eldamwl_plot.py

Mon, 29 Jan 2024 11:16:12 +0000

author
pilar <pilar.gumaclaramunt@cnr.it>
date
Mon, 29 Jan 2024 11:16:12 +0000
changeset 1
f0db47eb70b1
parent 0
fce4cae19357
child 2
763a7ac22031
permissions
-rwxr-xr-x

Removed a few example files

pilar@0 1 from typing import List, Any
pilar@0 2
pilar@0 3 import xarray as xr
pilar@0 4 from config import *
pilar@0 5 import plotly.graph_objects as go
pilar@0 6 from plotly.subplots import make_subplots
pilar@0 7 import netCDF4 as nc
pilar@0 8 from datetime import datetime
pilar@0 9 import numpy as np
pilar@0 10 import sys
pilar@0 11 from os.path import exists
pilar@0 12
pilar@0 13
pilar@0 14 def read_variable_in_group(nc_file_path, group_name, variable_name):
pilar@0 15 try:
pilar@0 16 with nc.Dataset(nc_file_path, 'r') as dataset:
pilar@0 17 # Find the group
pilar@0 18 group = dataset.groups[group_name]
pilar@0 19
pilar@0 20 # Access the variable
pilar@0 21 try:
pilar@0 22 variable = group.variables[variable_name]
pilar@0 23 dimensions = variable.dimensions
pilar@0 24 # print("Dimensions:", dimensions)
pilar@0 25 # variable_metadata = { variable.name, variable.long_name, variable.units, variable.ndim}
pilar@0 26
pilar@0 27 # variable_metadata.add = variable.long_name
pilar@0 28 variable_metadata = \
pilar@0 29 {'name': variable.name.capitalize(),
pilar@0 30 'long_name': variable.long_name.capitalize(),
pilar@0 31 'units': variable.units,
pilar@0 32 'ndim': variable.ndim}
pilar@0 33
pilar@0 34 # Create an index array for slicing the variable
pilar@0 35 index_array = [slice(None)] * variable.ndim
pilar@0 36 # Access the variable data using the index array
pilar@0 37 variable_data = variable[index_array]
pilar@0 38
pilar@0 39 # Fetch the dimension values
pilar@0 40 dimension_values = {}
pilar@0 41 for dim_name in dimensions:
pilar@0 42 dim_values = group.variables[dim_name][:]
pilar@0 43 dimension_values[dim_name] = dim_values
pilar@0 44 # Adjust the index array for slicing
pilar@0 45 index_array[variable.dimensions.index(dim_name)] = 0
pilar@0 46
pilar@0 47 # Now you have the variable data and its associated dimensions in a dictionary
pilar@0 48 result = {'data': variable_data, 'dimensions': dimension_values, 'metadata': variable_metadata}
pilar@0 49
pilar@0 50 # Print or use the result as needed
pilar@0 51 # print(result)
pilar@0 52 return result
pilar@0 53
pilar@0 54 except KeyError:
pilar@0 55 print("The specified variable does not exist in the group.")
pilar@0 56
pilar@0 57 except FileNotFoundError:
pilar@0 58 print(f"The file '{nc_file_path}' does not exist.")
pilar@0 59 except Exception as e:
pilar@0 60 print(f"The group {e} does not exist.")
pilar@0 61
pilar@0 62
pilar@0 63 def read_variable_in_group2(nc_file_path, group_name, variable_name):
pilar@0 64 try:
pilar@0 65 with nc.Dataset(nc_file_path, 'r') as dataset:
pilar@0 66 # Find the group
pilar@0 67 group = dataset.groups[group_name]
pilar@0 68
pilar@0 69 # Access the variable
pilar@0 70 try:
pilar@0 71 variable = group.variables[variable_name]
pilar@0 72 dimensions = variable.dimensions
pilar@0 73 # print("Dimensions:", dimensions)
pilar@0 74 # variable_metadata = { variable.name, variable.long_name, variable.units, variable.ndim}
pilar@0 75
pilar@0 76 # variable_metadata.add = variable.long_name
pilar@0 77 variable_metadata = \
pilar@0 78 {'name': variable.name.capitalize(),
pilar@0 79 'long_name': variable.long_name.capitalize(),
pilar@0 80 'units': variable.units,
pilar@0 81 'ndim': variable.ndim}
pilar@0 82
pilar@0 83 # Create an index array for slicing the variable
pilar@0 84 index_array = [slice(None)] * variable.ndim
pilar@0 85 # Access the variable data using the index array
pilar@0 86 variable_data = variable[index_array]
pilar@0 87
pilar@0 88 # Fetch the dimension values
pilar@0 89 dimension_values = {}
pilar@0 90 for dim_name in dimensions:
pilar@0 91 dim_values = group.variables[dim_name][:]
pilar@0 92 dimension_values[dim_name] = dim_values
pilar@0 93 # Adjust the index array for slicing
pilar@0 94 index_array[variable.dimensions.index(dim_name)] = 0
pilar@0 95
pilar@0 96 # Now you have the variable data and its associated dimensions in a dictionary
pilar@0 97 # result = {'data': variable_data, 'dimensions': dimension_values, 'metadata': variable_metadata}
pilar@0 98
pilar@0 99 # Print or use the result as needed
pilar@0 100 # print(result)
pilar@0 101 return variable_data, dimension_values, variable_metadata
pilar@0 102
pilar@0 103 except KeyError:
pilar@0 104 print(f"The variable {variable_name} does not exist in the {group_name} group.")
pilar@0 105 except FileNotFoundError:
pilar@0 106 print(f"The file {nc_file_path} does not exist.")
pilar@0 107 except Exception as e:
pilar@0 108 print(f"The group {e} does not exist.")
pilar@0 109
pilar@0 110
pilar@0 111 def plot_vertical_profiles_plotly(variables, data, dimensions, y_array, positive_error_array, negative_error_array,
pilar@0 112 xaxis_label, yaxis_label, title, timeinrows):
pilar@0 113 """
pilar@0 114 ToDo Complete
pilar@0 115 Plot vertical profiles using plotly
pilar@0 116
pilar@0 117 Parameters:
pilar@0 118 -
pilar@0 119
pilar@0 120 Returns:
pilar@0 121 - fig: html
pilar@0 122 """
pilar@0 123
pilar@0 124 # Set number of columns, number of rows, and subtitles if needed
pilar@0 125 ncols = len(variables)
pilar@0 126 subtitles = None
pilar@0 127 if timeinrows is True:
pilar@0 128 nrows = len(dimensions['time'])
pilar@0 129 if nrows > 1:
pilar@0 130 for t in range(nrows):
pilar@0 131 for v in range(ncols):
pilar@0 132 if subtitles is None:
pilar@0 133 subtitles = [str(datetime.fromtimestamp(dimensions['time'][t]))]
pilar@0 134 else:
pilar@0 135 subtitles += [str(datetime.fromtimestamp(dimensions['time'][t]))]
pilar@0 136 else:
pilar@0 137 nrows = 1
pilar@0 138 subtitles = ''
pilar@0 139
pilar@0 140 # Create figure
pilar@0 141 fig = make_subplots(rows=nrows, cols=ncols,
pilar@0 142 subplot_titles=subtitles,
pilar@0 143 shared_yaxes=True)
pilar@0 144
pilar@0 145 # Define colours
pilar@0 146 clrs = [['rgb(0,35,255)', 'rgb(0,20,150)', 'rgb(0,170,250)'], # UV
pilar@0 147 ['rgb(90,210,50)', 'rgb(40,90,25)', 'rgb(120,250,80)'], # VIS
pilar@0 148 ['rgb(250,30,30)', 'rgb(200,25,30)', 'rgb(250,125,0)']] # IR
pilar@0 149 clrs = np.array(clrs)
pilar@0 150
pilar@0 151 # Plot
pilar@0 152 for v in range(len(variables)):
pilar@0 153 for t in range(len(dimensions['time'])):
pilar@0 154 for w in range(len(dimensions['wavelength'])):
pilar@0 155 tn = str(datetime.fromtimestamp(dimensions['time'][t]))
pilar@0 156 wn = str(dimensions['wavelength'][w])
pilar@0 157 if timeinrows == True:
pilar@0 158 lgnd = wn + ' nm'
pilar@0 159 rown = t + 1
pilar@0 160 colorint = 1
pilar@0 161 colorind = 0
pilar@0 162 subtitle = str(datetime.fromtimestamp(dimensions['time'][t]))
pilar@0 163 else:
pilar@0 164 lgnd = wn + ' nm - ' + tn
pilar@0 165 rown = 1
pilar@0 166 colorind = t
pilar@0 167 colorint = 1 - (0.4 * t)
pilar@0 168
pilar@0 169 # colour definition
pilar@0 170 if abs(dimensions['wavelength'][w] - 1064) < 1:
pilar@0 171 clr = clrs[2, colorind]
pilar@0 172 # clr = 'rgb(235,70,20)' # 'rgba(215,27,96,0.4)'
pilar@0 173 elif abs(dimensions['wavelength'][w] - 532) < 1:
pilar@0 174 clr = clrs[1, colorind]
pilar@0 175 elif abs(dimensions['wavelength'][w] - 355) < 1:
pilar@0 176 clr = clrs[0, colorind]
pilar@0 177 else:
pilar@0 178 clr = 'rgb(0,0,0)'
pilar@0 179
pilar@0 180 data_values = data[variables[v]][w, t, :]
pilar@0 181 error_values = positive_error_array[variables[v]][w, t, :]
pilar@0 182 vertical_levels = y_array["data"][t, :]
pilar@0 183
pilar@0 184 # Add trace
pilar@0 185 fig.add_trace(go.Scatter(
pilar@0 186 x=data_values,
pilar@0 187 y=vertical_levels,
pilar@0 188 error_x=dict(array=error_values, width=0, thickness=0.1),
pilar@0 189 # ToDo Include distinction between positive and negative errors
pilar@0 190 mode='lines',
pilar@0 191 line=dict(width=2, color=clr),
pilar@0 192 name=lgnd),
pilar@0 193 row=rown, col=v + 1,
pilar@0 194 )
pilar@0 195
pilar@0 196 # ToDo Check formatting options (showlegend, mapbox)
pilar@0 197 fig.update_xaxes({"title": xaxis_label[v]}, row=rown, col=v + 1)
pilar@0 198 fig.update_xaxes({"mirror": True, "ticks": 'outside', "showline": True, "color": "black"}, row=rown,
pilar@0 199 col=v + 1)
pilar@0 200
pilar@0 201 fig.update_xaxes(ticks="outside")
pilar@0 202 fig.update_yaxes(ticks="outside", row=rown, col=v + 1) # ToDo check tickformat (i.e. tickformat=":.2e")
pilar@0 203 if v == 0:
pilar@0 204 fig.update_yaxes({"title": yaxis_label}, row=rown, col=v + 1)
pilar@0 205
pilar@0 206 # Set axis labels and title
pilar@0 207 fig.update_layout(
pilar@0 208 yaxis_title=yaxis_label,
pilar@0 209 title=title,
pilar@0 210 template="seaborn", # You can change the template as per your preference
pilar@0 211 # ['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', 'plotly_dark', 'presentation',
pilar@0 212 # 'xgridoff', 'ygridoff', 'gridon', 'none']
pilar@0 213 height=max(600, 450 * rown), width=min(max(400 * len(variables), 750), 1400),
pilar@0 214 )
pilar@0 215
pilar@0 216 return fig
pilar@0 217
pilar@0 218
pilar@0 219 # Files for testing
pilar@0 220 # netcdf_file = 'hpb_012_0000598_201810172100_201810172300_20181017oh00_ELDAmwl_v0.0.1.nc' # Backscatter and extinction, no error
pilar@0 221 # netcdf_file = 'hpb_012_0000627_202308240200_202308240400_20230824hpb0200_ELDAmwl_v0.0.1.nc' # Extinction with error
pilar@0 222
pilar@0 223
pilar@0 224 try:
pilar@0 225 netcdf_file = sys.argv[1]
pilar@0 226 except:
pilar@0 227 print('Syntax is incorrect, you need to pass the filename of the file to be plotted.\n'
pilar@0 228 'Example: ./eldamwl_plot.py hpb_012_0000598_201810172100_201810172300_20181017oh00_ELDAmwl_v0.0.1.nc')
pilar@0 229 exit()
pilar@0 230
pilar@0 231 netcdf_file_path = netcdf_path + netcdf_file
pilar@0 232
pilar@0 233 file_exists = exists(netcdf_file_path)
pilar@0 234 if not file_exists:
pilar@0 235 print('The file that you provided does not exist.')
pilar@0 236 exit()
pilar@0 237
pilar@0 238 # Groups of data in the NetCDF file (low and high resolution)
pilar@0 239 groups = ['lowres_products', 'highres_products']
pilar@0 240 groups_names = ['Low resolution', 'High resolution']
pilar@0 241
pilar@0 242 # Variables that we want to plot
pilar@0 243 variable = ['backscatter', 'extinction', 'lidarratio', 'volumedepolarization', 'particledepolarization'] # ToDo Test particledepolarization when available
pilar@0 244 # Errors associated to the variables
pilar@0 245 variable_error = ['error_backscatter', 'error_extinction', 'error_lidarratio',
pilar@0 246 'positive_systematic_error_volumedepolarization', 'error_particledepolarization']
pilar@0 247 variable_negative_error_volumedepol = 'negative_systematic_error_volumedepolarization'
pilar@0 248 # Other variables:
pilar@0 249 # cloud_mask (time, level)
pilar@0 250
pilar@0 251
pilar@0 252 for g in range(len(groups)):
pilar@0 253 # Read the altitude variable
pilar@0 254 altitude = read_variable_in_group(netcdf_file_path, groups[g], 'altitude')
pilar@0 255
pilar@0 256 if altitude['metadata']['units'] == 'm':
pilar@0 257 altitude['data'] = altitude['data'] / 1000.0
pilar@0 258 altitude['metadata']['units'] = 'km'
pilar@0 259
pilar@0 260 # Initialize variables
pilar@0 261 data = None
pilar@0 262 variables_with_data = None
pilar@0 263 variables_axis = None
pilar@0 264
pilar@0 265 # Read the data
pilar@0 266 for v in range(len(variable)):
pilar@0 267 # Initialize var
pilar@0 268 var = None
pilar@0 269
pilar@0 270 try:
pilar@0 271 var, dim, met = read_variable_in_group2(netcdf_file_path, groups[g], variable[v])
pilar@0 272 except TypeError:
pilar@0 273 print(f"The variable {variable[v]} is not present. Cannot unpack non-iterable NoneType object")
pilar@0 274
pilar@0 275 if var is not None: # If the variable that we're trying to read exists
pilar@0 276 if var.max() != var.min(): # If there is data in the array
pilar@0 277 if variables_with_data is None:
pilar@0 278 variables_with_data = [variable[v]]
pilar@0 279 variables_axis = [met['long_name'] + ' [ ' + met['units'] + ' ]']
pilar@0 280 else:
pilar@0 281 variables_with_data += [variable[v]]
pilar@0 282 variables_axis += [met['long_name'] + ' [ ' + met['units'] + ' ]']
pilar@0 283
pilar@0 284 var_error, dim_error, met_error = read_variable_in_group2(netcdf_file_path, groups[g],
pilar@0 285 variable_error[v])
pilar@0 286 if variable[v] == 'volumedepolarization':
pilar@0 287 var_error_negative, dim, met = read_variable_in_group2(netcdf_file_path, groups[g],
pilar@0 288 variable_negative_error_volumedepol)
pilar@0 289 else:
pilar@0 290 var_error_negative = var_error
pilar@0 291
pilar@0 292 # Add read data to the data variable to have it all grouped
pilar@0 293 if data is None:
pilar@0 294 # Start populating data and data_error
pilar@0 295 data = {variable[v]: var}
pilar@0 296 data_error_positive = {variable[v]: var_error}
pilar@0 297 data_error_negative = {variable[v]: var_error_negative}
pilar@0 298 else:
pilar@0 299 # Add more data to data and data_error
pilar@0 300 data[variable[v]] = var
pilar@0 301 data_error_positive[variable[v]] = var_error
pilar@0 302 data_error_negative[variable[v]] = var_error_negative
pilar@0 303 else:
pilar@0 304 print(f'There is no data for {variable[v]} in the {groups_names[g]} group.')
pilar@0 305
pilar@0 306 dimensions = dim
pilar@0 307
pilar@0 308 # Ask user if he/she wants to plot different temporal profiles in different rows
pilar@0 309 if g == 0:
pilar@0 310 # Initialize
pilar@0 311 timeinplots = False
pilar@0 312 timeinrows = False
pilar@0 313 # Ask user how he/she wants the plot
pilar@0 314 if len(dimensions['time']) > 1:
pilar@0 315 answer = input(
pilar@0 316 f"There are {len(dimensions['time'])} temporal profiles, do you want to plot them on different plots [y/n]? ")
pilar@0 317 if answer[0:1].lower() == 'y':
pilar@0 318 timeinplots = True
pilar@0 319 if timeinplots == False:
pilar@0 320 answer = input(
pilar@0 321 f"There are {len(dimensions['time'])} temporal profiles, do you want to plot them on different rows [y/n]? ")
pilar@0 322 if answer[0:1].lower() == 'y':
pilar@0 323 timeinrows = True
pilar@0 324
pilar@0 325 if variables_with_data is not None:
pilar@0 326 timeiter = dimensions['time']
pilar@0 327 if timeinplots == True:
pilar@0 328 dimensions_t = dimensions
pilar@0 329 for t in range(len(dimensions['time'])):
pilar@0 330 dimensions_t['time'] = [timeiter[t]]
pilar@0 331 for vr in range(len(variables_with_data)):
pilar@0 332 if vr == 0:
pilar@0 333 data_t = {variables_with_data[vr]: data[variables_with_data[vr]][:, t:t + 1, :]}
pilar@0 334 else:
pilar@0 335 data_t[variables_with_data[vr]] = data[variables_with_data[vr]][:, t:t + 1, :]
pilar@0 336
pilar@0 337 fig = plot_vertical_profiles_plotly(
pilar@0 338 variables=variables_with_data,
pilar@0 339 data=data_t,
pilar@0 340 dimensions=dimensions_t,
pilar@0 341 y_array=altitude,
pilar@0 342 positive_error_array=data_error_positive,
pilar@0 343 negative_error_array=data_error_negative,
pilar@0 344 xaxis_label=variables_axis,
pilar@0 345 yaxis_label=altitude['metadata']['long_name'] + ' [' + altitude['metadata']['units'] + ']',
pilar@0 346 title=netcdf_file[0:3].upper() + " - " + str(
pilar@0 347 datetime.fromtimestamp(dimensions_t['time'][0]).strftime(
pilar@0 348 '%d/%m/%Y %H:%M:%S')) + " - ELDA MWL " +
pilar@0 349 groups_names[g],
pilar@0 350 timeinrows=True
pilar@0 351 )
pilar@0 352
pilar@0 353 # Show the plot (in Jupyter Notebook or Jupyter Lab)
pilar@0 354 fig.show()
pilar@0 355
pilar@0 356 # Save the plot
pilar@0 357 filename = "ELDAmwl_" + netcdf_file[0:3].upper() + "_" + datetime.fromtimestamp(
pilar@0 358 dimensions['time'][0]).strftime('%Y%m%d-%H%M%S') + "_" + groups[g] + ".html"
pilar@0 359 fig.write_html(html_path + filename)
pilar@0 360
pilar@0 361 else:
pilar@0 362 # Plotting in one plot (even if there are different time profiles)
pilar@0 363 fig = plot_vertical_profiles_plotly(
pilar@0 364 variables_with_data,
pilar@0 365 data,
pilar@0 366 dimensions,
pilar@0 367 altitude,
pilar@0 368 data_error_positive,
pilar@0 369 data_error_negative,
pilar@0 370 xaxis_label=variables_axis,
pilar@0 371 yaxis_label=altitude['metadata']['long_name'] + ' [' + altitude['metadata']['units'] + ']',
pilar@0 372 title=netcdf_file[0:3].upper() + " - " + str(
pilar@0 373 datetime.fromtimestamp(dimensions['time'][0]).strftime('%d/%m/%Y')) + " - ELDA MWL " + groups_names[
pilar@0 374 g],
pilar@0 375 timeinrows=timeinrows
pilar@0 376 )
pilar@0 377
pilar@0 378 # Show the plot (in Jupyter Notebook or Jupyter Lab)
pilar@0 379 fig.show()
pilar@0 380
pilar@0 381 # Save the plot
pilar@0 382 if timeinrows == True:
pilar@0 383 filename = "ELDAmwl_" + netcdf_file[0:3].upper() + "_" + datetime.fromtimestamp(
pilar@0 384 dimensions['time'][0]).strftime('%Y%m%d%H%M%S') + '-' + datetime.fromtimestamp(
pilar@0 385 dimensions['time'][-1]).strftime('%Y%m%d%H%M%S') + "_" + groups[g] + "_timeinrows.html"
pilar@0 386 else:
pilar@0 387 filename = "ELDAmwl_" + netcdf_file[0:3].upper() + "_" + datetime.fromtimestamp(
pilar@0 388 dimensions['time'][0]).strftime('%Y%m%d%H%M%S') + '-' + datetime.fromtimestamp(
pilar@0 389 dimensions['time'][-1]).strftime('%Y%m%d%H%M%S') + "_" + groups[g] + ".html"
pilar@0 390
pilar@0 391 fig.write_html(html_path + filename)
pilar@0 392
pilar@0 393 else:
pilar@0 394 print(f'There is no data to be plotted in the {groups_names[g]} group.')

mercurial