) - - ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) - ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) - ATF1 = ATF[0] - ATF2 = ATF[1] - ATF3 = ATF[2] - ATF4 = ATF[3] - ARF1 = ARF[0] - ARF2 = ARF[1] - ARF3 = ARF[2] - ARF4 = ARF[3] - - # rotated AinF by epsilon - ATF2e = C2e * ATF[1] + S2e * ATF[2] - ATF3e = C2e * ATF[2] - S2e * ATF[1] - ARF2e = C2e * ARF[1] + S2e * ARF[2] - ARF3e = C2e * ARF[2] - S2e * ARF[1] - - ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) - ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) - - QinEe = C2e * QinE + S2e * UinE - UinEe = C2e * UinE - S2e * QinE - - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - IinF = IinE - QinF = aCal * QinE - UinF = -aCal * UinE - VinF = (1. - 2. * aCal) * VinE - - IinFo = IinE - QinFo = 0. - UinFo = 0. - VinFo = VinE - - IinFa = 0. - QinFa = QinE - UinFa = -UinE - VinFa = -2. * VinE - - # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 - QinFe = C2e * QinF + S2e * UinF - UinFe = C2e * UinF - S2e * QinF - QinFoe = C2e * QinFo + S2e * UinFo - UinFoe = C2e * UinFo - S2e * QinFo - QinFae = C2e * QinFa + S2e * UinFa - UinFae = C2e * UinFa - S2e * QinFa - - # Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 - AT = ATF1 * IinF + ATF4 * h * VinF - BT = ATF3e * QinF - ATF2e * h * UinF - AR = ARF1 * IinF + ARF4 * h * VinF - BR = ARF3e * QinF - ARF2e * h * UinF - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - GT = ATF1 * IinE + ATF4 * VinE - GR = ARF1 * IinE + ARF4 * VinE - HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE - HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE - else: - GT = ATF1 * IinE + ATF4 * h * VinE - GR = ARF1 * IinE + ARF4 * h * VinE - HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE - HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE - - elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 - # p = +45°, m = -45° - IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) - IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) - - AT = np.dot(ATFe, IF1e) - AR = np.dot(ARFe, IF1e) - BT = np.dot(ATFe, IF2e) - BR = np.dot(ARFe, IF2e) - - # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - IS1 = np.array([IinE, 0, 0, VinE]) - IS2 = np.array([0, QinE, -UinE, -2 * VinE]) - - GT = np.dot(ATF, IS1) - GR = np.dot(ARF, IS1) - HT = np.dot(ATF, IS2) - HR = np.dot(ARF, IS2) - else: - IS1e = np.array( - [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), - -ZiC * (SinC * UinFoe - CosC * VinFo)]) - IS2e = np.array( - [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), - -ZiC * (SinC * UinFae - CosC * VinFa)]) - GT = np.dot(ATFe, IS1e) - GR = np.dot(ARFe, IS1e) - HT = np.dot(ATFe, IS2e) - HR = np.dot(ARFe, IS2e) - - elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # p = +22.5°, m = -22.5° - IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe, - (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, - -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) - IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, - sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) - - AT = np.dot(ATFe, IF1e) - AR = np.dot(ARFe, IF1e) - BT = np.dot(ATFe, IF2e) - BR = np.dot(ARFe, IF2e) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - # IS1 = np.array([IinE,0,0,VinE]) - # IS2 = np.array([0,QinE,-UinE,-2*VinE]) - IS1 = np.array([IinFo, 0, 0, VinFo]) - IS2 = np.array([0, QinFa, UinFa, VinFa]) - GT = np.dot(ATF, IS1) - GR = np.dot(ARF, IS1) - HT = np.dot(ATF, IS2) - HR = np.dot(ARF, IS2) - else: - # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE]) - # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)]) - IS1e = np.array( - [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), - -ZiC * (SinC * UinFoe - CosC * VinFo)]) - IS2e = np.array( - [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), - -ZiC * (SinC * UinFae - CosC * VinFa)]) - GT = np.dot(ATFe, IS1e) - GR = np.dot(ARFe, IS1e) - HT = np.dot(ATFe, IS2e) - HR = np.dot(ARFe, IS2e) - - - else: - print('Calibrator not implemented yet') - sys.exit() - - elif LocC == 2: # C behind emitter optics Eq.57 - # print("Calibrator location not implemented yet") - S2e = np.sin(np.deg2rad(2 * RotC)) - C2e = np.cos(np.deg2rad(2 * RotC)) - - # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) - AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) - AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) - AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) - AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) - - ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) - ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) - ATF1 = ATF[0] - ATF2 = ATF[1] - ATF3 = ATF[2] - ATF4 = ATF[3] - ARF1 = ARF[0] - ARF2 = ARF[1] - ARF3 = ARF[2] - ARF4 = ARF[3] - - # AS with C behind the emitter -------------------------------------------- - # terms without aCal - ATE1o, ARE1o = ATF1, ARF1 - ATE2o, ARE2o = 0., 0. - ATE3o, ARE3o = 0., 0. - ATE4o, ARE4o = ATF4, ARF4 - # terms with aCal - ATE1a, ARE1a = 0., 0. - ATE2a, ARE2a = ATF2, ARF2 - ATE3a, ARE3a = -ATF3, -ARF3 - ATE4a, ARE4a = -2 * ATF4, -2 * ARF4 - # rotated AinEa by epsilon - ATE2ae = C2e * ATF2 + S2e * ATF3 - ATE3ae = -S2e * ATF2 - C2e * ATF3 - ARE2ae = C2e * ARF2 + S2e * ARF3 - ARE3ae = -S2e * ARF2 - C2e * ARF3 - - ATE1 = ATE1o - ATE2e = aCal * ATE2ae - ATE3e = aCal * ATE3ae - ATE4 = (1 - 2 * aCal) * ATF4 - ARE1 = ARE1o - ARE2e = aCal * ARE2ae - ARE3e = aCal * ARE3ae - ARE4 = (1. - 2. * aCal) * ARF4 - - # rotated IinE - QinEe = C2e * QinE + S2e * UinE - UinEe = C2e * UinE - S2e * QinE - - # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal - if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 - AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE - BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) - AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE - BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - GT = ATE1o * IinE + ATE4o * h * VinE - GR = ARE1o * IinE + ARE4o * h * VinE - HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE - HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE - else: - GT = ATE1o * IinE + ATE4o * h * VinE - GR = ARE1o * IinE + ARE4o * h * VinE - HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE - HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE - - elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 - # p = +45°, m = -45° - AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe - BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) - AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe - BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): - # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) - GT = ATE1o * IinE + ATE4o * VinE - GR = ARE1o * IinE + ARE4o * VinE - HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE - HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE - else: - D = IinE + DiC * QinEe - A = DiC * IinE + QinEe - B = ZiC * (CosC * UinEe + SinC * VinE) - C = -ZiC * (SinC * UinEe - CosC * VinE) - GT = ATE1o * D + ATE4o * C - GR = ARE1o * D + ARE4o * C - HT = ATE2a * A + ATE3a * B + ATE4a * C - HR = ARE2a * A + ARE3a * B + ARE4a * C - - elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt - # p = +22.5°, m = -22.5° - IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, - (1. - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, - -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) - IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, - sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) - ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) - AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) - AT = np.dot(ATEe, IE1e) - AR = np.dot(AREe, IE1e) - BT = np.dot(ATEe, IE2e) - BR = np.dot(AREe, IE2e) - - # Correction parameters for normal measurements; they are independent of LDR - if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out - GT = ATE1o * IinE + ATE4o * VinE - GR = ARE1o * IinE + ARE4o * VinE - HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE - HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE - else: - D = IinE + DiC * QinEe - A = DiC * IinE + QinEe - B = ZiC * (CosC * UinEe + SinC * VinE) - C = -ZiC * (SinC * UinEe - CosC * VinE) - GT = ATE1o * D + ATE4o * C - GR = ARE1o * D + ARE4o * C - HT = ATE2a * A + ATE3a * B + ATE4a * C - HR = ARE2a * A + ARE3a * B + ARE4a * C - else: - print('Calibrator not implemented yet') - sys.exit() - - for iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr \ - in [ - (iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr) - for iTCalT in range(-nTCalT, nTCalT + 1) # Etax - for iTCalR in range(-nTCalR, nTCalR + 1) # Etax - for iNCalTp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax - for iNCalTm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax - for iNCalRp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax - for iNCalRm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax - for iNIt in range(-nNI, nNI + 1) - for iNIr in range(-nNI, nNI + 1)]: - - # Calibration signals with aCal => Determination of the correction K of the real calibration factor - IoutTp = TTa * TiC * TiO * TiE * (AT + BT) - IoutTm = TTa * TiC * TiO * TiE * (AT - BT) - IoutRp = TRa * TiC * TiO * TiE * (AR + BR) - IoutRm = TRa * TiC * TiO * TiE * (AR - BR) - - if nTCalT > 0: TCalT = TCalT0 + iTCalT * dTCalT / nTCalT - if nTCalR > 0: TCalR = TCalR0 + iTCalR * dTCalR / nTCalR - # signal noise errors - # ----- random error calculation ---------- - # noise must be calculated from/with the actually measured signals; influence of TCalT, TCalR errors on noise are not considered ? - # actually measured signal counts are in input file and don't change - # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent - # error nNCal: one-sigma in steps to left and right for calibration signals - if nNCal > 0: - if (CalcFrom0deg): - dIoutTp = (NCalT * IoutTp) ** -0.5 - dIoutTm = (NCalT * IoutTm) ** -0.5 - dIoutRp = (NCalR * IoutRp) ** -0.5 - dIoutRm = (NCalR * IoutRm) ** -0.5 - else: - dIoutTp = dIoutTp0 * (IoutTp / IoutTp0) - dIoutTm = dIoutTm0 * (IoutTm / IoutTm0) - dIoutRp = dIoutRp0 * (IoutRp / IoutRp0) - dIoutRm = dIoutRm0 * (IoutRm / IoutRm0) - # print(iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr, IoutTp, dIoutTp) - IoutTp = IoutTp * (1. + iNCalTp * dIoutTp / nNCal) - IoutTm = IoutTm * (1. + iNCalTm * dIoutTm / nNCal) - IoutRp = IoutRp * (1. + iNCalRp * dIoutRp / nNCal) - IoutRm = IoutRm * (1. + iNCalRm * dIoutRm / nNCal) - - IoutTp = IoutTp * TCalT / TCalT0 - IoutTm = IoutTm * TCalT / TCalT0 - IoutRp = IoutRp * TCalR / TCalR0 - IoutRm = IoutRm * TCalR / TCalR0 - # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 for true and assumed true systems - # calibration factor - Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84; corrected according to the papers supplement Eqs. (S.10.10.1) ff - # possibly real calibration factor - Etapx = IoutRp / IoutTp - Etamx = IoutRm / IoutTm - Etax = (Etapx * Etamx) ** 0.5 - K = Etax / Eta - # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km)) - # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km)) - - # For comparison with Volkers Libreoffice Müller Matrix spreadsheet - # Eta_test_p = (IoutRp/IoutTp) - # Eta_test_m = (IoutRm/IoutTm) - # Eta_test = (Eta_test_p*Eta_test_m)**0.5 - ''' - for iIt, iIr \ - in [(iIt, iIr) - for iIt in range(-nNI, nNI + 1) - for iIr in range(-nNI, nNI + 1)]: - ''' - - iN = iN + 1 - if (iN == 10001): - ctime = clock() - print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="") - print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") - ctime = clock() - if ((ctime - dtime) > 10): - print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") - dtime = ctime - - # *** loop for different real LDRs ********************************************************************** - iLDR = -1 - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - atrue = (1. - LDRTrue) / (1. + LDRTrue) - # ----- Forward simulated signals and LDRsim with atrue; from input file; not considering TiC. - It = TTa * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT) - Ir = TRa * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR) - # # signal noise errors; standard deviation of signals; assumed to be statisitcally independent - # because the signals depend on LDRtrue, the errors dIt and dIr must be calculated for each LDRtrue - if (CalcFrom0deg): - ''' - dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) - dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) - ''' - dIt = ((It * NI * eFacT) ** -0.5) - dIr = ((Ir * NI * eFacR) ** -0.5) - else: - dIt = ((It * NI * eFacT) ** -0.5) - dIr = ((Ir * NI * eFacR) ** -0.5) - ''' - # does this work? Why not as above? - dIt = ((NCalT * 2. * NILfac / TCalT ) ** -0.5) - dIr = ((NCalR * 2. * NILfac / TCalR) ** -0.5) - ''' - # error nNI: one-sigma in steps to left and right for 0° signals - if nNI > 0: - It = It * (1. + iNIt * dIt / nNI) - Ir = Ir * (1. + iNIr * dIr / nNI) - - # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file - LDRsim = Ir / It # simulated uncorrected LDR with Y from input file - - # ----- Backward correction - # Corrected LDRCorr with assumed true G0,H0,K0,Eta0 from forward simulated (real) LDRsim(atrue) - LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim / (Etax / K0) * (GT0 - HT0)) - - # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent - # LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) - # Without any correction - LDRunCorr = LDRsim / Etax - # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) - - - ''' - # -- F11corr from It and Ir and calibration EtaX - Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1" - F11corr = 1 / (TiO * TiE) * ( - (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. - ''' - # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue) - Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1" - F11corr = 1 / (TiO * TiE) * ( - (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. - - # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)" - # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64) - - # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs) - # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1" - # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0)) - # ! see below line 1673ff - - aF11corr[iLDR, iN] = F11corr - aLDRcorr[iLDR, iN] = LDRCorr # LDRCorr # LDRsim # for test only - aLDRsim[iLDR, iN] = LDRsim # LDRCorr # LDRsim # for test only - # aPLDR[iLDR, iN] = CalcPLDR(LDRCorr, BSR[iLDR], LDRm0) - aEtax[iLDR, iN] = Etax - aEtapx[iLDR, iN] = Etapx - aEtamx[iLDR, iN] = Etamx - - aGHK[0, iN] = GR - aGHK[1, iN] = GT - aGHK[2, iN] = HR - aGHK[3, iN] = HT - aGHK[4, iN] = K - - aLDRCal[iN] = iLDRCal - aQin[iN] = iQin - aVin[iN] = iVin - aERaT[iN] = iERaT - aERaR[iN] = iERaR - aRotaT[iN] = iRotaT - aRotaR[iN] = iRotaR - aRetT[iN] = iRetT - aRetR[iN] = iRetR - - aRotL[iN] = iRotL - aRotE[iN] = iRotE - aRetE[iN] = iRetE - aRotO[iN] = iRotO - aRetO[iN] = iRetO - aRotC[iN] = iRotC - aRetC[iN] = iRetC - aDiO[iN] = iDiO - aDiE[iN] = iDiE - aDiC[iN] = iDiC - aTP[iN] = iTP - aTS[iN] = iTS - aRP[iN] = iRP - aRS[iN] = iRS - aTCalT[iN] = iTCalT - aTCalR[iN] = iTCalR - - aNCalTp[iN] = iNCalTp # IoutTp, IoutTm, IoutRp, IoutRm => Etax - aNCalTm[iN] = iNCalTm # IoutTp, IoutTm, IoutRp, IoutRm => Etax - aNCalRp[iN] = iNCalRp # IoutTp, IoutTm, IoutRp, IoutRm => Etax - aNCalRm[iN] = iNCalRm # IoutTp, IoutTm, IoutRp, IoutRm => Etax - aNIt[iN] = iNIt # It, Tr - aNIr[iN] = iNIr # It, Tr - - # --- END loop - btime = clock() - # print("\r done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ..."), # , end="\r"); - print(" done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ...") - # --- Plot ----------------------------------------------------------------- - print("Errors from GHK correction uncertainties:") - if (sns_loaded): - sns.set_style("whitegrid") - sns.set_palette("bright6", 6) - # for older seaborn versions use: - # sns.set_palette("bright", 6) - - ''' - fig2 = plt.figure() - plt.plot(aLDRcorr[2,:],'b.') - plt.plot(aLDRcorr[3,:],'r.') - plt.plot(aLDRcorr[4,:],'g.') - #plt.plot(aLDRcorr[6,:],'c.') - plt.show - ''' - - # Plot LDR - def PlotSubHist(aVar, aX, X0, daX, iaX, naX): - # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot - # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) - LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) - if (LDRmax[iLDR] > 10): LDRmax[iLDR] = 10 - if (LDRmin[iLDR] < -10): LDRmin[iLDR] = -10 - Rmin = LDRmin[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 - Rmax = LDRmax[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 - - # Determine mean distance of all aXmean from each other for each iLDR - meanDist = 0.0 - for iaX in range(-naX, naX + 1): - # mean LDRCorr value for certain error (iaX) of parameter aVar - aXmean[iaX + naX] = np.mean(aLDRcorr[iLDR, aX == iaX]) - # relative to absolute spread of LDRCorrs - meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRmax[iLDR] - LDRmin[iLDR]) * 100 - - plt.subplot(1, 5, iLDR + 1) - (n, bins, patches) = plt.hist(aLDRcorr[iLDR, :], - bins=100, log=False, - range=[Rmin, Rmax], - alpha=0.5, density=False, color='0.5', histtype='stepfilled') - - for iaX in range(-naX, naX + 1): - # mean LDRCorr value for certain error (iaX) of parameter aVar - plt.hist(aLDRcorr[iLDR, aX == iaX], - range=[Rmin, Rmax], - bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', - label=str(round(X0 + iaX * daX / naX, 5))) - - if (iLDR == 2): - leg = plt.legend() - leg.get_frame().set_alpha(0.1) - - plt.tick_params(axis='both', labelsize=10) - plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) - plt.gca().set_title("{0:3.0f}%".format(meanDist)) - plt.gca().set_xlabel('LDRtrue', color="red") - - # plt.ylabel('frequency', fontsize=10) - # plt.xlabel('LDRCorr', fontsize=10) - # fig.tight_layout() - fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) - # plt.show() - # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) - # plt.close - return - - def PlotLDRsim(aVar, aX, X0, daX, iaX, naX): - # aVar is the name of the parameter and aX is the subset of aLDRsim which is coloured in the plot - # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) - LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) - # print("LDRsimmin[iLDR], LDRsimmax[iLDR] = ", LDRsimmin[iLDR], LDRsimmax[iLDR]) - # if (LDRsimmax[iLDR] > 10): LDRsimmax[iLDR] = 10 - # if (LDRsimmin[iLDR] < -10): LDRsimmin[iLDR] = -10 - Rmin = LDRsimmin[iLDR] * 0.995 # np.min(aLDRsim[iLDR,:]) * 0.995 - Rmax = LDRsimmax[iLDR] * 1.005 # np.max(aLDRsim[iLDR,:]) * 1.005 - # print("Rmin, Rmax = ", Rmin, Rmax) - - # Determine mean distance of all aXmean from each other for each iLDR - meanDist = 0.0 - for iaX in range(-naX, naX + 1): - # mean LDRCorr value for certain error (iaX) of parameter aVar - aXmean[iaX + naX] = np.mean(aLDRsim[iLDR, aX == iaX]) - # relative to absolute spread of LDRCorrs - meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRsimmax[iLDR] - LDRsimmin[iLDR]) * 100 - - plt.subplot(1, 5, iLDR + 1) - (n, bins, patches) = plt.hist(aLDRsim[iLDR, :], - bins=100, log=False, - range=[Rmin, Rmax], - alpha=0.5, density=False, color='0.5', histtype='stepfilled') - - for iaX in range(-naX, naX + 1): - # mean LDRCorr value for certain error (iaX) of parameter aVar - plt.hist(aLDRsim[iLDR, aX == iaX], - range=[Rmin, Rmax], - bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', - label=str(round(X0 + iaX * daX / naX, 5))) - - if (iLDR == 2): - leg = plt.legend() - leg.get_frame().set_alpha(0.1) - - plt.tick_params(axis='both', labelsize=10) - plt.plot([LDRsim0[iLDR], LDRsim0[iLDR]], [0, np.max(n)], 'r-', lw=2) - plt.gca().set_title("{0:3.0f}%".format(meanDist)) - plt.gca().set_xlabel('LDRsim0', color="red") - - fig.suptitle('LDRsim - ' +LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) - return - - - # Plot Etax - def PlotEtax(aVar, aX, X0, daX, iaX, naX): - # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot - # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - Etaxmin = np.amin(aEtax[iLDR, :]) - Etaxmax = np.amax(aEtax[iLDR, :]) - Rmin = Etaxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 - Rmax = Etaxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 - - # Determine mean distance of all aXmean from each other for each iLDR - meanDist = 0.0 - for iaX in range(-naX, naX + 1): - # mean Etax value for certain error (iaX) of parameter aVar - aXmean[iaX + naX] = np.mean(aEtax[iLDR, aX == iaX]) - # relative to absolute spread of Etax - meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etaxmax - Etaxmin) * 100 - - plt.subplot(1, 5, iLDR + 1) - (n, bins, patches) = plt.hist(aEtax[iLDR, :], - bins=50, log=False, - range=[Rmin, Rmax], - alpha=0.5, density=False, color='0.5', histtype='stepfilled') - for iaX in range(-naX, naX + 1): - plt.hist(aEtax[iLDR, aX == iaX], - range=[Rmin, Rmax], - bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', - label=str(round(X0 + iaX * daX / naX, 5))) - if (iLDR == 2): - leg = plt.legend() - leg.get_frame().set_alpha(0.1) - plt.tick_params(axis='both', labelsize=10) - plt.plot([Etax0, Etax0], [0, np.max(n)], 'r-', lw=2) - plt.gca().set_title("{0:3.0f}%".format(meanDist)) - plt.gca().set_xlabel('Etax0', color="red") - fig.suptitle('Etax - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) - return - - def PlotEtapx(aVar, aX, X0, daX, iaX, naX): - # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot - # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - Etapxmin = np.amin(aEtapx[iLDR, :]) - Etapxmax = np.amax(aEtapx[iLDR, :]) - Rmin = Etapxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 - Rmax = Etapxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 - - # Determine mean distance of all aXmean from each other for each iLDR - meanDist = 0.0 - for iaX in range(-naX, naX + 1): - # mean Etapx value for certain error (iaX) of parameter aVar - aXmean[iaX + naX] = np.mean(aEtapx[iLDR, aX == iaX]) - # relative to absolute spread of Etapx - meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etapxmax - Etapxmin) * 100 - - plt.subplot(1, 5, iLDR + 1) - (n, bins, patches) = plt.hist(aEtapx[iLDR, :], - bins=50, log=False, - range=[Rmin, Rmax], - alpha=0.5, density=False, color='0.5', histtype='stepfilled') - for iaX in range(-naX, naX + 1): - plt.hist(aEtapx[iLDR, aX == iaX], - range=[Rmin, Rmax], - bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', - label=str(round(X0 + iaX * daX / naX, 5))) - if (iLDR == 2): - leg = plt.legend() - leg.get_frame().set_alpha(0.1) - plt.tick_params(axis='both', labelsize=10) - plt.plot([Etapx0, Etapx0], [0, np.max(n)], 'r-', lw=2) - plt.gca().set_title("{0:3.0f}%".format(meanDist)) - plt.gca().set_xlabel('Etapx0', color="red") - fig.suptitle('Etapx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) - return - - def PlotEtamx(aVar, aX, X0, daX, iaX, naX): - # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot - # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - Etamxmin = np.amin(aEtamx[iLDR, :]) - Etamxmax = np.amax(aEtamx[iLDR, :]) - Rmin = Etamxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 - Rmax = Etamxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 - - # Determine mean distance of all aXmean from each other for each iLDR - meanDist = 0.0 - for iaX in range(-naX, naX + 1): - # mean Etamx value for certain error (iaX) of parameter aVar - aXmean[iaX + naX] = np.mean(aEtamx[iLDR, aX == iaX]) - # relative to absolute spread of Etamx - meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etamxmax - Etamxmin) * 100 - - plt.subplot(1, 5, iLDR + 1) - (n, bins, patches) = plt.hist(aEtamx[iLDR, :], - bins=50, log=False, - range=[Rmin, Rmax], - alpha=0.5, density=False, color='0.5', histtype='stepfilled') - for iaX in range(-naX, naX + 1): - plt.hist(aEtamx[iLDR, aX == iaX], - range=[Rmin, Rmax], - bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', - label=str(round(X0 + iaX * daX / naX, 5))) - if (iLDR == 2): - leg = plt.legend() - leg.get_frame().set_alpha(0.1) - plt.tick_params(axis='both', labelsize=10) - plt.plot([Etamx0, Etamx0], [0, np.max(n)], 'r-', lw=2) - plt.gca().set_title("{0:3.0f}%".format(meanDist)) - plt.gca().set_xlabel('Etamx0', color="red") - fig.suptitle('Etamx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) - return - - # calc contribution of the error of aVar = aX to aY for each LDRtrue - def Contribution(aVar, aX, X0, daX, iaX, naX, aY, Ysum, widthSum): - # aVar is the name of the parameter and aX is the subset of aY which is coloured in the plot - # example: Contribution("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP, aLDRcorr, DOLPcontr) - iLDR = -1 - # Ysum, widthSum = np.zeros(5) - meanDist = np.zeros(5) # iLDR - widthDist = np.zeros(5) # iLDR - for LDRTrue in LDRrange: - aXmean = np.zeros(2 * naX + 1) - aXwidth = np.zeros(2 * naX + 1) - iLDR = iLDR + 1 - # total width of distribution - aYmin = np.amin(aY[iLDR, :]) - aYmax = np.amax(aY[iLDR, :]) - aYwidth = aYmax - aYmin - # Determine mean distance of all aXmean from each other for each iLDR - for iaX in range(-naX, naX + 1): - # mean LDRCorr value for all errors iaX of parameter aVar - aXmean[iaX + naX] = np.mean(aY[iLDR, aX == iaX]) - aXwidth[iaX + naX] = np.max(aY[iLDR, aX == iaX]) - np.min(aY[iLDR, aX == iaX]) - # relative to absolute spread of LDRCorrs - meanDist[iLDR] = (np.max(aXmean) - np.min(aXmean)) / aYwidth * 1000 - # meanDist[iLDR] = (aYwidth - aXwidth[naX]) / aYwidth * 1000 - widthDist[iLDR] = (np.max(aXwidth) - aXwidth[naX]) / aYwidth * 1000 - - print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ - .format(aVar,meanDist[0],meanDist[1],meanDist[2],meanDist[3],meanDist[4],widthDist[0],widthDist[1],widthDist[2],widthDist[3],widthDist[4])) - Ysum = Ysum + meanDist - widthSum = widthSum + widthDist - return(Ysum, widthSum) - - # print(.format(LDRrangeA[iLDR],)) - - # error contributions to a certain output aY; loop over all variables - def Contribution_aY(aYvar, aY): - Ysum = np.zeros(5) - widthSum = np.zeros(5) - # meanDist = np.zeros(5) # iLDR - LDRrangeA = np.array(LDRrange) - print() - print(aYvar + ": contribution to the total error (per mill)") - print(" of individual parameter errors of combined parameter errors") - print(" at LDRtrue {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f}"\ - .format(LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4],LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4])) - print() - if (nQin > 0): Ysum, widthSum = Contribution("Qin", aQin, Qin0, dQin, iQin, nQin, aY, Ysum, widthSum) - if (nVin > 0): Ysum, widthSum = Contribution("Vin", aVin, Vin0, dVin, iVin, nVin, aY, Ysum, widthSum) - if (nRotL > 0): Ysum, widthSum = Contribution("RotL", aRotL, RotL0, dRotL, iRotL, nRotL, aY, Ysum, widthSum) - if (nRetE > 0): Ysum, widthSum = Contribution("RetE", aRetE, RetE0, dRetE, iRetE, nRetE, aY, Ysum, widthSum) - if (nRotE > 0): Ysum, widthSum = Contribution("RotE", aRotE, RotE0, dRotE, iRotE, nRotE, aY, Ysum, widthSum) - if (nDiE > 0): Ysum, widthSum = Contribution("DiE", aDiE, DiE0, dDiE, iDiE, nDiE, aY, Ysum, widthSum) - if (nRetO > 0): Ysum, widthSum = Contribution("RetO", aRetO, RetO0, dRetO, iRetO, nRetO, aY, Ysum, widthSum) - if (nRotO > 0): Ysum, widthSum = Contribution("RotO", aRotO, RotO0, dRotO, iRotO, nRotO, aY, Ysum, widthSum) - if (nDiO > 0): Ysum, widthSum = Contribution("DiO", aDiO, DiO0, dDiO, iDiO, nDiO, aY, Ysum, widthSum) - if (nDiC > 0): Ysum, widthSum = Contribution("DiC", aDiC, DiC0, dDiC, iDiC, nDiC, aY, Ysum, widthSum) - if (nRotC > 0): Ysum, widthSum = Contribution("RotC", aRotC, RotC0, dRotC, iRotC, nRotC, aY, Ysum, widthSum) - if (nRetC > 0): Ysum, widthSum = Contribution("RetC", aRetC, RetC0, dRetC, iRetC, nRetC, aY, Ysum, widthSum) - if (nTP > 0): Ysum, widthSum = Contribution("TP", aTP, TP0, dTP, iTP, nTP, aY, Ysum, widthSum) - if (nTS > 0): Ysum, widthSum = Contribution("TS", aTS, TS0, dTS, iTS, nTS, aY, Ysum, widthSum) - if (nRP > 0): Ysum, widthSum = Contribution("RP", aRP, RP0, dRP, iRP, nRP, aY, Ysum, widthSum) - if (nRS > 0): Ysum, widthSum = Contribution("RS", aRS, RS0, dRS, iRS, nRS, aY, Ysum, widthSum) - if (nRetT > 0): Ysum, widthSum = Contribution("RetT", aRetT, RetT0, dRetT, iRetT, nRetT, aY, Ysum, widthSum) - if (nRetR > 0): Ysum, widthSum = Contribution("RetR", aRetR, RetR0, dRetR, iRetR, nRetR, aY, Ysum, widthSum) - if (nERaT > 0): Ysum, widthSum = Contribution("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT, aY, Ysum, widthSum) - if (nERaR > 0): Ysum, widthSum = Contribution("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR, aY, Ysum, widthSum) - if (nRotaT > 0): Ysum, widthSum = Contribution("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT, aY, Ysum, widthSum) - if (nRotaR > 0): Ysum, widthSum = Contribution("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR, aY, Ysum, widthSum) - if (nLDRCal > 0): Ysum, widthSum = Contribution("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal, aY, Ysum, widthSum) - if (nTCalT > 0): Ysum, widthSum = Contribution("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT, aY, Ysum, widthSum) - if (nTCalR > 0): Ysum, widthSum = Contribution("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR, aY, Ysum, widthSum) - if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal, aY, Ysum, widthSum) - if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal, aY, Ysum, widthSum) - if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal, aY, Ysum, widthSum) - if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal, aY, Ysum, widthSum) - if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIt", aNIt, 0, 1, iNIt, nNI, aY, Ysum, widthSum) - if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIr", aNIr, 0, 1, iNIr, nNI, aY, Ysum, widthSum) - print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ - .format("Sum ",Ysum[0],Ysum[1],Ysum[2],Ysum[3],Ysum[4],widthSum[0],widthSum[1],widthSum[2],widthSum[3],widthSum[4])) - - - # Plot LDR histograms - if (nQin > 0): PlotSubHist("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotSubHist("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotSubHist("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotSubHist("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotSubHist("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) - if (nNCal > 0): PlotSubHist("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) - if (nNCal > 0): PlotSubHist("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) - if (nNCal > 0): PlotSubHist("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) - if (nNI > 0): PlotSubHist("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) - if (nNI > 0): PlotSubHist("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) - plt.show() - plt.close - - - - # --- Plot LDRmin, LDRmax - iLDR = -1 - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) - LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) - LDRstd[iLDR] = np.std(aLDRcorr[iLDR, :]) - LDRmean[iLDR] = np.mean(aLDRcorr[iLDR, :]) - LDRmedian[iLDR] = np.median(aLDRcorr[iLDR, :]) - LDRskew[iLDR] = skew(aLDRcorr[iLDR, :],bias=False) - LDRkurt[iLDR] = kurtosis(aLDRcorr[iLDR, :],fisher=True,bias=False) - - fig2 = plt.figure() - LDRrangeA = np.array(LDRrange) - if((np.amax(LDRmax - LDRrangeA)-np.amin(LDRmin - LDRrangeA)) < 0.001): - plt.ylim(-0.001,0.001) - plt.plot(LDRrangeA, LDRmax - LDRrangeA, linewidth=2.0, color='b') - plt.plot(LDRrangeA, LDRmin - LDRrangeA, linewidth=2.0, color='g') - - plt.xlabel('LDRtrue', fontsize=18) - plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14) - plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18) - # plt.ylimit(-0.07, 0.07) - plt.show() - plt.close - - # --- Save LDRmin, LDRmax to file - # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python - with open('output_files\\' + OutputFile, 'a') as f: - # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'w') as f: - with redirect_stdout(f): - print("Lidar ID: " + LID) - print() - print("minimum and maximum values of the distributions of possibly measured LDR for different LDRtrue") - print("LDRtrue , LDRmin, LDRmax") - for i in range(len(LDRrangeA)): - print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrangeA[i], LDRmin[i], LDRmax[i])) - print() - # Print LDR statistics - print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") - iLDR = -1 - LDRrangeA = np.array(LDRrange) - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}"\ - .format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], \ - LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR], LDRkurt[iLDR], LDRskew[iLDR])) - print() - # Calculate and print statistics for calibration factors - print("minimum and maximum values of the distributions of signal ratios and calibration factors for different LDRtrue") - iLDR = -1 - LDRrangeA = np.array(LDRrange) - print("LDRtrue , LDRsim, (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) - LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) - # LDRsimstd = np.std(aLDRsim[iLDR, :]) - LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) - # LDRsimmedian = np.median(aLDRsim[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR],LDRsimmean[iLDR],(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2,(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) - iLDR = -1 - print("LDRtrue , Etax , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etaxmin = np.amin(aEtax[iLDR, :]) - Etaxmax = np.amax(aEtax[iLDR, :]) - # Etaxstd = np.std(aEtax[iLDR, :]) - Etaxmean = np.mean(aEtax[iLDR, :]) - # Etaxmedian = np.median(aEtax[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) - iLDR = -1 - print("LDRtrue , Etapx , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etapxmin = np.amin(aEtapx[iLDR, :]) - Etapxmax = np.amax(aEtapx[iLDR, :]) - # Etapxstd = np.std(aEtapx[iLDR, :]) - Etapxmean = np.mean(aEtapx[iLDR, :]) - # Etapxmedian = np.median(aEtapx[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) - iLDR = -1 - print("LDRtrue , Etamx , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etamxmin = np.amin(aEtamx[iLDR, :]) - Etamxmax = np.amax(aEtamx[iLDR, :]) - # Etamxstd = np.std(aEtamx[iLDR, :]) - Etamxmean = np.mean(aEtamx[iLDR, :]) - # Etamxmedian = np.median(aEtamx[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) - - # Print LDR statistics - print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") - iLDR = -1 - LDRrangeA = np.array(LDRrange) - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}".format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR],LDRkurt[iLDR],LDRskew[iLDR])) - - - with open('output_files\\' + OutputFile, 'a') as f: - # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'a') as f: - with redirect_stdout(f): - Contribution_aY("LDRCorr", aLDRcorr) - Contribution_aY("LDRsim", aLDRsim) - Contribution_aY("EtaX, D90", aEtax) - Contribution_aY("Etapx, +45°", aEtapx) - Contribution_aY("Etamx -45°", aEtamx) - - - # Plot other histograms - if (bPlotEtax): - - if (nQin > 0): PlotLDRsim("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotLDRsim("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotLDRsim("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotLDRsim("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotLDRsim("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotLDRsim("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotLDRsim("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotLDRsim("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotLDRsim("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotLDRsim("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotLDRsim("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotLDRsim("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotLDRsim("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotLDRsim("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotLDRsim("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotLDRsim("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotLDRsim("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotLDRsim("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotLDRsim("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotLDRsim("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotLDRsim("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotLDRsim("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotLDRsim("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotLDRsim("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotLDRsim("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotLDRsim("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) - if (nNCal > 0): PlotLDRsim("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) - if (nNCal > 0): PlotLDRsim("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) - if (nNCal > 0): PlotLDRsim("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) - if (nNI > 0): PlotLDRsim("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) - if (nNI > 0): PlotLDRsim("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) - plt.show() - plt.close - print("---------------------------------------...producing more plots...------------------------------------------------------------------") - - if (nQin > 0): PlotEtax("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotEtax("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotEtax("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotEtax("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotEtax("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotEtax("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotEtax("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotEtax("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotEtax("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotEtax("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotEtax("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotEtax("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotEtax("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotEtax("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotEtax("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotEtax("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotEtax("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotEtax("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotEtax("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotEtax("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotEtax("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotEtax("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotEtax("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotEtax("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotEtax("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotEtax("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) - if (nNCal > 0): PlotEtax("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) - if (nNCal > 0): PlotEtax("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) - if (nNCal > 0): PlotEtax("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) - if (nNI > 0): PlotEtax("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) - if (nNI > 0): PlotEtax("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) - plt.show() - plt.close - print("---------------------------------------...producing more plots...------------------------------------------------------------------") - - if (nQin > 0): PlotEtapx("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotEtapx("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotEtapx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotEtapx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotEtapx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotEtapx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotEtapx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotEtapx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotEtapx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotEtapx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotEtapx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotEtapx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotEtapx("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotEtapx("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotEtapx("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotEtapx("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotEtapx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotEtapx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotEtapx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotEtapx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotEtapx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotEtapx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotEtapx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotEtapx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotEtapx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotEtapx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) - if (nNCal > 0): PlotEtapx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) - if (nNCal > 0): PlotEtapx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) - if (nNCal > 0): PlotEtapx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) - if (nNI > 0): PlotEtapx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) - if (nNI > 0): PlotEtapx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) - plt.show() - plt.close - print("---------------------------------------...producing more plots...------------------------------------------------------------------") - - if (nQin > 0): PlotEtamx("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotEtamx("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotEtamx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotEtamx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotEtamx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotEtamx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotEtamx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotEtamx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotEtamx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotEtamx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotEtamx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotEtamx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotEtamx("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotEtamx("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotEtamx("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotEtamx("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotEtamx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotEtamx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotEtamx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotEtamx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotEtamx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotEtamx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotEtamx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotEtamx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotEtamx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotEtamx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) - if (nNCal > 0): PlotEtamx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) - if (nNCal > 0): PlotEtamx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) - if (nNCal > 0): PlotEtamx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) - if (nNI > 0): PlotEtamx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) - if (nNI > 0): PlotEtamx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) - plt.show() - plt.close - - # Print Etax statistics - Etaxmin = np.amin(aEtax[1, :]) - Etaxmax = np.amax(aEtax[1, :]) - Etaxstd = np.std(aEtax[1, :]) - Etaxmean = np.mean(aEtax[1, :]) - Etaxmedian = np.median(aEtax[1, :]) - print("Etax , max-mean, min-mean, median, mean ± std, eta") - print("{0:8.5f} ±({1:8.5f},{2:8.5f}),{3:8.5f},{4:8.5f}±{5:8.5f},{6:8.5f}".format(Etax0, Etaxmax-Etax0, Etaxmin-Etax0, Etaxmedian, Etaxmean, Etaxstd, Etax0 / K0)) - print() - - # Calculate and print statistics for calibration factors - iLDR = -1 - LDRrangeA = np.array(LDRrange) - print("LDR...., LDRsim, (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) - LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) - # LDRsimstd = np.std(aLDRsim[iLDR, :]) - LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) - # LDRsimmedian = np.median(aLDRsim[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], LDRsimmean[iLDR], (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2, (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) - iLDR = -1 - print("LDR...., Etax , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etaxmin = np.amin(aEtax[iLDR, :]) - Etaxmax = np.amax(aEtax[iLDR, :]) - # Etaxstd = np.std(aEtax[iLDR, :]) - Etaxmean = np.mean(aEtax[iLDR, :]) - # Etaxmedian = np.median(aEtax[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) - iLDR = -1 - print("LDR...., Etapx , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etapxmin = np.amin(aEtapx[iLDR, :]) - Etapxmax = np.amax(aEtapx[iLDR, :]) - # Etapxstd = np.std(aEtapx[iLDR, :]) - Etapxmean = np.mean(aEtapx[iLDR, :]) - # Etapxmedian = np.median(aEtapx[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) - iLDR = -1 - print("LDR...., Etamx , (max-min)/2, relerr") - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - Etamxmin = np.amin(aEtamx[iLDR, :]) - Etamxmax = np.amax(aEtamx[iLDR, :]) - # Etamxstd = np.std(aEtamx[iLDR, :]) - Etamxmean = np.mean(aEtamx[iLDR, :]) - # Etamxmedian = np.median(aEtamx[iLDR, :]) - print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) - - f.close() - - -''' - # --- Plot F11 histograms - print() - print(" ############################################################################## ") - print(Text1) - print() - - iLDR = 5 - for LDRTrue in LDRrange: - iLDR = iLDR - 1 - #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0 - aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0 - # Plot F11 - def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX): - fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) - iLDR = -1 - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - - #F11min[iLDR] = np.min(aF11corr[iLDR,:]) - #F11max[iLDR] = np.max(aF11corr[iLDR,:]) - #Rmin = F11min[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 - #Rmax = F11max[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 - - #Rmin = 0.8 - #Rmax = 1.2 - - #plt.subplot(5,2,iLDR+1) - plt.subplot(1,5,iLDR+1) - (n, bins, patches) = plt.hist(aF11corr[iLDR,:], - bins=100, log=False, - alpha=0.5, density=False, color = '0.5', histtype='stepfilled') - - for iaX in range(-naX,naX+1): - plt.hist(aF11corr[iLDR,aX == iaX], - bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) - - if (iLDR == 2): plt.legend() - - plt.tick_params(axis='both', labelsize=9) - #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) - - #plt.title(LID + ' ' + aVar, fontsize=18) - #plt.ylabel('frequency', fontsize=10) - #plt.xlabel('LDRCorr', fontsize=10) - #fig.tight_layout() - fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) - #plt.show() - #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) - #plt.close - return - - if (nQin > 0): PlotSubHistF11("Qin", aQin, Qin0, dQin, iQin, nQin) - if (nVin > 0): PlotSubHistF11("Vin", aVin, Vin0, dVin, iVin, nVin) - if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) - if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) - if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) - if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) - if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) - if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) - if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) - if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) - if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) - if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) - if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP) - if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS) - if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP) - if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS) - if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) - if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) - if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) - if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) - if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) - if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) - if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) - if (nTCalT > 0): PlotSubHistF11("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) - if (nTCalR > 0): PlotSubHistF11("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) - if (nNCal > 0): PlotSubHistF11("CalNoise", aNCal, 0, 1/nNCal, iNCal, nNCal) - if (nNI > 0): PlotSubHistF11("SigNoise", aNI, 0, 1/nNI, iNI, nNI) - - - plt.show() - plt.close - - ''' -''' - # only histogram - #print("******************* " + aVar + " *******************") - fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10)) - iLDR = -1 - for LDRTrue in LDRrange: - iLDR = iLDR + 1 - LDRmin[iLDR] = np.min(aLDRcorr[iLDR,:]) - LDRmax[iLDR] = np.max(aLDRcorr[iLDR,:]) - Rmin = np.min(aLDRcorr[iLDR,:]) * 0.999 - Rmax = np.max(aLDRcorr[iLDR,:]) * 1.001 - plt.subplot(5,2,iLDR+1) - (n, bins, patches) = plt.hist(aLDRcorr[iLDR,:], - range=[Rmin, Rmax], - bins=200, log=False, alpha=0.2, density=False, color = '0.5', histtype='stepfilled') - plt.tick_params(axis='both', labelsize=9) - plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) - plt.show() - plt.close - # --- End of Plot F11 histograms - ''' - - -''' - # --- Plot K over LDRCal - fig3 = plt.figure() - plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aGHK[4,:], linewidth=2.0, color='b') - - plt.xlabel('LDRCal', fontsize=18) - plt.ylabel('K', fontsize=14) - plt.title(LID, fontsize=18) - plt.show() - plt.close - ''' - -# Additional plot routines ======> -''' -#****************************************************************************** -# 1. Plot LDRCorrected - LDR(measured Icross/Iparallel) -LDRa = np.arange(1.,100.)*0.005 -LDRCorra = np.arange(1.,100.) -if Y == - 1.: LDRa = 1./LDRa -LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT)) -if Y == - 1.: LDRa = 1./LDRa -# -#fig = plt.figure() -plt.plot(LDRa,LDRCorra-LDRa) -plt.plot([0.,0.5],[0.,0.5]) -plt.suptitle('LDRCorrected - LDR(measured Icross/Iparallel)', fontsize=16) -plt.xlabel('LDR', fontsize=18) -plt.ylabel('LDRCorr - LDR', fontsize=16) -#plt.savefig('test.png') -# -''' -''' -#****************************************************************************** -# 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue -LDRa = np.arange(1.,100.)*0.005 -LDRsima = np.arange(1.,100.) - -atruea = (1.-LDRa)/(1+LDRa) -Ita = TiT*TiO*IinL*(GT+atruea*HT) -Ira = TiR*TiO*IinL*(GR+atruea*HR) -LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file -if Y == -1.: LDRsima = 1./LDRsima -# -#fig = plt.figure() -plt.plot(LDRa,LDRsima) -plt.plot([0.,0.5],[0.,0.5]) -plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10) -plt.xlabel('LDRtrue', fontsize=18) -plt.ylabel('LDRsim', fontsize=16) -#plt.savefig('test.png') -# -''' \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/GHK_0.9.8e5_Py3.7.py Sat May 30 00:58:15 2020 +0200 @@ -0,0 +1,2885 @@ +# -*- coding: utf-8 -*- +""" +Copyright 2016, 2019 Volker Freudenthaler + +Licensed under the EUPL, Version 1.1 only (the "Licence"). + +You may not use this work except in compliance with the Licence. +A copy of the licence is distributed with the code. Alternatively, you may obtain +a copy of the Licence at: + +https://joinup.ec.europa.eu/community/eupl/og_page/eupl + +Unless required by applicable law or agreed to in writing, software distributed +under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS +OF ANY KIND, either express or implied. See the Licence for the specific language governing +permissions and limitations under the Licence. + +Equation reference: http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf +With equations code from Appendix C +Python 3.7, seaborn 0.9.0 + +Code description: + +From measured lidar signals we cannot directly determine the desired backscatter coefficient (F11) and the linear depolarization ratio (LDR) +because of the cross talk between the channles and systematic errors of a lidar system. +http://www.atmos-meas-tech-discuss.net/amt-2015-338/amt-2015-338.pdf provides an analytical model for the description of these errors, +with which the measured signals can be corrected. +This code simulates the lidar measurements with "assumed true" model parameters from an input file, and calculates the correction parameters (G,H, and K). +The "assumed true" system parameters are the ones we think are the right ones, but in reality these parameters probably deviate from the assumed truth due to +uncertainties. The uncertainties of the "assumed true" parameters can be described in the input file. Then this code calculates the lidar signals and the +gain ratio eta* with all possible combinations of "errors", which represents the distribution of "possibly real" signals, and "corrects" them with the "assumed true" +GHK parameters (GT0, GR0, HT0, HR0, and K0) to derive finally the distributions of "possibly real" linear depolarization ratios (LDRCorr), +which are plotted for five different input linear depolarization ratios (LDRtrue). The red bars in the plots represent the input values of LDRtrue. +A complication arises from the fact that the correction parameter K = eta*/eta (Eq. 83) can depend on the LDR during the calibration measurement, i.e. LDRcal or aCal +in the code (see e.g. Eqs. (103), (115), and (141); mind the mistake in Eq. (116)). Therefor values of K for LDRcal = 0.004, 0.2, and 0.45 are calculated for +"assumed true" system parameters and printed in the output file behind the GH parameters. The full impact of the LDRcal dependent K can be considered in the error +calculation by specifying a range of possible LDRcal values in the input file. For the real calibration measurements a calibration range with low or no aerosol +content should be chosen, and the default in the input file is a range of LDRcal between 0.004 and 0.014 (i.e. 0.009 +-0.005). + +Tip: In case you run the code with Spyder, all output text and plots can be displayed together in an IPython console, which can be saved as an html file. + +Ver. 0.9.7: includes the random error (signal noise) of the calibration and standard measurements +Changes: + Line 1687 Eta = (TaR * TiR) / (TaT * TiT) + Line 1691 K = Etax / Eta # K of the real system; but correction in Line 1721 with K0 / Etax + should work with nTCalT = nTCalR = 0 +Ver. 0.9.7b: + ToDo: include error due to TCalT und TCalR => determination of NCalT and NCalR etc. in error calculation line 1741ff + combined error loops iNI and INCal for signals +Ver. 0.9.7c: individual error loops for each of the six signals +Ver. 0.9.7c2: different calculation of the signal noise errors +Ver. 0.9.7c3: n.a.different calculation of the signal noise errors +Ver. 0.9.7c4: test to speed up the loops for error calculation by moving them just before the actual calculation: still some code errors +Ver. 0.9.8: + - correct calculation of Eta for cleaned anaylsers considering the combined transmission Eta = (TaT* TiT)(1 + cos2RotaT * DaT * DiT) and (TaR * TiR)(1 + cos2RotaR * DaR * DiR) according to the papers supplement Eqs. (S.10.10.1) ff + - calculation of the PLDR from LDR and BSR, BSR, and LDRm + - ND-filters can be added for the calibration measurements in the transmitted (TCalT) and the reflected path (TCalR) in order to include their uncertainties in the error calculation. +Ver. 0.9.8b: change from "TTa = TiT * TaT" to "TTa = TiT * TaT * ATPT" etc. (compare ver 0.9.8 with 0.9.8b) removes + - the strong Tp dependence of the errors + - the factor 2 in the GH parameters + - see c:\technik\Optik\Polarizers\DepCal\ApplOpt\GH-parameters-190114.odt +Ver. 0.9.8c: includes error of Etax +Ver. 0.9.8d: Eta0, K0 etc in error loop replaced by Eta0y, K0y etc. Changes in signal noise calculations +Ver. 0.9.8e: ambiguous laser spec. DOLP (no discrimination between left and right circular polarisation) replaced by Stokes parameters Qin, Uin +Ver. 0.9.8e2: Added plot of LDRsim, Etax, Etapx, Etamx; LDRCorr and aLDRcorr consistently named +Ver. 0.9.8e3: Change of OutputFile name; Change of Ir and It noise if (CalcFrom0deg) = False; (Different calculation of error contributions tested but not implemented) +Ver. 0.9.8e4: text changed for y=+-1 (see line 274 ff and line 1044 ff +Ver. 0.9.8e5: changed: LDRunCorr = LDRsim / Etax + + ======================================================== +simulation: LDRsim = Ir / It with variable parameters (possible truths) + G,H,Eta,Etax,K + It = TaT * TiT * ATP1 * TiO * TiE * (GT + atrue * HT) + LDRsim = Ir / It +consistency test: is forward simulation and correction consistent? + LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) => atrue? +assumed true: G0,H0,Eta0,Etax0,K0 => actual retrievals of LDRCorr + => correct possible truths with assumed true G0,H0,Eta0 + measure: It, Ir, EtaX + LDRunCorr = LDRsim / Etax + correct it with G0,H0,K0: + LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim0 / (Etax / K0) * (GT0 - HT0)) +""" +# Comment: The code might works with Python 2.7 with the help of following line, which enables Python2 to correctly interpret the Python 3 print statements. +from __future__ import print_function +# !/usr/bin/env python3 + +import os +import sys + +from scipy.stats import kurtosis +from scipy.stats import skew +# use: kurtosis(data, fisher=True,bias=False) => 0; skew(data,bias=False) => 0 +# Comment: the seaborn library makes nicer plots, but the code works also without it. +import numpy as np +import matplotlib.pyplot as plt + +try: + import seaborn as sns + + sns_loaded = True +except ImportError: + sns_loaded = False + +# from time import clock # python 2 +from timeit import default_timer as clock + +# from matplotlib.backends.backend_pdf import PdfPages +# pdffile = '{}.pdf'.format('path') +# pp = PdfPages(pdffile) +## pp.savefig can be called multiple times to save to multiple pages +# pp.savefig() +# pp.close() + +from contextlib import contextmanager + +@contextmanager +def redirect_stdout(new_target): + old_target, sys.stdout = sys.stdout, new_target # replace sys.stdout + try: + yield new_target # run some code with the replaced stdout + finally: + sys.stdout.flush() + sys.stdout = old_target # restore to the previous value + +''' +real_raw_input = vars(__builtins__).get('raw_input',input) +''' +try: + import __builtin__ + + input = getattr(__builtin__, 'raw_input') +except (ImportError, AttributeError): + pass + +from distutils.util import strtobool + + +def user_yes_no_query(question): + sys.stdout.write('%s [y/n]\n' % question) + while True: + try: + return strtobool(input().lower()) + except ValueError: + sys.stdout.write('Please respond with \'y\' or \'n\'.\n') + + +# if user_yes_no_query('want to exit?') == 1: sys.exit() + +abspath = os.path.abspath(__file__) +dname = os.path.dirname(abspath) +fname = os.path.basename(abspath) +os.chdir(dname) + +# PrintToOutputFile = True + +sqr05 = 0.5 ** 0.5 + +# ---- Initial definition of variables; the actual values will be read in with exec(open('./optic_input.py').read()) below +# Do you want to calculate the errors? If not, just the GHK-parameters are determined. +Error_Calc = True +LID = "internal" +EID = "internal" +# --- IL Laser IL and +-Uncertainty +Qin, dQin, nQin = 1., 0.0, 0 # second Stokes vector parameter; default 1 => linear polarization +Vin, dVin, nVin = 0., 0.0, 0 # fourth Stokes vector parameter +RotL, dRotL, nRotL = 0.0, 0.0, 1 # alpha; rotation of laser polarization in degrees; default 0 +# IL = 1e5 #photons in the laser beam, including detection efficiency of the telescope, atmodspheric and r^2 attenuation +# --- ME Emitter and +-Uncertainty +DiE, dDiE, nDiE = 0., 0.00, 1 # Diattenuation +TiE = 1. # Unpolarized transmittance +RetE, dRetE, nRetE = 0., 180.0, 0 # Retardance in degrees +RotE, dRotE, nRotE = 0., 0.0, 0 # beta: Rotation of optical element in degrees +# --- MO Receiver Optics including telescope +DiO, dDiO, nDiO = -0.055, 0.003, 1 +TiO = 0.9 +RetO, dRetO, nRetO = 0., 180.0, 2 +RotO, dRotO, nRotO = 0., 0.1, 1 # gamma +# --- PBS MT transmitting path defined with (TS,TP); and +-Uncertainty +TP, dTP, nTP = 0.98, 0.02, 1 +TS, dTS, nTS = 0.001, 0.001, 1 +TiT = 0.5 * (TP + TS) +DiT = (TP - TS) / (TP + TS) +# PolFilter +RetT, dRetT, nRetT = 0., 180., 0 +ERaT, dERaT, nERaT = 0.001, 0.001, 1 +RotaT, dRotaT, nRotaT = 0., 3., 1 +DaT = (1 - ERaT) / (1 + ERaT) +TaT = 0.5 * (1 + ERaT) +# --- PBS MR reflecting path defined with (RS,RP); and +-Uncertainty +RS_RP_depend_on_TS_TP = False +if (RS_RP_depend_on_TS_TP): + RP, dRP, nRP = 1 - TP, 0.0, 0 + RS, dRS, nRS = 1 - TS, 0.0, 0 +else: + RP, dRP, nRP = 0.05, 0.01, 1 + RS, dRS, nRS = 0.98, 0.01, 1 +TiR = 0.5 * (RP + RS) +DiR = (RP - RS) / (RP + RS) +# PolFilter +RetR, dRetR, nRetR = 0., 180., 0 +ERaR, dERaR, nERaR = 0.001, 0.001, 1 +RotaR, dRotaR, nRotaR = 90., 3., 1 +DaR = (1 - ERaR) / (1 + ERaR) +TaR = 0.5 * (1 + ERaR) + +# +++ Orientation of the PBS with respect to the reference plane (see Polarisation-orientation.png and Polarisation-orientation-2.png in /system_settings) +# Y = +1: PBS incidence plane is parallel to reference plane and polarisation in reference plane is finally transmitted. +# Y = -1: PBS incidence plane is perpendicular to reference plane and polarisation in reference plane is finally reflected. +Y = 1. + +# Calibrator = type defined by matrix values +LocC = 4 # location of calibrator: behind laser = 1; behind emitter = 2; before receiver = 3; before PBS = 4 + +# --- Additional attenuation (transmission of the ND-filter) during the calibration +TCalT, dTCalT, nTCalT = 1, 0., 0 # transmitting path; error calc not working yet +TCalR, dTCalR, nTCalR = 1, 0., 0 # reflecting path; error calc not working yet + +# *** signal noise error calculation +# --- number of photon counts in the signal summed up in the calibration range during the calibration measurements +NCalT = 1e6 # default 1e6, assumed the same in +45° and -45° signals +NCalR = 1e6 # default 1e6, assumed the same in +45° and -45° signals +NILfac = 1.0 # duration of standard (0°) measurement relative to calibration measurements +nNCal = 0 # error nNCal: one-sigma in steps to left and right for calibration signals +nNI = 0 # error nNI: one-sigma in steps to left and right for 0° signals +NI = 50000 #number of photon counts in the parallel 0°-signal +eFacT = 1.0 # rel. amplification of transmitted channel, approximate values are sufficient; def. = 1 +eFacR = 10.0 +IoutTp0, IoutTp, dIoutTp0 = 0.5, 0.5, 0.0 +IoutTm0, IoutTm, dIoutTm0 = 0.5, 0.5, 0.0 +IoutRp0, IoutRp, dIoutRp0 = 0.5, 0.5, 0.0 +IoutRm0, IoutRm, dIoutRm0 = 0.5, 0.5, 0.0 +It0, It, dIt0 = 1 , 1, 0 +Ir0, Ir, dTr0 = 1 , 1, 0 +CalcFrom0deg = True + +TypeC = 3 # linear polarizer calibrator +# example with extinction ratio 0.001 +DiC, dDiC, nDiC = 1.0, 0., 0 # ideal 1.0 +TiC = 0.5 # ideal 0.5 +RetC, dRetC, nRetC = 0.0, 0.0, 0 +RotC, dRotC, nRotC = 0.0, 0.1, 0 # constant calibrator offset epsilon +RotationErrorEpsilonForNormalMeasurements = False # is in general False for TypeC == 3 calibrator + +# Rotation error without calibrator: if False, then epsilon = 0 for normal measurements +RotationErrorEpsilonForNormalMeasurements = True +# BSR backscatter ratio +# BSR, dBSR, nBSR = 10, 0.05, 1 +BSR = np.zeros(5) +BSR = [1.1, 2, 5, 10., 50.] +# theoretical molecular LDR LDRm +LDRm, dLDRm, nLDRm = 0.004, 0.001, 1 +# LDRCal assumed atmospheric linear depolarization ratio during the calibration measurements (first guess) +LDRCal0, dLDRCal, nLDRCal = 0.25, 0.04, 1 +LDRCal = LDRCal0 +# measured LDRm will be corrected with calculated parameters +LDRmeas = 0.015 +# LDRtrue for simulation of measurement => LDRsim +LDRtrue = 0.004 +LDRtrue2 = 0.004 +LDRunCorr = 1. +# Initialize other values to 0 +ER, nER, dER = 0.001, 0, 0.001 +K = 0. +Km = 0. +Kp = 0. +LDRCorr = 0. +Eta = 0. +Ir = 0. +It = 0. +h = 1. + +Loc = ['', 'behind laser', 'behind emitter', 'before receiver', 'before PBS'] +Type = ['', 'mechanical rotator', 'hwp rotator', 'linear polarizer', 'qwp rotator', 'circular polarizer', + 'real HWP +-22.5°'] + +bPlotEtax = False + +# end of initial definition of variables +# ******************************************************************************************************************************* +# --- Read actual lidar system parameters from optic_input.py (must be in the programs sub-directory 'system_settings') +# ******************************************************************************************************************************* + +# InputFile = 'optic_input_0.9.8e4-PollyXT_Lacros.py' +InputFile = 'optic_input_example_lidar_ver0.9.8e.py' + +# ******************************************************************************************************************************* + +''' +print("From ", dname) +print("Running ", fname) +print("Reading input file ", InputFile, " for") +''' +input_path = os.path.join('.', 'system_settings', InputFile) +# this works with Python 2 and 3! +exec(open(input_path).read(), globals()) +# end of read actual system parameters + + +# --- Manual Parameter Change --- +# (use for quick parameter changes without changing the input file ) +# DiO = 0. +# LDRtrue = 0.45 +# LDRtrue2 = 0.004 +# Y = -1 +# LocC = 4 #location of calibrator: 1 = behind laser; 2 = behind emitter; 3 = before receiver; 4 = before PBS +# #TypeC = 6 Don't change the TypeC here +# RotationErrorEpsilonForNormalMeasurements = True +# LDRCal = 0.25 +# # --- Errors +Qin0, dQin, nQin = Qin, dQin, nQin +Vin0, dVin, nVin = Vin, dVin, nVin +RotL0, dRotL, nRotL = RotL, dRotL, nRotL + +DiE0, dDiE, nDiE = DiE, dDiE, nDiE +RetE0, dRetE, nRetE = RetE, dRetE, nRetE +RotE0, dRotE, nRotE = RotE, dRotE, nRotE + +DiO0, dDiO, nDiO = DiO, dDiO, nDiO +RetO0, dRetO, nRetO = RetO, dRetO, nRetO +RotO0, dRotO, nRotO = RotO, dRotO, nRotO + +DiC0, dDiC, nDiC = DiC, dDiC, nDiC +RetC0, dRetC, nRetC = RetC, dRetC, nRetC +RotC0, dRotC, nRotC = RotC, dRotC, nRotC + +TP0, dTP, nTP = TP, dTP, nTP +TS0, dTS, nTS = TS, dTS, nTS +RetT0, dRetT, nRetT = RetT, dRetT, nRetT + +ERaT0, dERaT, nERaT = ERaT, dERaT, nERaT +RotaT0, dRotaT, nRotaT = RotaT, dRotaT, nRotaT + +RP0, dRP, nRP = RP, dRP, nRP +RS0, dRS, nRS = RS, dRS, nRS +RetR0, dRetR, nRetR = RetR, dRetR, nRetR + +ERaR0, dERaR, nERaR = ERaR, dERaR, nERaR +RotaR0, dRotaR, nRotaR = RotaR, dRotaR, nRotaR + +LDRCal0, dLDRCal, nLDRCal = LDRCal, dLDRCal, nLDRCal + +# BSR0, dBSR, nBSR = BSR, dBSR, nBSR +LDRm0, dLDRm, nLDRm = LDRm, dLDRm, nLDRm +# ---------- End of manual parameter change + +RotL, RotE, RetE, DiE, RotO, RetO, DiO, RotC, RetC, DiC = RotL0, RotE0, RetE0, DiE0, RotO0, RetO0, DiO0, RotC0, RetC0, DiC0 +TP, TS, RP, RS, ERaT, RotaT, RetT, ERaR, RotaR, RetR = TP0, TS0, RP0, RS0, ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0 +LDRCal = LDRCal0 +DTa0, TTa0, DRa0, TRa0, LDRsimx, LDRCorr = 0., 0., 0., 0., 0., 0. +TCalT0, TCalR0 = TCalT, TCalR + +TiT = 0.5 * (TP + TS) +DiT = (TP - TS) / (TP + TS) +ZiT = (1. - DiT ** 2) ** 0.5 +TiR = 0.5 * (RP + RS) +DiR = (RP - RS) / (RP + RS) +ZiR = (1. - DiR ** 2) ** 0.5 + +C2aT = np.cos(np.deg2rad(2. * RotaT)) +C2aR = np.cos(np.deg2rad(2. * RotaR)) +ATPT = float(1. + C2aT * DaT * DiT) +ARPT = float(1. + C2aR * DaR * DiR) +TTa = TiT * TaT * ATPT # unpolarized transmission +TRa = TiR * TaR * ARPT # unpolarized transmission +Eta0 = TRa / TTa + +# --- alternative texts for output +dY = ['perpendicular', '', 'parallel'] +dY2 = ['reflected', '', 'transmitted'] +if ((abs(RotL) < 45 and Y == 1) or (abs(RotL) >= 45 and Y == -1)): + dY3 = "Parallel laser polarisation is detected in transmitted channel" +else: + dY3 = "Parallel laser polarisation is detected in reflected channel" + +# --- check input errors +if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1: + print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") + sys.exit() + +# --- this subroutine is for the calculation of the PLDR from LDR, BSR, and LDRm ------------------- +def CalcPLDR(LDR, BSR, LDRm): + PLDR = (BSR * (1. + LDRm) * LDR - LDRm * (1. + LDR)) / (BSR * (1. + LDRm) - (1. + LDR)) + return (PLDR) +# --- this subroutine is for the calculation with certain fixed parameters ------------------------ +def Calc(TCalT, TCalR, NCalT, NCalR, Qin, Vin, RotL, RotE, RetE, DiE, RotO, RetO, DiO, + RotC, RetC, DiC, TP, TS, RP, RS, + ERaT, RotaT, RetT, ERaR, RotaR, RetR, LDRCal): + # ---- Do the calculations of bra-ket vectors + h = -1. if TypeC == 2 else 1 + # from input file: assumed LDRCal for calibration measurements + aCal = (1. - LDRCal) / (1. + LDRCal) + atrue = (1. - LDRtrue) / (1. + LDRtrue) + + # angles of emitter and laser and calibrator and receiver optics + # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon + S2a = np.sin(2 * np.deg2rad(RotL)) + C2a = np.cos(2 * np.deg2rad(RotL)) + S2b = np.sin(2 * np.deg2rad(RotE)) + C2b = np.cos(2 * np.deg2rad(RotE)) + S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) + C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) + S2g = np.sin(np.deg2rad(2 * RotO)) + C2g = np.cos(np.deg2rad(2 * RotO)) + + # Laser with Degree of linear polarization DOLP + IinL = 1. + QinL = Qin + UinL = 0. + VinL = Vin + # VinL = (1. - DOLP ** 2) ** 0.5 + + # Stokes Input Vector rotation Eq. E.4 + A = C2a * QinL - S2a * UinL + B = S2a * QinL + C2a * UinL + # Stokes Input Vector rotation Eq. E.9 + C = C2ab * QinL - S2ab * UinL + D = S2ab * QinL + C2ab * UinL + + # emitter optics + CosE = np.cos(np.deg2rad(RetE)) + SinE = np.sin(np.deg2rad(RetE)) + ZiE = (1. - DiE ** 2) ** 0.5 + WiE = (1. - ZiE * CosE) + + # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 + # b = beta + IinE = (IinL + DiE * C) + QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) + UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) + VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) + + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + IinF = IinE + QinF = aCal * QinE + UinF = -aCal * UinE + VinF = (1. - 2. * aCal) * VinE + + # receiver optics + CosO = np.cos(np.deg2rad(RetO)) + SinO = np.sin(np.deg2rad(RetO)) + ZiO = (1. - DiO ** 2) ** 0.5 + WiO = (1. - ZiO * CosO) + + # calibrator + CosC = np.cos(np.deg2rad(RetC)) + SinC = np.sin(np.deg2rad(RetC)) + ZiC = (1. - DiC ** 2) ** 0.5 + WiC = (1. - ZiC * CosC) + + # Stokes Input Vector before the polarising beam splitter Eq. E.31 + A = C2g * QinE - S2g * UinE + B = S2g * QinE + C2g * UinE + + IinP = (IinE + DiO * aCal * A) + QinP = (C2g * DiO * IinE + aCal * QinE - S2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) + UinP = (S2g * DiO * IinE - aCal * UinE + C2g * (WiO * aCal * B + ZiO * SinO * (1. - 2. * aCal) * VinE)) + VinP = (ZiO * SinO * aCal * B + ZiO * CosO * (1. - 2. * aCal) * VinE) + + # ------------------------- + # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue + # F11sim = TiO*(IinE + DiO*atrue*A)/IinE + # ------------------------- + + # analyser + if (RS_RP_depend_on_TS_TP): + RS = 1. - TS + RP = 1. - TP + + TiT = 0.5 * (TP + TS) + DiT = (TP - TS) / (TP + TS) + ZiT = (1. - DiT ** 2) ** 0.5 + TiR = 0.5 * (RP + RS) + DiR = (RP - RS) / (RP + RS) + ZiR = (1. - DiR ** 2) ** 0.5 + CosT = np.cos(np.deg2rad(RetT)) + SinT = np.sin(np.deg2rad(RetT)) + CosR = np.cos(np.deg2rad(RetR)) + SinR = np.sin(np.deg2rad(RetR)) + + DaT = (1. - ERaT) / (1. + ERaT) + DaR = (1. - ERaR) / (1. + ERaR) + TaT = 0.5 * (1. + ERaT) + TaR = 0.5 * (1. + ERaR) + + S2aT = np.sin(np.deg2rad(h * 2 * RotaT)) + C2aT = np.cos(np.deg2rad(2 * RotaT)) + S2aR = np.sin(np.deg2rad(h * 2 * RotaR)) + C2aR = np.cos(np.deg2rad(2 * RotaR)) + + # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter + ATPT = (1. + C2aT * DaT * DiT) # unpolarized transmission correction + TTa = TiT * TaT * ATPT # unpolarized transmission + ATP1 = 1. + ATP2 = Y * (DiT + C2aT * DaT) / ATPT + ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT + ATP4 = S2aT * DaT * ZiT * SinT / ATPT + ATP = np.array([ATP1, ATP2, ATP3, ATP4]) + DTa = ATP2 * Y + + ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction + TRa = TiR * TaR * ARPT # unpolarized transmission + ARP1 = 1 + ARP2 = Y * (DiR + C2aR * DaR) / ARPT + ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT + ARP4 = S2aR * DaR * ZiR * SinR / ARPT + ARP = np.array([ARP1, ARP2, ARP3, ARP4]) + DRa = ARP2 * Y + + + # ---- Calculate signals and correction parameters for diffeent locations and calibrators + if LocC == 4: # Calibrator before the PBS + # print("Calibrator location not implemented yet") + + # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) + # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) + S2e = np.sin(np.deg2rad(h * 2 * RotC)) + C2e = np.cos(np.deg2rad(2 * RotC)) + # rotated AinP by epsilon Eq. C.3 + ATP2e = C2e * ATP2 + S2e * ATP3 + ATP3e = C2e * ATP3 - S2e * ATP2 + ARP2e = C2e * ARP2 + S2e * ARP3 + ARP3e = C2e * ARP3 - S2e * ARP2 + ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) + ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) + # Stokes Input Vector before the polarising beam splitter Eq. E.31 + A = C2g * QinE - S2g * UinE + B = S2g * QinE + C2g * UinE + # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) + Co = ZiO * SinO * VinE + Ca = (WiO * B - 2 * ZiO * SinO * VinE) + # C = Co + aCal*Ca + # IinP = (IinE + DiO*aCal*A) + # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) + # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) + # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) + IinPo = IinE + QinPo = (C2g * DiO * IinE - S2g * Co) + UinPo = (S2g * DiO * IinE + C2g * Co) + VinPo = ZiO * CosO * VinE + + IinPa = DiO * A + QinPa = QinE - S2g * Ca + UinPa = -UinE + C2g * Ca + VinPa = ZiO * (SinO * B - 2 * CosO * VinE) + + IinP = IinPo + aCal * IinPa + QinP = QinPo + aCal * QinPa + UinP = UinPo + aCal * UinPa + VinP = VinPo + aCal * VinPa + # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 + # QinPe = C2e*QinP + S2e*UinP + # UinPe = C2e*UinP - S2e*QinP + QinPoe = C2e * QinPo + S2e * UinPo + UinPoe = C2e * UinPo - S2e * QinPo + QinPae = C2e * QinPa + S2e * UinPa + UinPae = C2e * UinPa - S2e * QinPa + QinPe = C2e * QinP + S2e * UinP + UinPe = C2e * UinP - S2e * QinP + + # Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 + # parameters for calibration with aCal + AT = ATP1 * IinP + h * ATP4 * VinP + BT = ATP3e * QinP - h * ATP2e * UinP + AR = ARP1 * IinP + h * ARP4 * VinP + BR = ARP3e * QinP - h * ARP2e * UinP + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATPe, IS1) + GR = np.dot(ARPe, IS1) + HT = np.dot(ATPe, IS2) + HR = np.dot(ARPe, IS2) + elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 + # parameters for calibration with aCal + AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) + BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) + AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) + BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), + -ZiC * (SinC * UinPoe - CosC * VinPo)]) + IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), + -ZiC * (SinC * UinPae - CosC * VinPa)]) + GT = np.dot(ATPe, IS1e) + GR = np.dot(ARPe, IS1e) + HT = np.dot(ATPe, IS2e) + HR = np.dot(ARPe, IS2e) + elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # parameters for calibration with aCal + AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1. - 0.5 * WiC) * ( + ATP2e * QinPe + ATP3e * UinPe) + ZiC * (sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) + BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( + ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) + AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1. - 0.5 * WiC) * ( + ARP2e * QinPe + ARP3e * UinPe) + ZiC * (sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) + BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( + ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1e = np.array([IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), + -ZiC * (SinC * UinPoe - CosC * VinPo)]) + IS2e = np.array([IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), + -ZiC * (SinC * UinPae - CosC * VinPa)]) + GT = np.dot(ATPe, IS1e) + GR = np.dot(ARPe, IS1e) + HT = np.dot(ATPe, IS2e) + HR = np.dot(ARPe, IS2e) + else: + print("Calibrator not implemented yet") + sys.exit() + + elif LocC == 3: # C before receiver optics Eq.57 + + # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) + # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) + S2e = np.sin(np.deg2rad(2. * RotC)) + C2e = np.cos(np.deg2rad(2. * RotC)) + + # As with C before the receiver optics (rotated_diattenuator_X22x5deg.odt) + AF1 = np.array([1., C2g * DiO, S2g * DiO, 0.]) + AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) + AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) + AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) + + ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) + ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) + ATF2 = ATF[1] + ATF3 = ATF[2] + ARF2 = ARF[1] + ARF3 = ARF[2] + + # rotated AinF by epsilon + ATF1 = ATF[0] + ATF4 = ATF[3] + ATF2e = C2e * ATF[1] + S2e * ATF[2] + ATF3e = C2e * ATF[2] - S2e * ATF[1] + ARF1 = ARF[0] + ARF4 = ARF[3] + ARF2e = C2e * ARF[1] + S2e * ARF[2] + ARF3e = C2e * ARF[2] - S2e * ARF[1] + + ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) + ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) + + QinEe = C2e * QinE + S2e * UinE + UinEe = C2e * UinE - S2e * QinE + + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + IinF = IinE + QinF = aCal * QinE + UinF = -aCal * UinE + VinF = (1. - 2. * aCal) * VinE + + IinFo = IinE + QinFo = 0. + UinFo = 0. + VinFo = VinE + + IinFa = 0. + QinFa = QinE + UinFa = -UinE + VinFa = -2. * VinE + + # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 + QinFe = C2e * QinF + S2e * UinF + UinFe = C2e * UinF - S2e * QinF + QinFoe = C2e * QinFo + S2e * UinFo + UinFoe = C2e * UinFo - S2e * QinFo + QinFae = C2e * QinFa + S2e * UinFa + UinFae = C2e * UinFa - S2e * QinFa + + # Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 + # parameters for calibration with aCal + AT = ATF1 * IinF + ATF4 * h * VinF + BT = ATF3e * QinF - ATF2e * h * UinF + AR = ARF1 * IinF + ARF4 * h * VinF + BR = ARF3e * QinF - ARF2e * h * UinF + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + GT = ATF1 * IinE + ATF4 * VinE + GR = ARF1 * IinE + ARF4 * VinE + HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE + HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE + else: + GT = ATF1 * IinE + ATF4 * h * VinE + GR = ARF1 * IinE + ARF4 * h * VinE + HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE + HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE + elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 + # p = +45°, m = -45° + IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) + IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) + AT = np.dot(ATFe, IF1e) + AR = np.dot(ARFe, IF1e) + BT = np.dot(ATFe, IF2e) + BR = np.dot(ARFe, IF2e) + + # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinE, 0., 0., VinE]) + IS2 = np.array([0., QinE, -UinE, -2. * VinE]) + GT = np.dot(ATF, IS1) + GR = np.dot(ARF, IS1) + HT = np.dot(ATF, IS2) + HR = np.dot(ARF, IS2) + else: + IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), + -ZiC * (SinC * UinFoe - CosC * VinFo)]) + IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), + -ZiC * (SinC * UinFae - CosC * VinFa)]) + GT = np.dot(ATFe, IS1e) + GR = np.dot(ARFe, IS1e) + HT = np.dot(ATFe, IS2e) + HR = np.dot(ARFe, IS2e) + + elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # parameters for calibration with aCal + IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1. - 0.5 * WiC) * QinFe, + (1. - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, + -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) + IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, + sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) + AT = np.dot(ATFe, IF1e) + AR = np.dot(ARFe, IF1e) + BT = np.dot(ATFe, IF2e) + BR = np.dot(ARFe, IF2e) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + # IS1 = np.array([IinE,0,0,VinE]) + # IS2 = np.array([0,QinE,-UinE,-2*VinE]) + IS1 = np.array([IinFo, 0., 0., VinFo]) + IS2 = np.array([0., QinFa, UinFa, VinFa]) + GT = np.dot(ATF, IS1) + GR = np.dot(ARF, IS1) + HT = np.dot(ATF, IS2) + HR = np.dot(ARF, IS2) + else: + IS1e = np.array([IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), + -ZiC * (SinC * UinFoe - CosC * VinFo)]) + IS2e = np.array([IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), + -ZiC * (SinC * UinFae - CosC * VinFa)]) + # IS1e = np.array([IinFo,0,0,VinFo]) + # IS2e = np.array([0,QinFae,UinFae,VinFa]) + GT = np.dot(ATFe, IS1e) + GR = np.dot(ARFe, IS1e) + HT = np.dot(ATFe, IS2e) + HR = np.dot(ARFe, IS2e) + + else: + print('Calibrator not implemented yet') + sys.exit() + + elif LocC == 2: # C behind emitter optics Eq.57 ------------------------------------------------------- + # print("Calibrator location not implemented yet") + S2e = np.sin(np.deg2rad(2. * RotC)) + C2e = np.cos(np.deg2rad(2. * RotC)) + + # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) + AF1 = np.array([1, C2g * DiO, S2g * DiO, 0.]) + AF2 = np.array([C2g * DiO, 1. - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) + AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1. - C2g ** 2 * WiO, C2g * ZiO * SinO]) + AF4 = np.array([0., S2g * SinO, -C2g * SinO, CosO]) + + ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) + ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) + ATF1 = ATF[0] + ATF2 = ATF[1] + ATF3 = ATF[2] + ATF4 = ATF[3] + ARF1 = ARF[0] + ARF2 = ARF[1] + ARF3 = ARF[2] + ARF4 = ARF[3] + + # AS with C behind the emitter + # terms without aCal + ATE1o, ARE1o = ATF1, ARF1 + ATE2o, ARE2o = 0., 0. + ATE3o, ARE3o = 0., 0. + ATE4o, ARE4o = ATF4, ARF4 + # terms with aCal + ATE1a, ARE1a = 0., 0. + ATE2a, ARE2a = ATF2, ARF2 + ATE3a, ARE3a = -ATF3, -ARF3 + ATE4a, ARE4a = -2. * ATF4, -2. * ARF4 + # rotated AinEa by epsilon + ATE2ae = C2e * ATF2 + S2e * ATF3 + ATE3ae = -S2e * ATF2 - C2e * ATF3 + ARE2ae = C2e * ARF2 + S2e * ARF3 + ARE3ae = -S2e * ARF2 - C2e * ARF3 + + ATE1 = ATE1o + ATE2e = aCal * ATE2ae + ATE3e = aCal * ATE3ae + ATE4 = (1 - 2 * aCal) * ATF4 + ARE1 = ARE1o + ARE2e = aCal * ARE2ae + ARE3e = aCal * ARE3ae + ARE4 = (1 - 2 * aCal) * ARF4 + + # rotated IinE + QinEe = C2e * QinE + S2e * UinE + UinEe = C2e * UinE - S2e * QinE + + # Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 + AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE + BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) + AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE + BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + GT = ATE1o * IinE + ATE4o * h * VinE + GR = ARE1o * IinE + ARE4o * h * VinE + HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE + HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE + else: + GT = ATE1o * IinE + ATE4o * h * VinE + GR = ARE1o * IinE + ARE4o * h * VinE + HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE + HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE + + elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 + # p = +45°, m = -45° + AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe + BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) + AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe + BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + GT = ATE1o * IinE + ATE4o * VinE + GR = ARE1o * IinE + ARE4o * VinE + HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE + HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE + else: + D = IinE + DiC * QinEe + A = DiC * IinE + QinEe + B = ZiC * (CosC * UinEe + SinC * VinE) + C = -ZiC * (SinC * UinEe - CosC * VinE) + GT = ATE1o * D + ATE4o * C + GR = ARE1o * D + ARE4o * C + HT = ATE2a * A + ATE3a * B + ATE4a * C + HR = ARE2a * A + ARE3a * B + ARE4a * C + + elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # p = +22.5°, m = -22.5° + IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, + (1 - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, + -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) + IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, + sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) + ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) + AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) + AT = np.dot(ATEe, IE1e) + AR = np.dot(AREe, IE1e) + BT = np.dot(ATEe, IE2e) + BR = np.dot(AREe, IE2e) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + GT = ATE1o * IinE + ATE4o * VinE + GR = ARE1o * IinE + ARE4o * VinE + HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE + HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE + else: + D = IinE + DiC * QinEe + A = DiC * IinE + QinEe + B = ZiC * (CosC * UinEe + SinC * VinE) + C = -ZiC * (SinC * UinEe - CosC * VinE) + GT = ATE1o * D + ATE4o * C + GR = ARE1o * D + ARE4o * C + HT = ATE2a * A + ATE3a * B + ATE4a * C + HR = ARE2a * A + ARE3a * B + ARE4a * C + + else: + print('Calibrator not implemented yet') + sys.exit() + + else: + print("Calibrator location not implemented yet") + sys.exit() + + # Determination of the correction K of the calibration factor. + IoutTp = TTa * TiC * TiO * TiE * (AT + BT) + IoutTm = TTa * TiC * TiO * TiE * (AT - BT) + IoutRp = TRa * TiC * TiO * TiE * (AR + BR) + IoutRm = TRa * TiC * TiO * TiE * (AR - BR) + # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 + Etapx = IoutRp / IoutTp + Etamx = IoutRm / IoutTm + Etax = (Etapx * Etamx) ** 0.5 + + Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84 => K = Eta* / Eta; equation corrected according to the papers supplement Eqs. (S.10.10.1) ff + K = Etax / Eta + + # For comparison with Volkers Libreoffice Müller Matrix spreadsheet + # Eta_test_p = (IoutRp/IoutTp) + # Eta_test_m = (IoutRm/IoutTm) + # Eta_test = (Eta_test_p*Eta_test_m)**0.5 + + # ----- random error calculation ---------- + # noise must be calculated with the photon counts of measured signals; + # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent + # normalised noise errors + if (CalcFrom0deg): + dIoutTp = (NCalT * IoutTp) ** -0.5 + dIoutTm = (NCalT * IoutTm) ** -0.5 + dIoutRp = (NCalR * IoutRp) ** -0.5 + dIoutRm = (NCalR * IoutRm) ** -0.5 + else: + dIoutTp = (NCalT ** -0.5) + dIoutTm = (NCalT ** -0.5) + dIoutRp = (NCalR ** -0.5) + dIoutRm = (NCalR ** -0.5) + # Forward simulated 0°-signals with LDRCal with atrue; from input file + + It = TTa * TiO * TiE * (GT + atrue * HT) + Ir = TRa * TiO * TiE * (GR + atrue * HR) + # relative standard deviation of standard signals with LDRmeas; assumed to be statisitcally independent + if (CalcFrom0deg): # this works! + dIt = ((It * NI * eFacT) ** -0.5) + dIr = ((Ir * NI * eFacR) ** -0.5) + ''' + dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) + dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) + ''' + else: # does this work? Why not as above? + dIt = ((NCalT * 2 * NILfac / TCalT ) ** -0.5) + dIr = ((NCalR * 2 * NILfac / TCalR) ** -0.5) + + # ----- Forward simulated LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file + LDRsim = Ir / It # simulated uncorrected LDR with Y from input file + # Corrected LDRsimCorr from forward simulated LDRsim (atrue) + # LDRsimCorr = (1./Eta*LDRsim*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRsim*(GT-HT)) + ''' + if ((Y == -1.) and (abs(RotL0) < 45)) or ((Y == +1.) and (abs(RotL0) > 45)): + LDRsimx = 1. / LDRsim / Etax + else: + LDRsimx = LDRsim / Etax + ''' + LDRsimx = LDRsim + + # The following is correct without doubt + # LDRCorr = (LDRsim/(Etax/K)*(GT+HT)-(GR+HR))/((GR-HR)-LDRsim/(Etax/K)*(GT-HT)) + + # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent + LDRCorr = (LDRsim / (Etax / K) * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / (Etax / K) * (GT - HT)) + # here we could also use Eta instead of Etax / K => how to test whether Etax is correct? => comparison with MüllerMatrix simulation! + # Without any correction: only measured It, Ir, EtaX are used + LDRunCorr = LDRsim / Etax + # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) + + #LDRCorr = LDRsimx # for test only + + F11sim = 1 / (TiO * TiE) * ((HR * Eta * It - HT * Ir) / (HR * GT - HT * GR)) # IL = 1, Etat = Etar = 1 ; AMT Eq.64; what is Etax/K? => see about 20 lines above: = Eta + + return (IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, + GT, HT, GR, HR, K, Eta, LDRsimx, LDRCorr, DTa, DRa, TTa, TRa, F11sim, LDRunCorr) + + + +# ******************************************************************************************************************************* + +# --- CALC with assumed true parameters from the input file +LDRtrue = LDRtrue2 +IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ +GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ +Calc(TCalT, TCalR, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) +Etax0 = K0 * Eta0 +Etapx0 = IoutRp0 / IoutTp0 +Etamx0 = IoutRm0 / IoutTm0 +# --- Print parameters to console and output file +OutputFile = 'output_' + InputFile[0:-3] + '_' + fname[0:-3] +'.dat' +with open('output_files\\' + OutputFile, 'w') as f: + with redirect_stdout(f): + print("From ", dname) + print("Running ", fname) + print("Reading input file ", InputFile) # , " for Lidar system :", EID, ", ", LID) + print("for Lidar system: ", EID, ", ", LID) + # --- Print iput information********************************* + print(" --- Input parameters: value ±error / ±steps ----------------------") + print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("Laser: ", "Qin =", Qin0, dQin, nQin)) + print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Vin =", Vin0, dVin, nVin)) + print("{0:7}{1:17} {2:6.4f}±{3:7.4f}/{4:2d}".format("", "Rotation alpha = ", RotL0, dRotL, nRotL)) + print("{0:7}{1:15} {2:8.4f} {3:17}".format("", "=> DOP", ((Qin ** 2 + Vin ** 2) ** 0.5), " (degree of polarisation)")) + + print("Optic: Diatt., Tunpol, Retard., Rotation (deg)") + print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( + "Emitter ", DiE0, dDiE, TiE, RetE0, dRetE, RotE0, dRotE, nDiE, nRetE, nRotE)) + print("{0:12} {1:7.4f} ±{2:7.4f} /{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( + "Receiver ", DiO0, dDiO, TiO, RetO0, dRetO, RotO0, dRotO, nDiO, nRetO, nRotO)) + print("{0:12} {1:9.6f}±{2:9.6f}/{8:2d}, {3:7.4f}, {4:3.0f}±{5:3.0f}/{9:2d}, {6:7.4f}±{7:7.4f}/{10:2d}".format( + "Calibrator ", DiC0, dDiC, TiC, RetC0, dRetC, RotC0, dRotC, nDiC, nRetC, nRotC)) + print("{0:12}".format(" Pol.-filter ------ ")) + print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( + "ERT, RotT :", ERaT0, dERaT, nERaT, RotaT0, dRotaT, nRotaT)) + print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( + "ERR, RotR :", ERaR0, dERaR, nERaR, RotaR0, dRotaR, nRotaR)) + print("{0:12}".format(" PBS ------ ")) + print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( + "TP,TS :", TP0, dTP, nTP, TS0, dTS, nTS)) + print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( + "RP,RS :", RP0, dRP, nRP, RS0, dRS, nRS)) + print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}, {5:1.0f}".format( + "DT,TT,DR,TR,Y :", DiT, TiT, DiR, TiR, Y)) + print("{0:12}".format(" Combined PBS + Pol.-filter ------ ")) + print("{0:12}{1:7.4f},{2:7.4f}, {3:7.4f},{4:7.4f}".format( + "DT,TT,DR,TR :", DTa0, TTa0, DRa0, TRa0)) + print("{0:26}: {1:6.3f}± {2:5.3f}/{3:2d}".format( + "LDRCal during calibration in calibration range", LDRCal0, dLDRCal, nLDRCal)) + print("{0:12}".format(" --- Additional ND filter attenuation (transmission) during the calibration ---")) + print("{0:12}{1:7.4f}±{2:7.4f}/{3:2d}, {4:7.4f}±{5:7.4f}/{6:2d}".format( + "TCalT,TCalR :", TCalT0, dTCalT, nTCalT, TCalR0, dTCalR, nTCalR)) + print() + print("Rotation Error Epsilon For Normal Measurements = ", RotationErrorEpsilonForNormalMeasurements) + print(Type[TypeC], Loc[LocC]) + print("PBS incidence plane is ", dY[int(Y + 1)], "to reference plane and polarisation in reference plane is finally", dY2[int(Y + 1)]) + print(dY3) + print("RS_RP_depend_on_TS_TP = ", RS_RP_depend_on_TS_TP) + # end of print actual system parameters + # ****************************************************************************** + + + print() + + K0List = np.zeros(7) + LDRsimxList = np.zeros(7) + LDRCalList = 0.0, 0.004, 0.02, 0.1, 0.2, 0.3, 0.45 + # The loop over LDRCalList is ony for checking whether and how much the LDR depends on the LDRCal during calibration and whether the corrections work. + # Still with assumed true parameters in input file + + ''' + facIt = NCalT / TCalT0 * NILfac + facIr = NCalR / TCalR0 * NILfac + ''' + facIt = NI * eFacT + facIr = NI * eFacR + if (bPlotEtax): + # check error signals + # dIs are relative stdevs + print("LDRCal, IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp,dIoutTm,dIoutRp,dIoutRm,dIt, dIr") + + for i, LDRCal in enumerate(LDRCalList): + IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ + GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ + Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal) + K0List[i] = K0 + LDRsimxList[i] = LDRsimx + + if (bPlotEtax): + # check error signals + print( "{:0.2f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(LDRCal, IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) + #print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format(IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) + # end check error signals + print('===========================================================================================================') + print("{0:8},{1:8},{2:8},{3:8},{4:9},{5:8},{6:9},{7:9},{8:9},{9:9},{10:9}".format( + " GR", " GT", " HR", " HT", " K(0.000)", " K(0.004)", " K(0.02)", " K(0.1)", " K(0.2)", " K(0.3)", " K(0.45)")) + print("{0:8.5f},{1:8.5f},{2:8.5f},{3:8.5f},{4:9.5f},{5:9.5f},{6:9.5f},{7:9.5f},{8:9.5f},{9:9.5f},{10:9.5f}".format( + GR0, GT0, HR0, HT0, K0List[0], K0List[1], K0List[2], K0List[3], K0List[4], K0List[5], K0List[6])) + print('===========================================================================================================') + print() + print("Errors from neglecting GHK corrections and/or calibration:") + print("{0:>10},{1:>10},{2:>10},{3:>10},{4:>10},{5:>10}".format( + "LDRtrue", "LDRunCorr", "1/LDRunCorr", "LDRsimx", "1/LDRsimx", "LDRCorr")) + + aF11sim0 = np.zeros(5) + LDRrange = np.zeros(5) + LDRsim0 = np.zeros(5) + LDRrange = [0.004, 0.02, 0.1, 0.3, 0.45] # list + LDRrange[0] = LDRtrue2 # value in the input file; default 0.004 + + # The loop over LDRtrueList is only for checking how much the uncorrected LDRsimx deviates from LDRtrue ... and whether the corrections work. + # LDRsimx = LDRsim = Ir / It or 1/LDRsim + # Still with assumed true parameters in input file + for i, LDRtrue in enumerate(LDRrange): + #for LDRtrue in LDRrange: + IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ + GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ + Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) + print("{0:10.5f},{1:10.5f},{2:10.5f},{3:10.5f},{4:10.5f},{5:10.5f}".format(LDRtrue, LDRunCorr, 1/LDRunCorr, LDRsimx, 1/LDRsimx, LDRCorr)) + aF11sim0[i] = F11sim0 + LDRsim0[i] = Ir / It + # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals + print("LDRsimx = LDR of the nominal system directly from measured signals without calibration and GHK-corrections") + print("LDRunCorr = LDR of the nominal system directly from measured signals with calibration but without GHK-corrections; electronic amplifications = 1 assumed") + print("LDRCorr = LDR calibrated and GHK-corrected") + print() + print("Errors from signal noise:") + print("Signal counts: NI, NCalT, NCalR, NILfac, nNCal, nNI, stdev(NI)/NI = {0:10.0f},{1:10.0f},{2:10.0f},{3:3.0f},{4:2.0f},{5:2.0f},{6:8.5f}".format( + NI, NCalT, NCalR, NILfac, nNCal, nNI, 1.0 / NI ** 0.5)) + print() + print() + '''# das muß wieder weg + print("IoutTp, IoutTm, IoutRp, IoutRm, It , Ir , dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr") + LDRCal = 0.01 + for i, LDRtrue in enumerate(LDRrange): + IoutTp, IoutTm, IoutRp, IoutRm, It, Ir, dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr, \ + GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ + Calc(TCalT0, TCalR0, NCalT, NCalR, DOLP0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) + print( "{:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}, {:0.4f}".format( + IoutTp * NCalT, IoutTm * NCalT, IoutRp * NCalR, IoutRm * NCalR, It * facIt, Ir * facIr, + dIoutTp, dIoutTm, dIoutRp, dIoutRm, dIt, dIr)) + aF11sim0[i] = F11sim0 + # the assumed true aF11sim0 results will be used below to calc the deviation from the real signals + # bis hierher weg + ''' + +file = open('output_files\\' + OutputFile, 'r') +print(file.read()) +file.close() + +# --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values +LDRtrue = LDRtrue2 +IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ +GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ +Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) +Etax0 = K0 * Eta0 +Etapx0 = IoutRp0 / IoutTp0 +Etamx0 = IoutRm0 / IoutTm0 +''' +if(PrintToOutputFile): + f = open('output_ver7.dat', 'w') + old_target = sys.stdout + sys.stdout = f + + print("something") + +if(PrintToOutputFile): + sys.stdout.flush() + f.close + sys.stdout = old_target +''' +if (Error_Calc): + # --- CALC again assumed truth with LDRCal0 and with assumed true parameters in input file to reset all 0-values + LDRtrue = LDRtrue2 + IoutTp0, IoutTm0, IoutRp0, IoutRm0, It0, Ir0, dIoutTp0, dIoutTm0, dIoutRp0, dIoutRm0, dIt0, dIr0, \ + GT0, HT0, GR0, HR0, K0, Eta0, LDRsimx, LDRCorr, DTa0, DRa0, TTa0, TRa0, F11sim0, LDRunCorr = \ + Calc(TCalT0, TCalR0, NCalT, NCalR, Qin0, Vin0, RotL0, RotE0, RetE0, DiE0, + RotO0, RetO0, DiO0, RotC0, RetC0, DiC0, TP0, TS0, RP0, RS0, + ERaT0, RotaT0, RetT0, ERaR0, RotaR0, RetR0, LDRCal0) + Etax0 = K0 * Eta0 + Etapx0 = IoutRp0 / IoutTp0 + Etamx0 = IoutRm0 / IoutTm0 + + # --- Start Error calculation with variable parameters ------------------------------------------------------------------ + # error nNCal: one-sigma in steps to left and right for calibration signals + # error nNI: one-sigma in steps to left and right for 0° signals + + iN = -1 + N = ((nTCalT * 2 + 1) * (nTCalR * 2 + 1) * + (nNCal * 2 + 1) ** 4 * (nNI * 2 + 1) ** 2 * + (nQin * 2 + 1) * (nVin * 2 + 1) * (nRotL * 2 + 1) * + (nRotE * 2 + 1) * (nRetE * 2 + 1) * (nDiE * 2 + 1) * + (nRotO * 2 + 1) * (nRetO * 2 + 1) * (nDiO * 2 + 1) * + (nRotC * 2 + 1) * (nRetC * 2 + 1) * (nDiC * 2 + 1) * + (nTP * 2 + 1) * (nTS * 2 + 1) * (nRP * 2 + 1) * (nRS * 2 + 1) * (nERaT * 2 + 1) * (nERaR * 2 + 1) * + (nRotaT * 2 + 1) * (nRotaR * 2 + 1) * (nRetT * 2 + 1) * (nRetR * 2 + 1) * (nLDRCal * 2 + 1)) + print("number of system variations N = ", N, " ", end="") + + if N > 1e6: + if user_yes_no_query('Warning: processing ' + str( + N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() + if N > 5e6: + if user_yes_no_query('Warning: the memory required for ' + str(N) + ' samples might be ' + '{0:5.1f}'.format( + N / 4e6) + ' GB. Do you anyway want to proceed?') == 0: sys.exit() + + # if user_yes_no_query('Warning: processing' + str(N) + ' samples will take very long. Do you want to proceed?') == 0: sys.exit() + + # --- Arrays for plotting ------ + LDRmin = np.zeros(5) + LDRmax = np.zeros(5) + LDRstd = np.zeros(5) + LDRmean = np.zeros(5) + LDRmedian = np.zeros(5) + LDRskew = np.zeros(5) + LDRkurt = np.zeros(5) + LDRsimmin = np.zeros(5) + LDRsimmax = np.zeros(5) + LDRsimmean = np.zeros(5) + + F11min = np.zeros(5) + F11max = np.zeros(5) + Etaxmin = np.zeros(5) + Etaxmax = np.zeros(5) + + aQin = np.zeros(N) + aVin = np.zeros(N) + aERaT = np.zeros(N) + aERaR = np.zeros(N) + aRotaT = np.zeros(N) + aRotaR = np.zeros(N) + aRetT = np.zeros(N) + aRetR = np.zeros(N) + aTP = np.zeros(N) + aTS = np.zeros(N) + aRP = np.zeros(N) + aRS = np.zeros(N) + aDiE = np.zeros(N) + aDiO = np.zeros(N) + aDiC = np.zeros(N) + aRotC = np.zeros(N) + aRetC = np.zeros(N) + aRotL = np.zeros(N) + aRetE = np.zeros(N) + aRotE = np.zeros(N) + aRetO = np.zeros(N) + aRotO = np.zeros(N) + aLDRCal = np.zeros(N) + aNCalTp = np.zeros(N) + aNCalTm = np.zeros(N) + aNCalRp = np.zeros(N) + aNCalRm = np.zeros(N) + aNIt = np.zeros(N) + aNIr = np.zeros(N) + aTCalT = np.zeros(N) + aTCalR = np.zeros(N) + + # each np.zeros((LDRrange, N)) array has the same N-dependency + aLDRcorr = np.zeros((5, N)) + aLDRsim = np.zeros((5, N)) + aF11corr = np.zeros((5, N)) + aPLDR = np.zeros((5, N)) + aEtax = np.zeros((5, N)) + aEtapx = np.zeros((5, N)) + aEtamx = np.zeros((5, N)) + + # np.zeros((GHKs, N)) + aGHK = np.zeros((5, N)) + + atime = clock() + dtime = clock() + + # --- Calc Error signals + # ---- Do the calculations of bra-ket vectors + h = -1. if TypeC == 2 else 1 + + for iLDRCal in range(-nLDRCal, nLDRCal + 1): + # from input file: LDRCal for calibration measurements + LDRCal = LDRCal0 + if nLDRCal > 0: + LDRCal = LDRCal0 + iLDRCal * dLDRCal / nLDRCal + # provides the intensities of the calibration measurements at various LDRCal for signal noise errors + # IoutTp, IoutTm, IoutRp, IoutRm, dIoutTp, dIoutTm, dIoutRp, dIoutRm + + aCal = (1. - LDRCal) / (1. + LDRCal) + for iQin, iVin, iRotL, iRotE, iRetE, iDiE \ + in [(iQin, iVin, iRotL, iRotE, iRetE, iDiE) + for iQin in range(-nQin, nQin + 1) + for iVin in range(-nVin, nVin + 1) + for iRotL in range(-nRotL, nRotL + 1) + for iRotE in range(-nRotE, nRotE + 1) + for iRetE in range(-nRetE, nRetE + 1) + for iDiE in range(-nDiE, nDiE + 1)]: + + if nQin > 0: Qin = Qin0 + iQin * dQin / nQin + if nVin > 0: Vin = Vin0 + iVin * dVin / nVin + if nRotL > 0: RotL = RotL0 + iRotL * dRotL / nRotL + if nRotE > 0: RotE = RotE0 + iRotE * dRotE / nRotE + if nRetE > 0: RetE = RetE0 + iRetE * dRetE / nRetE + if nDiE > 0: DiE = DiE0 + iDiE * dDiE / nDiE + + if ((Qin ** 2 + Vin ** 2) ** 0.5) > 1.0: + print("Error: degree of polarisation of laser > 1. Check Qin and Vin! ") + sys.exit() + # angles of emitter and laser and calibrator and receiver optics + # RotL = alpha, RotE = beta, RotO = gamma, RotC = epsilon + S2a = np.sin(2 * np.deg2rad(RotL)) + C2a = np.cos(2 * np.deg2rad(RotL)) + S2b = np.sin(2 * np.deg2rad(RotE)) + C2b = np.cos(2 * np.deg2rad(RotE)) + S2ab = np.sin(np.deg2rad(2 * RotL - 2 * RotE)) + C2ab = np.cos(np.deg2rad(2 * RotL - 2 * RotE)) + + # Laser with Degree of linear polarization DOLP + IinL = 1. + QinL = Qin + UinL = 0. + VinL = Vin + # VinL = (1. - DOLP ** 2) ** 0.5 + + # Stokes Input Vector rotation Eq. E.4 + A = C2a * QinL - S2a * UinL + B = S2a * QinL + C2a * UinL + # Stokes Input Vector rotation Eq. E.9 + C = C2ab * QinL - S2ab * UinL + D = S2ab * QinL + C2ab * UinL + + # emitter optics + CosE = np.cos(np.deg2rad(RetE)) + SinE = np.sin(np.deg2rad(RetE)) + ZiE = (1. - DiE ** 2) ** 0.5 + WiE = (1. - ZiE * CosE) + + # Stokes Input Vector after emitter optics equivalent to Eq. E.9 with already rotated input vector from Eq. E.4 + # b = beta + IinE = (IinL + DiE * C) + QinE = (C2b * DiE * IinL + A + S2b * (WiE * D - ZiE * SinE * VinL)) + UinE = (S2b * DiE * IinL + B - C2b * (WiE * D - ZiE * SinE * VinL)) + VinE = (-ZiE * SinE * D + ZiE * CosE * VinL) + + # ------------------------- + # F11 assuemd to be = 1 => measured: F11m = IinP / IinE with atrue + # F11sim = (IinE + DiO*atrue*(C2g*QinE - S2g*UinE))/IinE + # ------------------------- + + for iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR \ + in [ + (iRotO, iRetO, iDiO, iRotC, iRetC, iDiC, iTP, iTS, iRP, iRS, iERaT, iRotaT, iRetT, iERaR, iRotaR, iRetR) + for iRotO in range(-nRotO, nRotO + 1) + for iRetO in range(-nRetO, nRetO + 1) + for iDiO in range(-nDiO, nDiO + 1) + for iRotC in range(-nRotC, nRotC + 1) + for iRetC in range(-nRetC, nRetC + 1) + for iDiC in range(-nDiC, nDiC + 1) + for iTP in range(-nTP, nTP + 1) + for iTS in range(-nTS, nTS + 1) + for iRP in range(-nRP, nRP + 1) + for iRS in range(-nRS, nRS + 1) + for iERaT in range(-nERaT, nERaT + 1) + for iRotaT in range(-nRotaT, nRotaT + 1) + for iRetT in range(-nRetT, nRetT + 1) + for iERaR in range(-nERaR, nERaR + 1) + for iRotaR in range(-nRotaR, nRotaR + 1) + for iRetR in range(-nRetR, nRetR + 1)]: + + if nRotO > 0: RotO = RotO0 + iRotO * dRotO / nRotO + if nRetO > 0: RetO = RetO0 + iRetO * dRetO / nRetO + if nDiO > 0: DiO = DiO0 + iDiO * dDiO / nDiO + if nRotC > 0: RotC = RotC0 + iRotC * dRotC / nRotC + if nRetC > 0: RetC = RetC0 + iRetC * dRetC / nRetC + if nDiC > 0: DiC = DiC0 + iDiC * dDiC / nDiC + if nTP > 0: TP = TP0 + iTP * dTP / nTP + if nTS > 0: TS = TS0 + iTS * dTS / nTS + if nRP > 0: RP = RP0 + iRP * dRP / nRP + if nRS > 0: RS = RS0 + iRS * dRS / nRS + if nERaT > 0: ERaT = ERaT0 + iERaT * dERaT / nERaT + if nRotaT > 0: RotaT = RotaT0 + iRotaT * dRotaT / nRotaT + if nRetT > 0: RetT = RetT0 + iRetT * dRetT / nRetT + if nERaR > 0: ERaR = ERaR0 + iERaR * dERaR / nERaR + if nRotaR > 0: RotaR = RotaR0 + iRotaR * dRotaR / nRotaR + if nRetR > 0: RetR = RetR0 + iRetR * dRetR / nRetR + + # print("{0:5.2f}, {1:5.2f}, {2:5.2f}, {3:10d}".format(RotL, RotE, RotO, iN)) + + # receiver optics + CosO = np.cos(np.deg2rad(RetO)) + SinO = np.sin(np.deg2rad(RetO)) + ZiO = (1. - DiO ** 2) ** 0.5 + WiO = (1. - ZiO * CosO) + S2g = np.sin(np.deg2rad(2 * RotO)) + C2g = np.cos(np.deg2rad(2 * RotO)) + # calibrator + CosC = np.cos(np.deg2rad(RetC)) + SinC = np.sin(np.deg2rad(RetC)) + ZiC = (1. - DiC ** 2) ** 0.5 + WiC = (1. - ZiC * CosC) + + # analyser + # For POLLY_XTs + if (RS_RP_depend_on_TS_TP): + RS = 1.0 - TS + RP = 1.0 - TP + TiT = 0.5 * (TP + TS) + DiT = (TP - TS) / (TP + TS) + ZiT = (1. - DiT ** 2.) ** 0.5 + TiR = 0.5 * (RP + RS) + DiR = (RP - RS) / (RP + RS) + ZiR = (1. - DiR ** 2.) ** 0.5 + CosT = np.cos(np.deg2rad(RetT)) + SinT = np.sin(np.deg2rad(RetT)) + CosR = np.cos(np.deg2rad(RetR)) + SinR = np.sin(np.deg2rad(RetR)) + + # cleaning pol-filter + DaT = (1.0 - ERaT) / (1.0 + ERaT) + DaR = (1.0 - ERaR) / (1.0 + ERaR) + TaT = 0.5 * (1.0 + ERaT) + TaR = 0.5 * (1.0 + ERaR) + + S2aT = np.sin(np.deg2rad(h * 2.0 * RotaT)) + C2aT = np.cos(np.deg2rad(2.0 * RotaT)) + S2aR = np.sin(np.deg2rad(h * 2.0 * RotaR)) + C2aR = np.cos(np.deg2rad(2.0 * RotaR)) + + # Analyzer As before the PBS Eq. D.5; combined PBS and cleaning pol-filter + ATPT = (1 + C2aT * DaT * DiT) # unpolarized transmission correction + TTa = TiT * TaT * ATPT # unpolarized transmission + ATP1 = 1.0 + ATP2 = Y * (DiT + C2aT * DaT) / ATPT + ATP3 = Y * S2aT * DaT * ZiT * CosT / ATPT + ATP4 = S2aT * DaT * ZiT * SinT / ATPT + ATP = np.array([ATP1, ATP2, ATP3, ATP4]) + DTa = ATP2 * Y + + ARPT = (1 + C2aR * DaR * DiR) # unpolarized transmission correction + TRa = TiR * TaR * ARPT # unpolarized transmission + ARP1 = 1 + ARP2 = Y * (DiR + C2aR * DaR) / ARPT + ARP3 = Y * S2aR * DaR * ZiR * CosR / ARPT + ARP4 = S2aR * DaR * ZiR * SinR / ARPT + ARP = np.array([ARP1, ARP2, ARP3, ARP4]) + DRa = ARP2 * Y + + # ---- Calculate signals and correction parameters for diffeent locations and calibrators + if LocC == 4: # Calibrator before the PBS + # print("Calibrator location not implemented yet") + + # S2ge = np.sin(np.deg2rad(2*RotO + h*2*RotC)) + # C2ge = np.cos(np.deg2rad(2*RotO + h*2*RotC)) + S2e = np.sin(np.deg2rad(h * 2 * RotC)) + C2e = np.cos(np.deg2rad(2 * RotC)) + # rotated AinP by epsilon Eq. C.3 + ATP2e = C2e * ATP2 + S2e * ATP3 + ATP3e = C2e * ATP3 - S2e * ATP2 + ARP2e = C2e * ARP2 + S2e * ARP3 + ARP3e = C2e * ARP3 - S2e * ARP2 + ATPe = np.array([ATP1, ATP2e, ATP3e, ATP4]) + ARPe = np.array([ARP1, ARP2e, ARP3e, ARP4]) + # Stokes Input Vector before the polarising beam splitter Eq. E.31 + A = C2g * QinE - S2g * UinE + B = S2g * QinE + C2g * UinE + # C = (WiO*aCal*B + ZiO*SinO*(1-2*aCal)*VinE) + Co = ZiO * SinO * VinE + Ca = (WiO * B - 2 * ZiO * SinO * VinE) + # C = Co + aCal*Ca + # IinP = (IinE + DiO*aCal*A) + # QinP = (C2g*DiO*IinE + aCal*QinE - S2g*C) + # UinP = (S2g*DiO*IinE - aCal*UinE + C2g*C) + # VinP = (ZiO*SinO*aCal*B + ZiO*CosO*(1-2*aCal)*VinE) + IinPo = IinE + QinPo = (C2g * DiO * IinE - S2g * Co) + UinPo = (S2g * DiO * IinE + C2g * Co) + VinPo = ZiO * CosO * VinE + + IinPa = DiO * A + QinPa = QinE - S2g * Ca + UinPa = -UinE + C2g * Ca + VinPa = ZiO * (SinO * B - 2 * CosO * VinE) + + IinP = IinPo + aCal * IinPa + QinP = QinPo + aCal * QinPa + UinP = UinPo + aCal * UinPa + VinP = VinPo + aCal * VinPa + # Stokes Input Vector before the polarising beam splitter rotated by epsilon Eq. C.3 + # QinPe = C2e*QinP + S2e*UinP + # UinPe = C2e*UinP - S2e*QinP + QinPoe = C2e * QinPo + S2e * UinPo + UinPoe = C2e * UinPo - S2e * QinPo + QinPae = C2e * QinPa + S2e * UinPa + UinPae = C2e * UinPa - S2e * QinPa + QinPe = C2e * QinP + S2e * UinP + UinPe = C2e * UinP - S2e * QinP + + # Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 + # parameters for calibration with aCal + AT = ATP1 * IinP + h * ATP4 * VinP + BT = ATP3e * QinP - h * ATP2e * UinP + AR = ARP1 * IinP + h * ARP4 * VinP + BR = ARP3e * QinP - h * ARP2e * UinP + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATPe, IS1) + GR = np.dot(ARPe, IS1) + HT = np.dot(ATPe, IS2) + HR = np.dot(ARPe, IS2) + elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 + # parameters for calibration with aCal + AT = ATP1 * IinP + ATP3e * UinPe + ZiC * CosC * (ATP2e * QinPe + ATP4 * VinP) + BT = DiC * (ATP1 * UinPe + ATP3e * IinP) - ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) + AR = ARP1 * IinP + ARP3e * UinPe + ZiC * CosC * (ARP2e * QinPe + ARP4 * VinP) + BR = DiC * (ARP1 * UinPe + ARP3e * IinP) - ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1e = np.array( + [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), + -ZiC * (SinC * UinPoe - CosC * VinPo)]) + IS2e = np.array( + [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), + -ZiC * (SinC * UinPae - CosC * VinPa)]) + GT = np.dot(ATPe, IS1e) + GR = np.dot(ARPe, IS1e) + HT = np.dot(ATPe, IS2e) + HR = np.dot(ARPe, IS2e) + elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # parameters for calibration with aCal + AT = ATP1 * IinP + sqr05 * DiC * (ATP1 * QinPe + ATP2e * IinP) + (1 - 0.5 * WiC) * ( + ATP2e * QinPe + ATP3e * UinPe) + ZiC * ( + sqr05 * SinC * (ATP3e * VinP - ATP4 * UinPe) + ATP4 * CosC * VinP) + BT = sqr05 * DiC * (ATP1 * UinPe + ATP3e * IinP) + 0.5 * WiC * ( + ATP2e * UinPe + ATP3e * QinPe) - sqr05 * ZiC * SinC * (ATP2e * VinP - ATP4 * QinPe) + AR = ARP1 * IinP + sqr05 * DiC * (ARP1 * QinPe + ARP2e * IinP) + (1 - 0.5 * WiC) * ( + ARP2e * QinPe + ARP3e * UinPe) + ZiC * ( + sqr05 * SinC * (ARP3e * VinP - ARP4 * UinPe) + ARP4 * CosC * VinP) + BR = sqr05 * DiC * (ARP1 * UinPe + ARP3e * IinP) + 0.5 * WiC * ( + ARP2e * UinPe + ARP3e * QinPe) - sqr05 * ZiC * SinC * (ARP2e * VinP - ARP4 * QinPe) + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinPo, QinPo, UinPo, VinPo]) + IS2 = np.array([IinPa, QinPa, UinPa, VinPa]) + GT = np.dot(ATP, IS1) + GR = np.dot(ARP, IS1) + HT = np.dot(ATP, IS2) + HR = np.dot(ARP, IS2) + else: + IS1e = np.array( + [IinPo + DiC * QinPoe, DiC * IinPo + QinPoe, ZiC * (CosC * UinPoe + SinC * VinPo), + -ZiC * (SinC * UinPoe - CosC * VinPo)]) + IS2e = np.array( + [IinPa + DiC * QinPae, DiC * IinPa + QinPae, ZiC * (CosC * UinPae + SinC * VinPa), + -ZiC * (SinC * UinPae - CosC * VinPa)]) + GT = np.dot(ATPe, IS1e) + GR = np.dot(ARPe, IS1e) + HT = np.dot(ATPe, IS2e) + HR = np.dot(ARPe, IS2e) + else: + print("Calibrator not implemented yet") + sys.exit() + + elif LocC == 3: # C before receiver optics Eq.57 + + # S2ge = np.sin(np.deg2rad(2*RotO - 2*RotC)) + # C2ge = np.cos(np.deg2rad(2*RotO - 2*RotC)) + S2e = np.sin(np.deg2rad(2 * RotC)) + C2e = np.cos(np.deg2rad(2 * RotC)) + + # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) + AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) + AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) + AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) + AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) + + ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) + ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) + ATF1 = ATF[0] + ATF2 = ATF[1] + ATF3 = ATF[2] + ATF4 = ATF[3] + ARF1 = ARF[0] + ARF2 = ARF[1] + ARF3 = ARF[2] + ARF4 = ARF[3] + + # rotated AinF by epsilon + ATF2e = C2e * ATF[1] + S2e * ATF[2] + ATF3e = C2e * ATF[2] - S2e * ATF[1] + ARF2e = C2e * ARF[1] + S2e * ARF[2] + ARF3e = C2e * ARF[2] - S2e * ARF[1] + + ATFe = np.array([ATF1, ATF2e, ATF3e, ATF4]) + ARFe = np.array([ARF1, ARF2e, ARF3e, ARF4]) + + QinEe = C2e * QinE + S2e * UinE + UinEe = C2e * UinE - S2e * QinE + + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + IinF = IinE + QinF = aCal * QinE + UinF = -aCal * UinE + VinF = (1. - 2. * aCal) * VinE + + IinFo = IinE + QinFo = 0. + UinFo = 0. + VinFo = VinE + + IinFa = 0. + QinFa = QinE + UinFa = -UinE + VinFa = -2. * VinE + + # Stokes Input Vector before receiver optics rotated by epsilon Eq. C.3 + QinFe = C2e * QinF + S2e * UinF + UinFe = C2e * UinF - S2e * QinF + QinFoe = C2e * QinFo + S2e * UinFo + UinFoe = C2e * UinFo - S2e * QinFo + QinFae = C2e * QinFa + S2e * UinFa + UinFae = C2e * UinFa - S2e * QinFa + + # Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # rotator calibration Eq. C.4 + AT = ATF1 * IinF + ATF4 * h * VinF + BT = ATF3e * QinF - ATF2e * h * UinF + AR = ARF1 * IinF + ARF4 * h * VinF + BR = ARF3e * QinF - ARF2e * h * UinF + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + GT = ATF1 * IinE + ATF4 * VinE + GR = ARF1 * IinE + ARF4 * VinE + HT = ATF2 * QinE - ATF3 * UinE - ATF4 * 2 * VinE + HR = ARF2 * QinE - ARF3 * UinE - ARF4 * 2 * VinE + else: + GT = ATF1 * IinE + ATF4 * h * VinE + GR = ARF1 * IinE + ARF4 * h * VinE + HT = ATF2e * QinE - ATF3e * h * UinE - ATF4 * h * 2 * VinE + HR = ARF2e * QinE - ARF3e * h * UinE - ARF4 * h * 2 * VinE + + elif (TypeC == 3) or (TypeC == 4): # linear polariser calibration Eq. C.5 + # p = +45°, m = -45° + IF1e = np.array([IinF, ZiC * CosC * QinFe, UinFe, ZiC * CosC * VinF]) + IF2e = np.array([DiC * UinFe, -ZiC * SinC * VinF, DiC * IinF, ZiC * SinC * QinFe]) + + AT = np.dot(ATFe, IF1e) + AR = np.dot(ARFe, IF1e) + BT = np.dot(ATFe, IF2e) + BR = np.dot(ARFe, IF2e) + + # Correction parameters for normal measurements; they are independent of LDR --- the same as for TypeC = 6 + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + IS1 = np.array([IinE, 0, 0, VinE]) + IS2 = np.array([0, QinE, -UinE, -2 * VinE]) + + GT = np.dot(ATF, IS1) + GR = np.dot(ARF, IS1) + HT = np.dot(ATF, IS2) + HR = np.dot(ARF, IS2) + else: + IS1e = np.array( + [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), + -ZiC * (SinC * UinFoe - CosC * VinFo)]) + IS2e = np.array( + [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), + -ZiC * (SinC * UinFae - CosC * VinFa)]) + GT = np.dot(ATFe, IS1e) + GR = np.dot(ARFe, IS1e) + HT = np.dot(ATFe, IS2e) + HR = np.dot(ARFe, IS2e) + + elif (TypeC == 6): # diattenuator calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # p = +22.5°, m = -22.5° + IF1e = np.array([IinF + sqr05 * DiC * QinFe, sqr05 * DiC * IinF + (1 - 0.5 * WiC) * QinFe, + (1 - 0.5 * WiC) * UinFe + sqr05 * ZiC * SinC * VinF, + -sqr05 * ZiC * SinC * UinFe + ZiC * CosC * VinF]) + IF2e = np.array([sqr05 * DiC * UinFe, 0.5 * WiC * UinFe - sqr05 * ZiC * SinC * VinF, + sqr05 * DiC * IinF + 0.5 * WiC * QinFe, sqr05 * ZiC * SinC * QinFe]) + + AT = np.dot(ATFe, IF1e) + AR = np.dot(ARFe, IF1e) + BT = np.dot(ATFe, IF2e) + BR = np.dot(ARFe, IF2e) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + # IS1 = np.array([IinE,0,0,VinE]) + # IS2 = np.array([0,QinE,-UinE,-2*VinE]) + IS1 = np.array([IinFo, 0, 0, VinFo]) + IS2 = np.array([0, QinFa, UinFa, VinFa]) + GT = np.dot(ATF, IS1) + GR = np.dot(ARF, IS1) + HT = np.dot(ATF, IS2) + HR = np.dot(ARF, IS2) + else: + # IS1e = np.array([IinE,DiC*IinE,ZiC*SinC*VinE,ZiC*CosC*VinE]) + # IS2e = np.array([DiC*QinEe,QinEe,-ZiC*(CosC*UinEe+2*SinC*VinE),ZiC*(SinC*UinEe-2*CosC*VinE)]) + IS1e = np.array( + [IinFo + DiC * QinFoe, DiC * IinFo + QinFoe, ZiC * (CosC * UinFoe + SinC * VinFo), + -ZiC * (SinC * UinFoe - CosC * VinFo)]) + IS2e = np.array( + [IinFa + DiC * QinFae, DiC * IinFa + QinFae, ZiC * (CosC * UinFae + SinC * VinFa), + -ZiC * (SinC * UinFae - CosC * VinFa)]) + GT = np.dot(ATFe, IS1e) + GR = np.dot(ARFe, IS1e) + HT = np.dot(ATFe, IS2e) + HR = np.dot(ARFe, IS2e) + + + else: + print('Calibrator not implemented yet') + sys.exit() + + elif LocC == 2: # C behind emitter optics Eq.57 + # print("Calibrator location not implemented yet") + S2e = np.sin(np.deg2rad(2 * RotC)) + C2e = np.cos(np.deg2rad(2 * RotC)) + + # AS with C before the receiver optics (see document rotated_diattenuator_X22x5deg.odt) + AF1 = np.array([1, C2g * DiO, S2g * DiO, 0]) + AF2 = np.array([C2g * DiO, 1 - S2g ** 2 * WiO, S2g * C2g * WiO, -S2g * ZiO * SinO]) + AF3 = np.array([S2g * DiO, S2g * C2g * WiO, 1 - C2g ** 2 * WiO, C2g * ZiO * SinO]) + AF4 = np.array([0, S2g * SinO, -C2g * SinO, CosO]) + + ATF = (ATP1 * AF1 + ATP2 * AF2 + ATP3 * AF3 + ATP4 * AF4) + ARF = (ARP1 * AF1 + ARP2 * AF2 + ARP3 * AF3 + ARP4 * AF4) + ATF1 = ATF[0] + ATF2 = ATF[1] + ATF3 = ATF[2] + ATF4 = ATF[3] + ARF1 = ARF[0] + ARF2 = ARF[1] + ARF3 = ARF[2] + ARF4 = ARF[3] + + # AS with C behind the emitter -------------------------------------------- + # terms without aCal + ATE1o, ARE1o = ATF1, ARF1 + ATE2o, ARE2o = 0., 0. + ATE3o, ARE3o = 0., 0. + ATE4o, ARE4o = ATF4, ARF4 + # terms with aCal + ATE1a, ARE1a = 0., 0. + ATE2a, ARE2a = ATF2, ARF2 + ATE3a, ARE3a = -ATF3, -ARF3 + ATE4a, ARE4a = -2 * ATF4, -2 * ARF4 + # rotated AinEa by epsilon + ATE2ae = C2e * ATF2 + S2e * ATF3 + ATE3ae = -S2e * ATF2 - C2e * ATF3 + ARE2ae = C2e * ARF2 + S2e * ARF3 + ARE3ae = -S2e * ARF2 - C2e * ARF3 + + ATE1 = ATE1o + ATE2e = aCal * ATE2ae + ATE3e = aCal * ATE3ae + ATE4 = (1 - 2 * aCal) * ATF4 + ARE1 = ARE1o + ARE2e = aCal * ARE2ae + ARE3e = aCal * ARE3ae + ARE4 = (1. - 2. * aCal) * ARF4 + + # rotated IinE + QinEe = C2e * QinE + S2e * UinE + UinEe = C2e * UinE - S2e * QinE + + # --- Calibration signals and Calibration correction K from measurements with LDRCal / aCal + if (TypeC == 2) or (TypeC == 1): # +++++++++ rotator calibration Eq. C.4 + AT = ATE1o * IinE + (ATE4o + aCal * ATE4a) * h * VinE + BT = aCal * (ATE3ae * QinEe - ATE2ae * h * UinEe) + AR = ARE1o * IinE + (ARE4o + aCal * ARE4a) * h * VinE + BR = aCal * (ARE3ae * QinEe - ARE2ae * h * UinEe) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + GT = ATE1o * IinE + ATE4o * h * VinE + GR = ARE1o * IinE + ARE4o * h * VinE + HT = ATE2a * QinE + ATE3a * h * UinEe + ATE4a * h * VinE + HR = ARE2a * QinE + ARE3a * h * UinEe + ARE4a * h * VinE + else: + GT = ATE1o * IinE + ATE4o * h * VinE + GR = ARE1o * IinE + ARE4o * h * VinE + HT = ATE2ae * QinE + ATE3ae * h * UinEe + ATE4a * h * VinE + HR = ARE2ae * QinE + ARE3ae * h * UinEe + ARE4a * h * VinE + + elif (TypeC == 3) or (TypeC == 4): # +++++++++ linear polariser calibration Eq. C.5 + # p = +45°, m = -45° + AT = ATE1 * IinE + ZiC * CosC * (ATE2e * QinEe + ATE4 * VinE) + ATE3e * UinEe + BT = DiC * (ATE1 * UinEe + ATE3e * IinE) + ZiC * SinC * (ATE4 * QinEe - ATE2e * VinE) + AR = ARE1 * IinE + ZiC * CosC * (ARE2e * QinEe + ARE4 * VinE) + ARE3e * UinEe + BR = DiC * (ARE1 * UinEe + ARE3e * IinE) + ZiC * SinC * (ARE4 * QinEe - ARE2e * VinE) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): + # Stokes Input Vector before receiver optics Eq. E.19 (after atmosphere F) + GT = ATE1o * IinE + ATE4o * VinE + GR = ARE1o * IinE + ARE4o * VinE + HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE + HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE + else: + D = IinE + DiC * QinEe + A = DiC * IinE + QinEe + B = ZiC * (CosC * UinEe + SinC * VinE) + C = -ZiC * (SinC * UinEe - CosC * VinE) + GT = ATE1o * D + ATE4o * C + GR = ARE1o * D + ARE4o * C + HT = ATE2a * A + ATE3a * B + ATE4a * C + HR = ARE2a * A + ARE3a * B + ARE4a * C + + elif (TypeC == 6): # real HWP calibration +-22.5° rotated_diattenuator_X22x5deg.odt + # p = +22.5°, m = -22.5° + IE1e = np.array([IinE + sqr05 * DiC * QinEe, sqr05 * DiC * IinE + (1 - 0.5 * WiC) * QinEe, + (1. - 0.5 * WiC) * UinEe + sqr05 * ZiC * SinC * VinE, + -sqr05 * ZiC * SinC * UinEe + ZiC * CosC * VinE]) + IE2e = np.array([sqr05 * DiC * UinEe, 0.5 * WiC * UinEe - sqr05 * ZiC * SinC * VinE, + sqr05 * DiC * IinE + 0.5 * WiC * QinEe, sqr05 * ZiC * SinC * QinEe]) + ATEe = np.array([ATE1, ATE2e, ATE3e, ATE4]) + AREe = np.array([ARE1, ARE2e, ARE3e, ARE4]) + AT = np.dot(ATEe, IE1e) + AR = np.dot(AREe, IE1e) + BT = np.dot(ATEe, IE2e) + BR = np.dot(AREe, IE2e) + + # Correction parameters for normal measurements; they are independent of LDR + if (not RotationErrorEpsilonForNormalMeasurements): # calibrator taken out + GT = ATE1o * IinE + ATE4o * VinE + GR = ARE1o * IinE + ARE4o * VinE + HT = ATE2a * QinE + ATE3a * UinE + ATE4a * VinE + HR = ARE2a * QinE + ARE3a * UinE + ARE4a * VinE + else: + D = IinE + DiC * QinEe + A = DiC * IinE + QinEe + B = ZiC * (CosC * UinEe + SinC * VinE) + C = -ZiC * (SinC * UinEe - CosC * VinE) + GT = ATE1o * D + ATE4o * C + GR = ARE1o * D + ARE4o * C + HT = ATE2a * A + ATE3a * B + ATE4a * C + HR = ARE2a * A + ARE3a * B + ARE4a * C + else: + print('Calibrator not implemented yet') + sys.exit() + + for iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr \ + in [ + (iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr) + for iTCalT in range(-nTCalT, nTCalT + 1) # Etax + for iTCalR in range(-nTCalR, nTCalR + 1) # Etax + for iNCalTp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax + for iNCalTm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax + for iNCalRp in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax + for iNCalRm in range(-nNCal, nNCal + 1) # noise error of calibration signals => Etax + for iNIt in range(-nNI, nNI + 1) + for iNIr in range(-nNI, nNI + 1)]: + + # Calibration signals with aCal => Determination of the correction K of the real calibration factor + IoutTp = TTa * TiC * TiO * TiE * (AT + BT) + IoutTm = TTa * TiC * TiO * TiE * (AT - BT) + IoutRp = TRa * TiC * TiO * TiE * (AR + BR) + IoutRm = TRa * TiC * TiO * TiE * (AR - BR) + + if nTCalT > 0: TCalT = TCalT0 + iTCalT * dTCalT / nTCalT + if nTCalR > 0: TCalR = TCalR0 + iTCalR * dTCalR / nTCalR + # signal noise errors + # ----- random error calculation ---------- + # noise must be calculated from/with the actually measured signals; influence of TCalT, TCalR errors on noise are not considered ? + # actually measured signal counts are in input file and don't change + # relative standard deviation of calibration signals with LDRcal; assumed to be statisitcally independent + # error nNCal: one-sigma in steps to left and right for calibration signals + if nNCal > 0: + if (CalcFrom0deg): + dIoutTp = (NCalT * IoutTp) ** -0.5 + dIoutTm = (NCalT * IoutTm) ** -0.5 + dIoutRp = (NCalR * IoutRp) ** -0.5 + dIoutRm = (NCalR * IoutRm) ** -0.5 + else: + dIoutTp = dIoutTp0 * (IoutTp / IoutTp0) + dIoutTm = dIoutTm0 * (IoutTm / IoutTm0) + dIoutRp = dIoutRp0 * (IoutRp / IoutRp0) + dIoutRm = dIoutRm0 * (IoutRm / IoutRm0) + # print(iTCalT, iTCalR, iNCalTp, iNCalTm, iNCalRp, iNCalRm, iNIt, iNIr, IoutTp, dIoutTp) + IoutTp = IoutTp * (1. + iNCalTp * dIoutTp / nNCal) + IoutTm = IoutTm * (1. + iNCalTm * dIoutTm / nNCal) + IoutRp = IoutRp * (1. + iNCalRp * dIoutRp / nNCal) + IoutRm = IoutRm * (1. + iNCalRm * dIoutRm / nNCal) + + IoutTp = IoutTp * TCalT / TCalT0 + IoutTm = IoutTm * TCalT / TCalT0 + IoutRp = IoutRp * TCalR / TCalR0 + IoutRm = IoutRm * TCalR / TCalR0 + # --- Results and Corrections; electronic etaR and etaT are assumed to be 1 for true and assumed true systems + # calibration factor + Eta = (TRa / TTa) # = TRa / TTa; Eta = Eta*/K Eq. 84; corrected according to the papers supplement Eqs. (S.10.10.1) ff + # possibly real calibration factor + Etapx = IoutRp / IoutTp + Etamx = IoutRm / IoutTm + Etax = (Etapx * Etamx) ** 0.5 + K = Etax / Eta + # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f},{4:6.3f},{5:6.3f},{6:6.3f},{7:6.3f},{8:6.3f},{9:6.3f},{10:6.3f}".format(AT, BT, AR, BR, DiC, ZiC, RetO, TP, TS, Kp, Km)) + # print("{0:6.3f},{1:6.3f},{2:6.3f},{3:6.3f}".format(DiC, ZiC, Kp, Km)) + + # For comparison with Volkers Libreoffice Müller Matrix spreadsheet + # Eta_test_p = (IoutRp/IoutTp) + # Eta_test_m = (IoutRm/IoutTm) + # Eta_test = (Eta_test_p*Eta_test_m)**0.5 + ''' + for iIt, iIr \ + in [(iIt, iIr) + for iIt in range(-nNI, nNI + 1) + for iIr in range(-nNI, nNI + 1)]: + ''' + + iN = iN + 1 + if (iN == 10001): + ctime = clock() + print(" estimated time ", "{0:4.2f}".format(N / 10000 * (ctime - atime)), "sec ") # , end="") + print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") + ctime = clock() + if ((ctime - dtime) > 10): + print("\r elapsed time ", "{0:5.0f}".format((ctime - atime)), "sec ", end="\r") + dtime = ctime + + # *** loop for different real LDRs ********************************************************************** + iLDR = -1 + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + atrue = (1. - LDRTrue) / (1. + LDRTrue) + # ----- Forward simulated signals and LDRsim with atrue; from input file; not considering TiC. + It = TTa * TiO * TiE * (GT + atrue * HT) # TaT*TiT*TiC*TiO*IinL*(GT+atrue*HT) + Ir = TRa * TiO * TiE * (GR + atrue * HR) # TaR*TiR*TiC*TiO*IinL*(GR+atrue*HR) + # # signal noise errors; standard deviation of signals; assumed to be statisitcally independent + # because the signals depend on LDRtrue, the errors dIt and dIr must be calculated for each LDRtrue + if (CalcFrom0deg): + ''' + dIt = ((NCalT * It / IoutTp * NILfac / TCalT) ** -0.5) + dIr = ((NCalR * Ir / IoutRp * NILfac / TCalR) ** -0.5) + ''' + dIt = ((It * NI * eFacT) ** -0.5) + dIr = ((Ir * NI * eFacR) ** -0.5) + else: + dIt = ((It * NI * eFacT) ** -0.5) + dIr = ((Ir * NI * eFacR) ** -0.5) + ''' + # does this work? Why not as above? + dIt = ((NCalT * 2. * NILfac / TCalT ) ** -0.5) + dIr = ((NCalR * 2. * NILfac / TCalR) ** -0.5) + ''' + # error nNI: one-sigma in steps to left and right for 0° signals + if nNI > 0: + It = It * (1. + iNIt * dIt / nNI) + Ir = Ir * (1. + iNIr * dIr / nNI) + + # LDRsim = 1/Eta*Ir/It # simulated LDR* with Y from input file + LDRsim = Ir / It # simulated uncorrected LDR with Y from input file + + # ----- Backward correction + # Corrected LDRCorr with assumed true G0,H0,K0,Eta0 from forward simulated (real) LDRsim(atrue) + LDRCorr = (LDRsim / (Etax / K0) * (GT0 + HT0) - (GR0 + HR0)) / ((GR0 - HR0) - LDRsim / (Etax / K0) * (GT0 - HT0)) + + # The following is a test whether the equations for calibration Etax and normal signal (GHK, LDRsim) are consistent + # LDRCorr = (LDRsim / Eta * (GT + HT) - (GR + HR)) / ((GR - HR) - LDRsim / Eta * (GT - HT)) + # Without any correction + LDRunCorr = LDRsim / Etax + # LDRunCorr = (LDRsim / Etax * (GT / abs(GT) + HT / abs(HT)) - (GR / abs(GR) + HR / abs(HR))) / ((GR / abs(GR) - HR / abs(HR)) - LDRsim / Etax * (GT / abs(GT) - HT / abs(HT))) + + + ''' + # -- F11corr from It and Ir and calibration EtaX + Text1 = "!!! EXPERIMENTAL !!! F11corr from It and Ir with calibration EtaX: x-axis: F11corr(LDRtrue) / F11corr(LDRtrue = 0.004) - 1" + F11corr = 1 / (TiO * TiE) * ( + (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. + ''' + # Corrected F11corr with assumed true G0,H0,K0 from forward simulated (real) It and Ir (atrue) + Text1 = "!!! EXPERIMENTAL !!! F11corr from real It and Ir with real calibration EtaX: x-axis: F11corr(LDRtrue) / aF11sim0(LDRtrue) - 1" + F11corr = 1 / (TiO * TiE) * ( + (HR0 * Etax / K0 * It / TTa - HT0 * Ir / TRa) / (HR0 * GT0 - HT0 * GR0)) # IL = 1 Eq.(64); Etax/K0 = Eta0. + + # Text1 = "F11corr from It and Ir without corrections but with calibration EtaX: x-axis: F11corr(LDRtrue) devided by F11corr(LDRtrue = 0.004)" + # F11corr = 0.5/(TiO*TiE)*(Etax*It/TTa+Ir/TRa) # IL = 1 Eq.(64) + + # -- It from It only with atrue without corrections - for BERTHA (and PollyXTs) + # Text1 = " x-axis: IT(LDRtrue) / IT(LDRtrue = 0.004) - 1" + # F11corr = It/(TaT*TiT*TiO*TiE) #/(TaT*TiT*TiO*TiE*(GT0+atrue*HT0)) + # ! see below line 1673ff + + aF11corr[iLDR, iN] = F11corr + aLDRcorr[iLDR, iN] = LDRCorr # LDRCorr # LDRsim # for test only + aLDRsim[iLDR, iN] = LDRsim # LDRCorr # LDRsim # for test only + # aPLDR[iLDR, iN] = CalcPLDR(LDRCorr, BSR[iLDR], LDRm0) + aEtax[iLDR, iN] = Etax + aEtapx[iLDR, iN] = Etapx + aEtamx[iLDR, iN] = Etamx + + aGHK[0, iN] = GR + aGHK[1, iN] = GT + aGHK[2, iN] = HR + aGHK[3, iN] = HT + aGHK[4, iN] = K + + aLDRCal[iN] = iLDRCal + aQin[iN] = iQin + aVin[iN] = iVin + aERaT[iN] = iERaT + aERaR[iN] = iERaR + aRotaT[iN] = iRotaT + aRotaR[iN] = iRotaR + aRetT[iN] = iRetT + aRetR[iN] = iRetR + + aRotL[iN] = iRotL + aRotE[iN] = iRotE + aRetE[iN] = iRetE + aRotO[iN] = iRotO + aRetO[iN] = iRetO + aRotC[iN] = iRotC + aRetC[iN] = iRetC + aDiO[iN] = iDiO + aDiE[iN] = iDiE + aDiC[iN] = iDiC + aTP[iN] = iTP + aTS[iN] = iTS + aRP[iN] = iRP + aRS[iN] = iRS + aTCalT[iN] = iTCalT + aTCalR[iN] = iTCalR + + aNCalTp[iN] = iNCalTp # IoutTp, IoutTm, IoutRp, IoutRm => Etax + aNCalTm[iN] = iNCalTm # IoutTp, IoutTm, IoutRp, IoutRm => Etax + aNCalRp[iN] = iNCalRp # IoutTp, IoutTm, IoutRp, IoutRm => Etax + aNCalRm[iN] = iNCalRm # IoutTp, IoutTm, IoutRp, IoutRm => Etax + aNIt[iN] = iNIt # It, Tr + aNIr[iN] = iNIr # It, Tr + + # --- END loop + btime = clock() + # print("\r done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ..."), # , end="\r"); + print(" done in ", "{0:5.0f}".format(btime - atime), "sec. => producing plots now .... some more seconds ...") + # --- Plot ----------------------------------------------------------------- + print("Errors from GHK correction uncertainties:") + if (sns_loaded): + sns.set_style("whitegrid") + sns.set_palette("bright6", 6) + # for older seaborn versions use: + # sns.set_palette("bright", 6) + + ''' + fig2 = plt.figure() + plt.plot(aLDRcorr[2,:],'b.') + plt.plot(aLDRcorr[3,:],'r.') + plt.plot(aLDRcorr[4,:],'g.') + #plt.plot(aLDRcorr[6,:],'c.') + plt.show + ''' + + # Plot LDR + def PlotSubHist(aVar, aX, X0, daX, iaX, naX): + # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot + # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) + LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) + if (LDRmax[iLDR] > 10): LDRmax[iLDR] = 10 + if (LDRmin[iLDR] < -10): LDRmin[iLDR] = -10 + Rmin = LDRmin[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 + Rmax = LDRmax[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 + + # Determine mean distance of all aXmean from each other for each iLDR + meanDist = 0.0 + for iaX in range(-naX, naX + 1): + # mean LDRCorr value for certain error (iaX) of parameter aVar + aXmean[iaX + naX] = np.mean(aLDRcorr[iLDR, aX == iaX]) + # relative to absolute spread of LDRCorrs + meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRmax[iLDR] - LDRmin[iLDR]) * 100 + + plt.subplot(1, 5, iLDR + 1) + (n, bins, patches) = plt.hist(aLDRcorr[iLDR, :], + bins=100, log=False, + range=[Rmin, Rmax], + alpha=0.5, density=False, color='0.5', histtype='stepfilled') + + for iaX in range(-naX, naX + 1): + # mean LDRCorr value for certain error (iaX) of parameter aVar + plt.hist(aLDRcorr[iLDR, aX == iaX], + range=[Rmin, Rmax], + bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', + label=str(round(X0 + iaX * daX / naX, 5))) + + if (iLDR == 2): + leg = plt.legend() + leg.get_frame().set_alpha(0.1) + + plt.tick_params(axis='both', labelsize=10) + plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) + plt.gca().set_title("{0:3.0f}%".format(meanDist)) + plt.gca().set_xlabel('LDRtrue', color="red") + + # plt.ylabel('frequency', fontsize=10) + # plt.xlabel('LDRCorr', fontsize=10) + # fig.tight_layout() + fig.suptitle(LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) + # plt.show() + # fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) + # plt.close + return + + def PlotLDRsim(aVar, aX, X0, daX, iaX, naX): + # aVar is the name of the parameter and aX is the subset of aLDRsim which is coloured in the plot + # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) + LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) + # print("LDRsimmin[iLDR], LDRsimmax[iLDR] = ", LDRsimmin[iLDR], LDRsimmax[iLDR]) + # if (LDRsimmax[iLDR] > 10): LDRsimmax[iLDR] = 10 + # if (LDRsimmin[iLDR] < -10): LDRsimmin[iLDR] = -10 + Rmin = LDRsimmin[iLDR] * 0.995 # np.min(aLDRsim[iLDR,:]) * 0.995 + Rmax = LDRsimmax[iLDR] * 1.005 # np.max(aLDRsim[iLDR,:]) * 1.005 + # print("Rmin, Rmax = ", Rmin, Rmax) + + # Determine mean distance of all aXmean from each other for each iLDR + meanDist = 0.0 + for iaX in range(-naX, naX + 1): + # mean LDRCorr value for certain error (iaX) of parameter aVar + aXmean[iaX + naX] = np.mean(aLDRsim[iLDR, aX == iaX]) + # relative to absolute spread of LDRCorrs + meanDist = (np.max(aXmean) - np.min(aXmean)) / (LDRsimmax[iLDR] - LDRsimmin[iLDR]) * 100 + + plt.subplot(1, 5, iLDR + 1) + (n, bins, patches) = plt.hist(aLDRsim[iLDR, :], + bins=100, log=False, + range=[Rmin, Rmax], + alpha=0.5, density=False, color='0.5', histtype='stepfilled') + + for iaX in range(-naX, naX + 1): + # mean LDRCorr value for certain error (iaX) of parameter aVar + plt.hist(aLDRsim[iLDR, aX == iaX], + range=[Rmin, Rmax], + bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', + label=str(round(X0 + iaX * daX / naX, 5))) + + if (iLDR == 2): + leg = plt.legend() + leg.get_frame().set_alpha(0.1) + + plt.tick_params(axis='both', labelsize=10) + plt.plot([LDRsim0[iLDR], LDRsim0[iLDR]], [0, np.max(n)], 'r-', lw=2) + plt.gca().set_title("{0:3.0f}%".format(meanDist)) + plt.gca().set_xlabel('LDRsim0', color="red") + + fig.suptitle('LDRsim - ' +LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) + return + + + # Plot Etax + def PlotEtax(aVar, aX, X0, daX, iaX, naX): + # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot + # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + Etaxmin = np.amin(aEtax[iLDR, :]) + Etaxmax = np.amax(aEtax[iLDR, :]) + Rmin = Etaxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 + Rmax = Etaxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 + + # Determine mean distance of all aXmean from each other for each iLDR + meanDist = 0.0 + for iaX in range(-naX, naX + 1): + # mean Etax value for certain error (iaX) of parameter aVar + aXmean[iaX + naX] = np.mean(aEtax[iLDR, aX == iaX]) + # relative to absolute spread of Etax + meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etaxmax - Etaxmin) * 100 + + plt.subplot(1, 5, iLDR + 1) + (n, bins, patches) = plt.hist(aEtax[iLDR, :], + bins=50, log=False, + range=[Rmin, Rmax], + alpha=0.5, density=False, color='0.5', histtype='stepfilled') + for iaX in range(-naX, naX + 1): + plt.hist(aEtax[iLDR, aX == iaX], + range=[Rmin, Rmax], + bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', + label=str(round(X0 + iaX * daX / naX, 5))) + if (iLDR == 2): + leg = plt.legend() + leg.get_frame().set_alpha(0.1) + plt.tick_params(axis='both', labelsize=10) + plt.plot([Etax0, Etax0], [0, np.max(n)], 'r-', lw=2) + plt.gca().set_title("{0:3.0f}%".format(meanDist)) + plt.gca().set_xlabel('Etax0', color="red") + fig.suptitle('Etax - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) + return + + def PlotEtapx(aVar, aX, X0, daX, iaX, naX): + # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot + # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + Etapxmin = np.amin(aEtapx[iLDR, :]) + Etapxmax = np.amax(aEtapx[iLDR, :]) + Rmin = Etapxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 + Rmax = Etapxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 + + # Determine mean distance of all aXmean from each other for each iLDR + meanDist = 0.0 + for iaX in range(-naX, naX + 1): + # mean Etapx value for certain error (iaX) of parameter aVar + aXmean[iaX + naX] = np.mean(aEtapx[iLDR, aX == iaX]) + # relative to absolute spread of Etapx + meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etapxmax - Etapxmin) * 100 + + plt.subplot(1, 5, iLDR + 1) + (n, bins, patches) = plt.hist(aEtapx[iLDR, :], + bins=50, log=False, + range=[Rmin, Rmax], + alpha=0.5, density=False, color='0.5', histtype='stepfilled') + for iaX in range(-naX, naX + 1): + plt.hist(aEtapx[iLDR, aX == iaX], + range=[Rmin, Rmax], + bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', + label=str(round(X0 + iaX * daX / naX, 5))) + if (iLDR == 2): + leg = plt.legend() + leg.get_frame().set_alpha(0.1) + plt.tick_params(axis='both', labelsize=10) + plt.plot([Etapx0, Etapx0], [0, np.max(n)], 'r-', lw=2) + plt.gca().set_title("{0:3.0f}%".format(meanDist)) + plt.gca().set_xlabel('Etapx0', color="red") + fig.suptitle('Etapx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) + return + + def PlotEtamx(aVar, aX, X0, daX, iaX, naX): + # aVar is the name of the parameter and aX is the subset of aLDRcorr which is coloured in the plot + # example: PlotSubHist("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP) + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + Etamxmin = np.amin(aEtamx[iLDR, :]) + Etamxmax = np.amax(aEtamx[iLDR, :]) + Rmin = Etamxmin * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 + Rmax = Etamxmax * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 + + # Determine mean distance of all aXmean from each other for each iLDR + meanDist = 0.0 + for iaX in range(-naX, naX + 1): + # mean Etamx value for certain error (iaX) of parameter aVar + aXmean[iaX + naX] = np.mean(aEtamx[iLDR, aX == iaX]) + # relative to absolute spread of Etamx + meanDist = (np.max(aXmean) - np.min(aXmean)) / (Etamxmax - Etamxmin) * 100 + + plt.subplot(1, 5, iLDR + 1) + (n, bins, patches) = plt.hist(aEtamx[iLDR, :], + bins=50, log=False, + range=[Rmin, Rmax], + alpha=0.5, density=False, color='0.5', histtype='stepfilled') + for iaX in range(-naX, naX + 1): + plt.hist(aEtamx[iLDR, aX == iaX], + range=[Rmin, Rmax], + bins=50, log=False, alpha=0.3, density=False, histtype='stepfilled', + label=str(round(X0 + iaX * daX / naX, 5))) + if (iLDR == 2): + leg = plt.legend() + leg.get_frame().set_alpha(0.1) + plt.tick_params(axis='both', labelsize=10) + plt.plot([Etamx0, Etamx0], [0, np.max(n)], 'r-', lw=2) + plt.gca().set_title("{0:3.0f}%".format(meanDist)) + plt.gca().set_xlabel('Etamx0', color="red") + fig.suptitle('Etamx - ' + LID + ' with ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar + ' error contribution', fontsize=14, y=1.10) + return + + # calc contribution of the error of aVar = aX to aY for each LDRtrue + def Contribution(aVar, aX, X0, daX, iaX, naX, aY, Ysum, widthSum): + # aVar is the name of the parameter and aX is the subset of aY which is coloured in the plot + # example: Contribution("DOLP", aDOLP, DOLP0, dDOLP, iDOLP, nDOLP, aLDRcorr, DOLPcontr) + iLDR = -1 + # Ysum, widthSum = np.zeros(5) + meanDist = np.zeros(5) # iLDR + widthDist = np.zeros(5) # iLDR + for LDRTrue in LDRrange: + aXmean = np.zeros(2 * naX + 1) + aXwidth = np.zeros(2 * naX + 1) + iLDR = iLDR + 1 + # total width of distribution + aYmin = np.amin(aY[iLDR, :]) + aYmax = np.amax(aY[iLDR, :]) + aYwidth = aYmax - aYmin + # Determine mean distance of all aXmean from each other for each iLDR + for iaX in range(-naX, naX + 1): + # mean LDRCorr value for all errors iaX of parameter aVar + aXmean[iaX + naX] = np.mean(aY[iLDR, aX == iaX]) + aXwidth[iaX + naX] = np.max(aY[iLDR, aX == iaX]) - np.min(aY[iLDR, aX == iaX]) + # relative to absolute spread of LDRCorrs + meanDist[iLDR] = (np.max(aXmean) - np.min(aXmean)) / aYwidth * 1000 + # meanDist[iLDR] = (aYwidth - aXwidth[naX]) / aYwidth * 1000 + widthDist[iLDR] = (np.max(aXwidth) - aXwidth[naX]) / aYwidth * 1000 + + print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ + .format(aVar,meanDist[0],meanDist[1],meanDist[2],meanDist[3],meanDist[4],widthDist[0],widthDist[1],widthDist[2],widthDist[3],widthDist[4])) + Ysum = Ysum + meanDist + widthSum = widthSum + widthDist + return(Ysum, widthSum) + + # print(.format(LDRrangeA[iLDR],)) + + # error contributions to a certain output aY; loop over all variables + def Contribution_aY(aYvar, aY): + Ysum = np.zeros(5) + widthSum = np.zeros(5) + # meanDist = np.zeros(5) # iLDR + LDRrangeA = np.array(LDRrange) + print() + print(aYvar + ": contribution to the total error (per mill)") + print(" of individual parameter errors of combined parameter errors") + print(" at LDRtrue {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f} {:5.3f}"\ + .format(LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4],LDRrangeA[0],LDRrangeA[1],LDRrangeA[2],LDRrangeA[3],LDRrangeA[4])) + print() + if (nQin > 0): Ysum, widthSum = Contribution("Qin", aQin, Qin0, dQin, iQin, nQin, aY, Ysum, widthSum) + if (nVin > 0): Ysum, widthSum = Contribution("Vin", aVin, Vin0, dVin, iVin, nVin, aY, Ysum, widthSum) + if (nRotL > 0): Ysum, widthSum = Contribution("RotL", aRotL, RotL0, dRotL, iRotL, nRotL, aY, Ysum, widthSum) + if (nRetE > 0): Ysum, widthSum = Contribution("RetE", aRetE, RetE0, dRetE, iRetE, nRetE, aY, Ysum, widthSum) + if (nRotE > 0): Ysum, widthSum = Contribution("RotE", aRotE, RotE0, dRotE, iRotE, nRotE, aY, Ysum, widthSum) + if (nDiE > 0): Ysum, widthSum = Contribution("DiE", aDiE, DiE0, dDiE, iDiE, nDiE, aY, Ysum, widthSum) + if (nRetO > 0): Ysum, widthSum = Contribution("RetO", aRetO, RetO0, dRetO, iRetO, nRetO, aY, Ysum, widthSum) + if (nRotO > 0): Ysum, widthSum = Contribution("RotO", aRotO, RotO0, dRotO, iRotO, nRotO, aY, Ysum, widthSum) + if (nDiO > 0): Ysum, widthSum = Contribution("DiO", aDiO, DiO0, dDiO, iDiO, nDiO, aY, Ysum, widthSum) + if (nDiC > 0): Ysum, widthSum = Contribution("DiC", aDiC, DiC0, dDiC, iDiC, nDiC, aY, Ysum, widthSum) + if (nRotC > 0): Ysum, widthSum = Contribution("RotC", aRotC, RotC0, dRotC, iRotC, nRotC, aY, Ysum, widthSum) + if (nRetC > 0): Ysum, widthSum = Contribution("RetC", aRetC, RetC0, dRetC, iRetC, nRetC, aY, Ysum, widthSum) + if (nTP > 0): Ysum, widthSum = Contribution("TP", aTP, TP0, dTP, iTP, nTP, aY, Ysum, widthSum) + if (nTS > 0): Ysum, widthSum = Contribution("TS", aTS, TS0, dTS, iTS, nTS, aY, Ysum, widthSum) + if (nRP > 0): Ysum, widthSum = Contribution("RP", aRP, RP0, dRP, iRP, nRP, aY, Ysum, widthSum) + if (nRS > 0): Ysum, widthSum = Contribution("RS", aRS, RS0, dRS, iRS, nRS, aY, Ysum, widthSum) + if (nRetT > 0): Ysum, widthSum = Contribution("RetT", aRetT, RetT0, dRetT, iRetT, nRetT, aY, Ysum, widthSum) + if (nRetR > 0): Ysum, widthSum = Contribution("RetR", aRetR, RetR0, dRetR, iRetR, nRetR, aY, Ysum, widthSum) + if (nERaT > 0): Ysum, widthSum = Contribution("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT, aY, Ysum, widthSum) + if (nERaR > 0): Ysum, widthSum = Contribution("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR, aY, Ysum, widthSum) + if (nRotaT > 0): Ysum, widthSum = Contribution("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT, aY, Ysum, widthSum) + if (nRotaR > 0): Ysum, widthSum = Contribution("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR, aY, Ysum, widthSum) + if (nLDRCal > 0): Ysum, widthSum = Contribution("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal, aY, Ysum, widthSum) + if (nTCalT > 0): Ysum, widthSum = Contribution("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT, aY, Ysum, widthSum) + if (nTCalR > 0): Ysum, widthSum = Contribution("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR, aY, Ysum, widthSum) + if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal, aY, Ysum, widthSum) + if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal, aY, Ysum, widthSum) + if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal, aY, Ysum, widthSum) + if (nNCal > 0): Ysum, widthSum = Contribution("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal, aY, Ysum, widthSum) + if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIt", aNIt, 0, 1, iNIt, nNI, aY, Ysum, widthSum) + if (nNI > 0): Ysum, widthSum = Contribution("SigNoiseIr", aNIr, 0, 1, iNIr, nNI, aY, Ysum, widthSum) + print("{:12}{:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f} {:5.0f}"\ + .format("Sum ",Ysum[0],Ysum[1],Ysum[2],Ysum[3],Ysum[4],widthSum[0],widthSum[1],widthSum[2],widthSum[3],widthSum[4])) + + + # Plot LDR histograms + if (nQin > 0): PlotSubHist("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotSubHist("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotSubHist("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotSubHist("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotSubHist("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotSubHist("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotSubHist("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotSubHist("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotSubHist("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotSubHist("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotSubHist("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotSubHist("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotSubHist("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotSubHist("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotSubHist("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotSubHist("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotSubHist("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotSubHist("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotSubHist("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotSubHist("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotSubHist("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotSubHist("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotSubHist("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotSubHist("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotSubHist("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotSubHist("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) + if (nNCal > 0): PlotSubHist("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) + if (nNCal > 0): PlotSubHist("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) + if (nNCal > 0): PlotSubHist("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) + if (nNI > 0): PlotSubHist("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) + if (nNI > 0): PlotSubHist("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) + plt.show() + plt.close + + + + # --- Plot LDRmin, LDRmax + iLDR = -1 + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + LDRmin[iLDR] = np.amin(aLDRcorr[iLDR, :]) + LDRmax[iLDR] = np.amax(aLDRcorr[iLDR, :]) + LDRstd[iLDR] = np.std(aLDRcorr[iLDR, :]) + LDRmean[iLDR] = np.mean(aLDRcorr[iLDR, :]) + LDRmedian[iLDR] = np.median(aLDRcorr[iLDR, :]) + LDRskew[iLDR] = skew(aLDRcorr[iLDR, :],bias=False) + LDRkurt[iLDR] = kurtosis(aLDRcorr[iLDR, :],fisher=True,bias=False) + + fig2 = plt.figure() + LDRrangeA = np.array(LDRrange) + if((np.amax(LDRmax - LDRrangeA)-np.amin(LDRmin - LDRrangeA)) < 0.001): + plt.ylim(-0.001,0.001) + plt.plot(LDRrangeA, LDRmax - LDRrangeA, linewidth=2.0, color='b') + plt.plot(LDRrangeA, LDRmin - LDRrangeA, linewidth=2.0, color='g') + + plt.xlabel('LDRtrue', fontsize=18) + plt.ylabel('LDRTrue-LDRmin, LDRTrue-LDRmax', fontsize=14) + plt.title(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]), fontsize=18) + # plt.ylimit(-0.07, 0.07) + plt.show() + plt.close + + # --- Save LDRmin, LDRmax to file + # http://stackoverflow.com/questions/4675728/redirect-stdout-to-a-file-in-python + with open('output_files\\' + OutputFile, 'a') as f: + # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'w') as f: + with redirect_stdout(f): + print("Lidar ID: " + LID) + print() + print("minimum and maximum values of the distributions of possibly measured LDR for different LDRtrue") + print("LDRtrue , LDRmin, LDRmax") + for i in range(len(LDRrangeA)): + print("{0:7.4f},{1:7.4f},{2:7.4f}".format(LDRrangeA[i], LDRmin[i], LDRmax[i])) + print() + # Print LDR statistics + print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") + iLDR = -1 + LDRrangeA = np.array(LDRrange) + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}"\ + .format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], \ + LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR], LDRkurt[iLDR], LDRskew[iLDR])) + print() + # Calculate and print statistics for calibration factors + print("minimum and maximum values of the distributions of signal ratios and calibration factors for different LDRtrue") + iLDR = -1 + LDRrangeA = np.array(LDRrange) + print("LDRtrue , LDRsim, (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) + LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) + # LDRsimstd = np.std(aLDRsim[iLDR, :]) + LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) + # LDRsimmedian = np.median(aLDRsim[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR],LDRsimmean[iLDR],(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2,(LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) + iLDR = -1 + print("LDRtrue , Etax , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etaxmin = np.amin(aEtax[iLDR, :]) + Etaxmax = np.amax(aEtax[iLDR, :]) + # Etaxstd = np.std(aEtax[iLDR, :]) + Etaxmean = np.mean(aEtax[iLDR, :]) + # Etaxmedian = np.median(aEtax[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) + iLDR = -1 + print("LDRtrue , Etapx , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etapxmin = np.amin(aEtapx[iLDR, :]) + Etapxmax = np.amax(aEtapx[iLDR, :]) + # Etapxstd = np.std(aEtapx[iLDR, :]) + Etapxmean = np.mean(aEtapx[iLDR, :]) + # Etapxmedian = np.median(aEtapx[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) + iLDR = -1 + print("LDRtrue , Etamx , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etamxmin = np.amin(aEtamx[iLDR, :]) + Etamxmax = np.amax(aEtamx[iLDR, :]) + # Etamxstd = np.std(aEtamx[iLDR, :]) + Etamxmean = np.mean(aEtamx[iLDR, :]) + # Etamxmedian = np.median(aEtamx[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) + + # Print LDR statistics + print("LDRtrue , mean , median, max-mean, min-mean, std, excess_kurtosis, skewness") + iLDR = -1 + LDRrangeA = np.array(LDRrange) + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + print("{0:8.5f},{1:8.5f},{2:8.5f}, {3:8.5f},{4:8.5f},{5:8.5f}, {6:8.5f},{7:8.5f}".format(LDRrangeA[iLDR], LDRmean[iLDR], LDRmedian[iLDR], LDRmax[iLDR]-LDRrangeA[iLDR], LDRmin[iLDR]-LDRrangeA[iLDR], LDRstd[iLDR],LDRkurt[iLDR],LDRskew[iLDR])) + + + with open('output_files\\' + OutputFile, 'a') as f: + # with open('output_files\\' + LID + '-' + InputFile[0:-3] + '-LDR_min_max.dat', 'a') as f: + with redirect_stdout(f): + Contribution_aY("LDRCorr", aLDRcorr) + Contribution_aY("LDRsim", aLDRsim) + Contribution_aY("EtaX, D90", aEtax) + Contribution_aY("Etapx, +45°", aEtapx) + Contribution_aY("Etamx -45°", aEtamx) + + + # Plot other histograms + if (bPlotEtax): + + if (nQin > 0): PlotLDRsim("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotLDRsim("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotLDRsim("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotLDRsim("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotLDRsim("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotLDRsim("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotLDRsim("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotLDRsim("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotLDRsim("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotLDRsim("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotLDRsim("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotLDRsim("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotLDRsim("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotLDRsim("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotLDRsim("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotLDRsim("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotLDRsim("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotLDRsim("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotLDRsim("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotLDRsim("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotLDRsim("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotLDRsim("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotLDRsim("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotLDRsim("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotLDRsim("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotLDRsim("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) + if (nNCal > 0): PlotLDRsim("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) + if (nNCal > 0): PlotLDRsim("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) + if (nNCal > 0): PlotLDRsim("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) + if (nNI > 0): PlotLDRsim("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) + if (nNI > 0): PlotLDRsim("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) + plt.show() + plt.close + print("---------------------------------------...producing more plots...------------------------------------------------------------------") + + if (nQin > 0): PlotEtax("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotEtax("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotEtax("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotEtax("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotEtax("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotEtax("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotEtax("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotEtax("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotEtax("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotEtax("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotEtax("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotEtax("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotEtax("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotEtax("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotEtax("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotEtax("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotEtax("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotEtax("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotEtax("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotEtax("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotEtax("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotEtax("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotEtax("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotEtax("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotEtax("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotEtax("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) + if (nNCal > 0): PlotEtax("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) + if (nNCal > 0): PlotEtax("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) + if (nNCal > 0): PlotEtax("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) + if (nNI > 0): PlotEtax("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) + if (nNI > 0): PlotEtax("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) + plt.show() + plt.close + print("---------------------------------------...producing more plots...------------------------------------------------------------------") + + if (nQin > 0): PlotEtapx("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotEtapx("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotEtapx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotEtapx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotEtapx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotEtapx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotEtapx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotEtapx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotEtapx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotEtapx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotEtapx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotEtapx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotEtapx("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotEtapx("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotEtapx("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotEtapx("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotEtapx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotEtapx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotEtapx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotEtapx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotEtapx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotEtapx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotEtapx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotEtapx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotEtapx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotEtapx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) + if (nNCal > 0): PlotEtapx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) + if (nNCal > 0): PlotEtapx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) + if (nNCal > 0): PlotEtapx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) + if (nNI > 0): PlotEtapx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) + if (nNI > 0): PlotEtapx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) + plt.show() + plt.close + print("---------------------------------------...producing more plots...------------------------------------------------------------------") + + if (nQin > 0): PlotEtamx("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotEtamx("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotEtamx("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotEtamx("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotEtamx("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotEtamx("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotEtamx("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotEtamx("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotEtamx("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotEtamx("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotEtamx("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotEtamx("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotEtamx("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotEtamx("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotEtamx("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotEtamx("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotEtamx("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotEtamx("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotEtamx("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotEtamx("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotEtamx("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotEtamx("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotEtamx("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotEtamx("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotEtamx("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotEtamx("CalNoiseTp", aNCalTp, 0, 1, iNCalTp, nNCal) + if (nNCal > 0): PlotEtamx("CalNoiseTm", aNCalTm, 0, 1, iNCalTm, nNCal) + if (nNCal > 0): PlotEtamx("CalNoiseRp", aNCalRp, 0, 1, iNCalRp, nNCal) + if (nNCal > 0): PlotEtamx("CalNoiseRm", aNCalRm, 0, 1, iNCalRm, nNCal) + if (nNI > 0): PlotEtamx("SigNoiseIt", aNIt, 0, 1, iNIt, nNI) + if (nNI > 0): PlotEtamx("SigNoiseIr", aNIr, 0, 1, iNIr, nNI) + plt.show() + plt.close + + # Print Etax statistics + Etaxmin = np.amin(aEtax[1, :]) + Etaxmax = np.amax(aEtax[1, :]) + Etaxstd = np.std(aEtax[1, :]) + Etaxmean = np.mean(aEtax[1, :]) + Etaxmedian = np.median(aEtax[1, :]) + print("Etax , max-mean, min-mean, median, mean ± std, eta") + print("{0:8.5f} ±({1:8.5f},{2:8.5f}),{3:8.5f},{4:8.5f}±{5:8.5f},{6:8.5f}".format(Etax0, Etaxmax-Etax0, Etaxmin-Etax0, Etaxmedian, Etaxmean, Etaxstd, Etax0 / K0)) + print() + + # Calculate and print statistics for calibration factors + iLDR = -1 + LDRrangeA = np.array(LDRrange) + print("LDR...., LDRsim, (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + LDRsimmin[iLDR] = np.amin(aLDRsim[iLDR, :]) + LDRsimmax[iLDR] = np.amax(aLDRsim[iLDR, :]) + # LDRsimstd = np.std(aLDRsim[iLDR, :]) + LDRsimmean[iLDR] = np.mean(aLDRsim[iLDR, :]) + # LDRsimmedian = np.median(aLDRsim[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], LDRsimmean[iLDR], (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2, (LDRsimmax[iLDR]-LDRsimmin[iLDR])/2/LDRsimmean[iLDR])) + iLDR = -1 + print("LDR...., Etax , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etaxmin = np.amin(aEtax[iLDR, :]) + Etaxmax = np.amax(aEtax[iLDR, :]) + # Etaxstd = np.std(aEtax[iLDR, :]) + Etaxmean = np.mean(aEtax[iLDR, :]) + # Etaxmedian = np.median(aEtax[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etaxmean, (Etaxmax-Etaxmin)/2, (Etaxmax-Etaxmin)/2/Etaxmean)) + iLDR = -1 + print("LDR...., Etapx , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etapxmin = np.amin(aEtapx[iLDR, :]) + Etapxmax = np.amax(aEtapx[iLDR, :]) + # Etapxstd = np.std(aEtapx[iLDR, :]) + Etapxmean = np.mean(aEtapx[iLDR, :]) + # Etapxmedian = np.median(aEtapx[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etapxmean, (Etapxmax-Etapxmin)/2, (Etapxmax-Etapxmin)/2/Etapxmean)) + iLDR = -1 + print("LDR...., Etamx , (max-min)/2, relerr") + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + Etamxmin = np.amin(aEtamx[iLDR, :]) + Etamxmax = np.amax(aEtamx[iLDR, :]) + # Etamxstd = np.std(aEtamx[iLDR, :]) + Etamxmean = np.mean(aEtamx[iLDR, :]) + # Etamxmedian = np.median(aEtamx[iLDR, :]) + print("{0:8.5f}, {1:8.5f}, {2:8.5f}, {3:8.5f}".format(LDRrangeA[iLDR], Etamxmean, (Etamxmax-Etamxmin)/2, (Etamxmax-Etamxmin)/2/Etamxmean)) + + f.close() + + +''' + # --- Plot F11 histograms + print() + print(" ############################################################################## ") + print(Text1) + print() + + iLDR = 5 + for LDRTrue in LDRrange: + iLDR = iLDR - 1 + #aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11corr[0,:] - 1.0 + aF11corr[iLDR,:] = aF11corr[iLDR,:] / aF11sim0[iLDR] - 1.0 + # Plot F11 + def PlotSubHistF11(aVar, aX, X0, daX, iaX, naX): + fig, ax = plt.subplots(nrows=1, ncols=5, sharex=True, sharey=True, figsize=(25, 2)) + iLDR = -1 + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + + #F11min[iLDR] = np.min(aF11corr[iLDR,:]) + #F11max[iLDR] = np.max(aF11corr[iLDR,:]) + #Rmin = F11min[iLDR] * 0.995 # np.min(aLDRcorr[iLDR,:]) * 0.995 + #Rmax = F11max[iLDR] * 1.005 # np.max(aLDRcorr[iLDR,:]) * 1.005 + + #Rmin = 0.8 + #Rmax = 1.2 + + #plt.subplot(5,2,iLDR+1) + plt.subplot(1,5,iLDR+1) + (n, bins, patches) = plt.hist(aF11corr[iLDR,:], + bins=100, log=False, + alpha=0.5, density=False, color = '0.5', histtype='stepfilled') + + for iaX in range(-naX,naX+1): + plt.hist(aF11corr[iLDR,aX == iaX], + bins=100, log=False, alpha=0.3, density=False, histtype='stepfilled', label = str(round(X0 + iaX*daX/naX,5))) + + if (iLDR == 2): plt.legend() + + plt.tick_params(axis='both', labelsize=9) + #plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) + + #plt.title(LID + ' ' + aVar, fontsize=18) + #plt.ylabel('frequency', fontsize=10) + #plt.xlabel('LDRCorr', fontsize=10) + #fig.tight_layout() + fig.suptitle(LID + ' ' + str(Type[TypeC]) + ' ' + str(Loc[LocC]) + ' - ' + aVar, fontsize=14, y=1.05) + #plt.show() + #fig.savefig(LID + '_' + aVar + '.png', dpi=150, bbox_inches='tight', pad_inches=0) + #plt.close + return + + if (nQin > 0): PlotSubHistF11("Qin", aQin, Qin0, dQin, iQin, nQin) + if (nVin > 0): PlotSubHistF11("Vin", aVin, Vin0, dVin, iVin, nVin) + if (nRotL > 0): PlotSubHistF11("RotL", aRotL, RotL0, dRotL, iRotL, nRotL) + if (nRetE > 0): PlotSubHistF11("RetE", aRetE, RetE0, dRetE, iRetE, nRetE) + if (nRotE > 0): PlotSubHistF11("RotE", aRotE, RotE0, dRotE, iRotE, nRotE) + if (nDiE > 0): PlotSubHistF11("DiE", aDiE, DiE0, dDiE, iDiE, nDiE) + if (nRetO > 0): PlotSubHistF11("RetO", aRetO, RetO0, dRetO, iRetO, nRetO) + if (nRotO > 0): PlotSubHistF11("RotO", aRotO, RotO0, dRotO, iRotO, nRotO) + if (nDiO > 0): PlotSubHistF11("DiO", aDiO, DiO0, dDiO, iDiO, nDiO) + if (nDiC > 0): PlotSubHistF11("DiC", aDiC, DiC0, dDiC, iDiC, nDiC) + if (nRotC > 0): PlotSubHistF11("RotC", aRotC, RotC0, dRotC, iRotC, nRotC) + if (nRetC > 0): PlotSubHistF11("RetC", aRetC, RetC0, dRetC, iRetC, nRetC) + if (nTP > 0): PlotSubHistF11("TP", aTP, TP0, dTP, iTP, nTP) + if (nTS > 0): PlotSubHistF11("TS", aTS, TS0, dTS, iTS, nTS) + if (nRP > 0): PlotSubHistF11("RP", aRP, RP0, dRP, iRP, nRP) + if (nRS > 0): PlotSubHistF11("RS", aRS, RS0, dRS, iRS, nRS) + if (nRetT > 0): PlotSubHistF11("RetT", aRetT, RetT0, dRetT, iRetT, nRetT) + if (nRetR > 0): PlotSubHistF11("RetR", aRetR, RetR0, dRetR, iRetR, nRetR) + if (nERaT > 0): PlotSubHistF11("ERaT", aERaT, ERaT0, dERaT, iERaT, nERaT) + if (nERaR > 0): PlotSubHistF11("ERaR", aERaR, ERaR0, dERaR, iERaR, nERaR) + if (nRotaT > 0): PlotSubHistF11("RotaT", aRotaT, RotaT0, dRotaT, iRotaT, nRotaT) + if (nRotaR > 0): PlotSubHistF11("RotaR", aRotaR, RotaR0, dRotaR, iRotaR, nRotaR) + if (nLDRCal > 0): PlotSubHistF11("LDRCal", aLDRCal, LDRCal0, dLDRCal, iLDRCal, nLDRCal) + if (nTCalT > 0): PlotSubHistF11("TCalT", aTCalT, TCalT0, dTCalT, iTCalT, nTCalT) + if (nTCalR > 0): PlotSubHistF11("TCalR", aTCalR, TCalR0, dTCalR, iTCalR, nTCalR) + if (nNCal > 0): PlotSubHistF11("CalNoise", aNCal, 0, 1/nNCal, iNCal, nNCal) + if (nNI > 0): PlotSubHistF11("SigNoise", aNI, 0, 1/nNI, iNI, nNI) + + + plt.show() + plt.close + + ''' +''' + # only histogram + #print("******************* " + aVar + " *******************") + fig, ax = plt.subplots(nrows=5, ncols=2, sharex=True, sharey=True, figsize=(10, 10)) + iLDR = -1 + for LDRTrue in LDRrange: + iLDR = iLDR + 1 + LDRmin[iLDR] = np.min(aLDRcorr[iLDR,:]) + LDRmax[iLDR] = np.max(aLDRcorr[iLDR,:]) + Rmin = np.min(aLDRcorr[iLDR,:]) * 0.999 + Rmax = np.max(aLDRcorr[iLDR,:]) * 1.001 + plt.subplot(5,2,iLDR+1) + (n, bins, patches) = plt.hist(aLDRcorr[iLDR,:], + range=[Rmin, Rmax], + bins=200, log=False, alpha=0.2, density=False, color = '0.5', histtype='stepfilled') + plt.tick_params(axis='both', labelsize=9) + plt.plot([LDRTrue, LDRTrue], [0, np.max(n)], 'r-', lw=2) + plt.show() + plt.close + # --- End of Plot F11 histograms + ''' + + +''' + # --- Plot K over LDRCal + fig3 = plt.figure() + plt.plot(LDRCal0+aLDRCal*dLDRCal/nLDRCal,aGHK[4,:], linewidth=2.0, color='b') + + plt.xlabel('LDRCal', fontsize=18) + plt.ylabel('K', fontsize=14) + plt.title(LID, fontsize=18) + plt.show() + plt.close + ''' + +# Additional plot routines ======> +''' +#****************************************************************************** +# 1. Plot LDRCorrected - LDR(measured Icross/Iparallel) +LDRa = np.arange(1.,100.)*0.005 +LDRCorra = np.arange(1.,100.) +if Y == - 1.: LDRa = 1./LDRa +LDRCorra = (1./Eta*LDRa*(GT+HT)-(GR+HR))/((GR-HR)-1./Eta*LDRa*(GT-HT)) +if Y == - 1.: LDRa = 1./LDRa +# +#fig = plt.figure() +plt.plot(LDRa,LDRCorra-LDRa) +plt.plot([0.,0.5],[0.,0.5]) +plt.suptitle('LDRCorrected - LDR(measured Icross/Iparallel)', fontsize=16) +plt.xlabel('LDR', fontsize=18) +plt.ylabel('LDRCorr - LDR', fontsize=16) +#plt.savefig('test.png') +# +''' +''' +#****************************************************************************** +# 2. Plot LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue +LDRa = np.arange(1.,100.)*0.005 +LDRsima = np.arange(1.,100.) + +atruea = (1.-LDRa)/(1+LDRa) +Ita = TiT*TiO*IinL*(GT+atruea*HT) +Ira = TiR*TiO*IinL*(GR+atruea*HR) +LDRsima = Ira/Ita # simulated uncorrected LDR with Y from input file +if Y == -1.: LDRsima = 1./LDRsima +# +#fig = plt.figure() +plt.plot(LDRa,LDRsima) +plt.plot([0.,0.5],[0.,0.5]) +plt.suptitle('LDRsim (simulated measurements without corrections = Icross/Iparallel) over LDRtrue', fontsize=10) +plt.xlabel('LDRtrue', fontsize=18) +plt.ylabel('LDRsim', fontsize=16) +#plt.savefig('test.png') +# +''' \ No newline at end of file