docs/netcdf_file.rst

Tue, 25 Feb 2014 16:36:09 +0200

author
Iannis <ioannis@inoe.ro>
date
Tue, 25 Feb 2014 16:36:09 +0200
changeset 31
b747e9fcd2b1
parent 11
79fea4145278
child 32
1de1a511e340
permissions
-rw-r--r--

Added link to netcdf structure pdf file.

binietoglou@0 1 The SCC netCDF file format
binietoglou@0 2 ==========================
binietoglou@0 3
ioannis@31 4 A more detailed version of this document can be found :download:`here <files/NetCDF_input_filev2.0.pdf>`.
ioannis@31 5
binietoglou@0 6 Rationale
binietoglou@0 7 ---------
binietoglou@0 8
binietoglou@0 9 The Single Calculus Chain (SCC) is composed by two different modules:
binietoglou@0 10
binietoglou@0 11 - pre-processing module ( scc\_preprocessing)
binietoglou@0 12
binietoglou@0 13 - optical processing module ( ELDA)
binietoglou@0 14
binietoglou@0 15 To perfom aerosol optical retrievals the SCC needs not only the raw
binietoglou@0 16 lidar data but also a certain number of parameters to use in both
binietoglou@0 17 pre-processing and optical processing stages. The SCC gets these
binietoglou@0 18 parameters looking at two different locations:
binietoglou@0 19
binietoglou@0 20 - Single Calculus Chain relational database (SCC\_DB)
binietoglou@0 21
binietoglou@0 22 - Input files
binietoglou@0 23
binietoglou@0 24 There are some paramenters that can be found only in the input files
binietoglou@0 25 (those ones changing from measurement to measurement), others that can
binietoglou@0 26 be found only in the SCC\_DB and other ones that can be found in both
binietoglou@0 27 these locations. In the last case, if a particular parameter is needed,
binietoglou@0 28 the SCC will search first in the input files and then in SCC\_DB. If the
binietoglou@0 29 parameter is found in the input files the SCC will keep it without
binietoglou@0 30 looking into SCC\_DB.
binietoglou@0 31
binietoglou@0 32 The input files have to be submitted to the SCC in NetCDF format. At the
binietoglou@0 33 present the SCC can handle four different types of input files:
binietoglou@0 34
binietoglou@0 35 1. Raw Lidar Data
binietoglou@0 36 2. Sounding Data
binietoglou@0 37 3. Overlap
binietoglou@0 38 4. Lidar Ratio
binietoglou@0 39
binietoglou@0 40
binietoglou@0 41 As already mentioned, the Raw Lidar Data file contains not only the
binietoglou@0 42 raw lidar data but also other parameters to use to perform the
binietoglou@0 43 pre-processing and optical processing. The Sounding Data file
binietoglou@0 44 contains the data coming from a correlative radiosounding and it is used
binietoglou@0 45 by the SCC for molecular density calculation. The Overlap file
binietoglou@0 46 contains the measured overlap function. The Lidar Ratio file contains
binietoglou@0 47 a lidar ratio profile to use in elastic backscatter retrievals. The
binietoglou@0 48 Raw Lidar Data file is of course mandatory and the Sounding Data,
binietoglou@0 49 Overlap and Lidar Ratio files are optional. If Sounding Data file
binietoglou@0 50 is not submitted by the user, the molecular density will be calculated
binietoglou@0 51 by the SCC using the “US Standard Atmosphere 1976”. If the Overlap
binietoglou@0 52 file is not submitted by the user, the SCC will get the full overlap
binietoglou@0 53 height from SCC\_DB and it will produce optical results starting from
binietoglou@0 54 this height. If Lidar Ratio file is not submitted by the user, the
binietoglou@0 55 SCC will consider a fixed value for lidar ratio got from SCC\_DB.
binietoglou@0 56
binietoglou@0 57 The user can decide to submit all these files or any number of them (of
binietoglou@0 58 course the file Raw Lidar Data is mandatory). For example the user
binietoglou@0 59 can submit together with the Raw Lidar Data file only the Sounding
binietoglou@0 60 Data file or only the Overlap file.
binietoglou@0 61
binietoglou@0 62 This document provides a detailed explanation about the structure of the
binietoglou@0 63 NetCDF input files to use for SCC data submission. All Earlinet groups
binietoglou@0 64 should read it carefully because they have to produce such kind of input
binietoglou@0 65 files if they want to use the SCC for their standard lidar retrievals.
binietoglou@0 66 Every comments or suggestions regarding this document can be sent to
binietoglou@0 67 Giuseppe D’Amico by e-mail at ``damico@imaa.cnr.it``
binietoglou@0 68
binietoglou@0 69 This document is available for downloading at ``www.earlinetasos.org``
binietoglou@0 70
binietoglou@0 71 In table tab:rawdata is reported a list of dimensions, variables and
binietoglou@0 72 global attributes that can be used in the NetCDF Raw Lidar Data input
binietoglou@0 73 file. For each of them it is indicated:
binietoglou@0 74
binietoglou@0 75 - The name. For the multidimensional variables also the corresponding
binietoglou@0 76 dimensions are reported
binietoglou@0 77
binietoglou@0 78 - A description explaining the meaning
binietoglou@0 79
binietoglou@0 80 - The type
binietoglou@0 81
binietoglou@0 82 - If it is mandatory or optional
binietoglou@0 83
binietoglou@0 84 As already mentioned, the SCC can get some parameters looking first in
binietoglou@0 85 the Raw Lidar Data input file and then into SCC\_DB. This means that
binietoglou@0 86 to use the parameters stored in SCC\_DB the optional variables or
binietoglou@0 87 optional global attributes must not appear within Raw Lidar Data
binietoglou@0 88 file. This is the suggested and recommended way to use the SCC. Please
binietoglou@0 89 include optional parameters in the Raw Lidar Data only as an
binietoglou@0 90 exception.
binietoglou@0 91
binietoglou@0 92 In table tab:sounding, tab:overlap and tab:lr are reported all the
binietoglou@0 93 information about the structure of Sounding Data, Overlap and
binietoglou@0 94 Lidar Ratio input files respectively.
binietoglou@0 95
binietoglou@0 96 Example
binietoglou@0 97 -------
binietoglou@0 98
binietoglou@0 99 Let’s now consider an example of Raw Lidar Data input file. Suppose
binietoglou@0 100 we want to generate NetCDF input file corresponding to a measurement
binietoglou@0 101 with the following properties:
binietoglou@0 102
binietoglou@0 103 +----------------------+-------------------------------------------+
binietoglou@0 104 | Start Date | :math:`30^{th}` January 2009 |
binietoglou@0 105 +----------------------+-------------------------------------------+
binietoglou@0 106 | Start Time UT | 00:00:01 |
binietoglou@0 107 +----------------------+-------------------------------------------+
binietoglou@0 108 | Stop Time UT | 00:05:01 |
binietoglou@0 109 +----------------------+-------------------------------------------+
binietoglou@0 110 | Station Name | Dummy station |
binietoglou@0 111 +----------------------+-------------------------------------------+
binietoglou@0 112 | Earlinet call-sign | cc |
binietoglou@0 113 +----------------------+-------------------------------------------+
binietoglou@0 114 | Pointing angle | 5 degrees with respect to the zenith |
binietoglou@0 115 +----------------------+-------------------------------------------+
binietoglou@0 116
binietoglou@0 117 Moreover suppose that this measurement is composed by the following
binietoglou@0 118 lidar channels:
binietoglou@0 119
binietoglou@0 120 1. 1064 lidar channel
binietoglou@0 121
binietoglou@0 122 +------------------------------+-------------------------------+
binietoglou@0 123 | Emission wavelength=1064nm | Detection wavelength=1064nm |
binietoglou@0 124 +------------------------------+-------------------------------+
binietoglou@0 125 | Time resolution=30s | Number of laser shots=1500 |
binietoglou@0 126 +------------------------------+-------------------------------+
binietoglou@0 127 | Number of bins=3000 | Detection mode=analog |
binietoglou@0 128 +------------------------------+-------------------------------+
binietoglou@0 129 | Range resolution=7.5m | Polarization state=total |
binietoglou@0 130 +------------------------------+-------------------------------+
binietoglou@0 131
binietoglou@0 132 2. 532 cross lidar channel
binietoglou@0 133
binietoglou@0 134 +-----------------------------+---------------------------------+
binietoglou@0 135 | Emission wavelength=532nm | Detection wavelength=532nm |
binietoglou@0 136 +-----------------------------+---------------------------------+
binietoglou@0 137 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 138 +-----------------------------+---------------------------------+
binietoglou@0 139 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 140 +-----------------------------+---------------------------------+
binietoglou@0 141 | Range resolution=15m | Polarization state=cross |
binietoglou@0 142 +-----------------------------+---------------------------------+
binietoglou@0 143
binietoglou@0 144 3. 532 parallel lidar channel
binietoglou@0 145
binietoglou@0 146 +-----------------------------+---------------------------------+
binietoglou@0 147 | Emission wavelength=532nm | Detection wavelength=532nm |
binietoglou@0 148 +-----------------------------+---------------------------------+
binietoglou@0 149 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 150 +-----------------------------+---------------------------------+
binietoglou@0 151 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 152 +-----------------------------+---------------------------------+
binietoglou@0 153 | Range resolution=15m | Polarization state=parallel |
binietoglou@0 154 +-----------------------------+---------------------------------+
binietoglou@0 155
binietoglou@0 156 4. 607 :math:`N_2` vibrational Raman channel
binietoglou@0 157
binietoglou@0 158 +-----------------------------+---------------------------------+
binietoglou@0 159 | Emission wavelength=532nm | Detection wavelength=607nm |
binietoglou@0 160 +-----------------------------+---------------------------------+
binietoglou@0 161 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 162 +-----------------------------+---------------------------------+
binietoglou@0 163 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 164 +-----------------------------+---------------------------------+
binietoglou@0 165 | Range resolution=15m |
binietoglou@0 166 +-----------------------------+---------------------------------+
binietoglou@0 167
binietoglou@0 168 Finally let’s assume we have also performed dark measurements before the
binietoglou@0 169 lidar measurements from the 23:50:01 UT up to 23:53:01 UT of
binietoglou@0 170 29:math:`^\mathrmth` January 2009.
binietoglou@0 171
binietoglou@0 172 Dimensions
binietoglou@0 173 ~~~~~~~~~~
binietoglou@0 174
binietoglou@0 175 Looking at table tab:rawdata we have to fix the following dimensions:
binietoglou@0 176
binietoglou@0 177 ::
binietoglou@0 178
binietoglou@0 179 points
binietoglou@0 180 channels
binietoglou@0 181 time
binietoglou@0 182 nb_of_time_scales
binietoglou@0 183 scan_angles
binietoglou@0 184 time_bck
binietoglou@0 185
binietoglou@0 186 The dimension ``time`` is unlimited so we don’t have to fix it.
binietoglou@0 187
binietoglou@0 188 We have 4 lidar channels so:
binietoglou@0 189
binietoglou@0 190 ::
binietoglou@0 191
binietoglou@0 192 channels=4
binietoglou@0 193
binietoglou@0 194 Regarding the dimension ``points`` we have only one channel with a
binietoglou@0 195 number of vertical bins equal to 3000 (the 1064nm) and all other
binietoglou@0 196 channels with 5000 vertical bins. In cases like this the dimension
binietoglou@0 197 ``points`` has to be fixed to the maximum number of vertical bins so:
binietoglou@0 198
binietoglou@0 199 ::
binietoglou@0 200
binietoglou@0 201 points=5000
binietoglou@0 202
binietoglou@0 203 Moreover only one channel (1064nm) is acquired with a time resolution of
binietoglou@0 204 30 seconds, all the other channels have a time resolution of 60 seconds.
binietoglou@0 205 This means that we have to define two different time scales. We have to
binietoglou@0 206 set:
binietoglou@0 207
binietoglou@0 208 ::
binietoglou@0 209
binietoglou@0 210 nb_of_time_scales=2
binietoglou@0 211
binietoglou@0 212 The measurement is performed only at one scan angle (5 degrees with
binietoglou@0 213 respect to the zenith) so:
binietoglou@0 214
binietoglou@0 215 ::
binietoglou@0 216
binietoglou@0 217 scan_angles=1
binietoglou@0 218
binietoglou@0 219 We have 3 minutes of dark measurements and two different time scales one
binietoglou@0 220 with 60 seconds time resolution and the other one with 30 seconds time
binietoglou@0 221 resolution. So we will have 3 different dark profiles for the channels
binietoglou@0 222 acquired with the first time scale and 6 for the lidar channels acquired
binietoglou@0 223 with the second time scale. We have to fix the dimension ``time_bck`` as
binietoglou@0 224 the maximum between these values:
binietoglou@0 225
binietoglou@0 226 ::
binietoglou@0 227
binietoglou@0 228 time_bck=6
binietoglou@0 229
binietoglou@0 230 Variables
binietoglou@0 231 ~~~~~~~~~
binietoglou@0 232
binietoglou@0 233 In this section it will be explained how to fill all the possible
binietoglou@0 234 variables either mandatory or optional of Raw Lidar Data input file.
binietoglou@0 235
binietoglou@0 236 Raw_Data_Start_Time(time, nb_of_time_scales)
binietoglou@0 237 This 2 dimensional mandatory array has to contain the acquisition
binietoglou@0 238 start time (in seconds from the time given by the global attribute
binietoglou@0 239 ``RawData_Start_Time_UT``) of each lidar profile. In this example we
binietoglou@0 240 have two different time scales: one is characterized by steps of 30
binietoglou@0 241 seconds (the 1064nm is acquired with this time scale) the other by
binietoglou@0 242 steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the
binietoglou@0 243 measurement start time is 00:00:01 UT and the measurement stop time
binietoglou@0 244 is 00:05:01 UT. In this case we have to define:
binietoglou@0 245
binietoglou@0 246 ::
binietoglou@0 247
binietoglou@0 248 Raw_Data_Start_Time =
binietoglou@0 249 0, 0,
binietoglou@0 250 60, 30,
binietoglou@0 251 120, 60,
binietoglou@0 252 180, 90,
binietoglou@0 253 240, 120,
binietoglou@0 254 _, 150,
binietoglou@0 255 _, 180,
binietoglou@0 256 _, 210,
binietoglou@0 257 _, 240,
binietoglou@0 258 _, 270 ;
binietoglou@0 259
binietoglou@0 260 The order used to fill this array defines the correspondence between
binietoglou@0 261 the different time scales and the time scale index. In this example
binietoglou@0 262 we have a time scale index of 0 for the time scale with steps of 60
binietoglou@0 263 seconds and a time scale index of 1 for the other one.
binietoglou@0 264
binietoglou@0 265 Raw_Data_Stop_Time(time, nb_of_time_scales)
binietoglou@0 266 The same as previous item but for the data acquisition stop time.
binietoglou@0 267 Following a similar procedure we have to define:
binietoglou@0 268
binietoglou@0 269 ::
binietoglou@0 270
binietoglou@0 271 Raw_Data_Stop_Time =
binietoglou@0 272 60, 30,
binietoglou@0 273 120, 60,
binietoglou@0 274 180, 90,
binietoglou@0 275 240, 120,
binietoglou@0 276 300, 150,
binietoglou@0 277 _, 180,
binietoglou@0 278 _, 210,
binietoglou@0 279 _, 240,
binietoglou@0 280 _, 270,
binietoglou@0 281 _, 300 ;
binietoglou@0 282
binietoglou@0 283 Raw_Lidar_Data(time, channels, points)
binietoglou@0 284 This 3 dimensional mandatory array has to be filled with the
binietoglou@0 285 time-series of raw lidar data. The photoncounting profiles have to
binietoglou@0 286 submitted in counts (so as integers) while the analog ones in mV. The
binietoglou@0 287 order the user chooses to fill this array defines the correspondence
binietoglou@0 288 between channel index and lidar data.
binietoglou@0 289
binietoglou@0 290 For example if we fill this array in such way that:
binietoglou@0 291
binietoglou@0 292 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 293 | Raw_Lidar_Data(time,0,points | :math:`\rightarrow` is the time-series of 1064 nm |
binietoglou@0 294 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 295 | Raw_Lidar_Data(time,1,points | :math:`\rightarrow` is the time-series of 532 cross |
binietoglou@0 296 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 297 | Raw_Lidar_Data(time,2,points | :math:`\rightarrow` is the time-series of 532 parallel |
binietoglou@0 298 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 299 | Raw_Lidar_Data(time,3,points | :math:`\rightarrow` is the time-series of 607 nm |
binietoglou@0 300 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 301
binietoglou@0 302 from now on the channel index 0 is associated to the 1064 channel,
binietoglou@0 303 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.
binietoglou@0 304
binietoglou@0 305 Raw_Bck_Start_Time(time_bck, nb_of_time_scales)
binietoglou@0 306 This 2 dimensional optional array has to contain the acquisition
binietoglou@0 307 start time (in seconds from the time given by the global attribute
binietoglou@0 308 ``RawBck_Start_Time_UT``) of each dark measurements profile.
binietoglou@0 309 Following the same procedure used for the variable
binietoglou@0 310 ``Raw_Data_Start_Time`` we have to define:
binietoglou@0 311
binietoglou@0 312 ::
binietoglou@0 313
binietoglou@0 314 Raw_Bck_Start_Time =
binietoglou@0 315 0, 0,
binietoglou@0 316 60, 30,
binietoglou@0 317 120, 60,
binietoglou@0 318 _, 90,
binietoglou@0 319 _, 120,
binietoglou@0 320 _, 150;
binietoglou@0 321
binietoglou@0 322 Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)
binietoglou@0 323 The same as previous item but for the dark acquisition stop time.
binietoglou@0 324 Following a similar procedure we have to define:
binietoglou@0 325
binietoglou@0 326 ::
binietoglou@0 327
binietoglou@0 328 Raw_Bck_Stop_Time =
binietoglou@0 329 60, 30,
binietoglou@0 330 120, 60,
binietoglou@0 331 180, 90,
binietoglou@0 332 _, 120,
binietoglou@0 333 _, 150,
binietoglou@0 334 _, 180 ;
binietoglou@0 335
binietoglou@0 336
binietoglou@0 337 Background_Profile(time_bck, channels, points)
binietoglou@0 338 This 3 dimensional optional array has to be filled with the
binietoglou@0 339 time-series of the dark measurements data. The photoncounting
binietoglou@0 340 profiles have to submitted in counts (so as integers) while the
binietoglou@0 341 analog ones in mV. The user has to fill this array following the same
binietoglou@0 342 order used in filling the array ``Raw_Lidar_Data``:
binietoglou@0 343
binietoglou@0 344 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 345 | Background_Profile(time_bck,0,points | :math:`\rightarrow` dark time-series at 1064 nm |
binietoglou@0 346 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 347 | Background_Profile(time_bck,1,points | :math:`\rightarrow` dark time-series at 532 cross |
binietoglou@0 348 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 349 | Background_Profile(time_bck,2,points | :math:`\rightarrow` dark time-series at 532 parallel |
binietoglou@0 350 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 351 | Background_Profile(time_bck,3,points | :math:`\rightarrow` dark time-series at 607 nm |
binietoglou@0 352 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 353
binietoglou@0 354
binietoglou@0 355 channel_ID(channels)
binietoglou@0 356 This mandatory array provides the link between the channel index
binietoglou@0 357 within the Raw Lidar Data input file and the channel ID in
binietoglou@0 358 SCC\_DB. To fill this variable the user has to know which channel IDs
binietoglou@0 359 in SCC\_DB correspond to his lidar channels. For this purpose the
binietoglou@0 360 SCC, in its final version will provide to the user a special tool to
binietoglou@0 361 get these channel IDs through a Web interface. At the moment this
binietoglou@0 362 interface is not yet available and these channel IDs will be
binietoglou@0 363 communicated directly to the user by the NA5 people.
binietoglou@0 364
binietoglou@0 365 Anyway to continue the example let’s suppose that the four lidar
binietoglou@0 366 channels taken into account are mapped into SCC\_DB with the
binietoglou@0 367 following channel IDs:
binietoglou@0 368
binietoglou@0 369 +----------------+--------------------------------------+
binietoglou@0 370 | 1064 nm | :math:`\rightarrow` channel ID=7 |
binietoglou@0 371 +----------------+--------------------------------------+
binietoglou@0 372 | 532 cross | :math:`\rightarrow` channel ID=5 |
binietoglou@0 373 +----------------+--------------------------------------+
binietoglou@0 374 | 532 parallel | :math:`\rightarrow` channel ID=6 |
binietoglou@0 375 +----------------+--------------------------------------+
binietoglou@0 376 | 607 nm | :math:`\rightarrow` channel ID=8 |
binietoglou@0 377 +----------------+--------------------------------------+
binietoglou@0 378
binietoglou@0 379 In this case we have to define:
binietoglou@0 380
binietoglou@0 381 ::
binietoglou@0 382
binietoglou@0 383 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 384
binietoglou@0 385 id_timescale(channels)
binietoglou@0 386 This mandatory array is introduced to determine which time scale is
binietoglou@0 387 used for the acquisition of each lidar channel. In particular this
binietoglou@0 388 array defines the link between the channel index and the time scale
binietoglou@0 389 index. In our example we have two different time scales. Filling the
binietoglou@0 390 arrays ``Raw_Data_Start_Time`` and ``Raw_Data_Stop_Time`` we have
binietoglou@0 391 defined a time scale index of 0 for the time scale with steps of 60
binietoglou@0 392 seconds and a time scale index of 1 for the other one with steps of
binietoglou@0 393 30 seconds. In this way this array has to be set as:
binietoglou@0 394
binietoglou@0 395 ::
binietoglou@0 396
binietoglou@0 397 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 398
binietoglou@0 399 Laser_Pointing_Angle(scan_angles
binietoglou@0 400 This mandatory array contains all the scan angles used in the
binietoglou@0 401 measurement. In our example we have only one scan angle of 5 degrees
binietoglou@0 402 with respect to the zenith, so we have to define:
binietoglou@0 403
binietoglou@0 404 ::
binietoglou@0 405
binietoglou@0 406 Laser_Pointing_Angle = 5 ;
binietoglou@0 407
binietoglou@0 408 Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)
binietoglou@0 409 This mandatory array is introduced to determine which scan angle is
binietoglou@0 410 used for the acquisition of each lidar profile. In particular this
binietoglou@0 411 array defines the link between the time and time scales indexes and
binietoglou@0 412 the scan angle index. In our example we have a single scan angle that
binietoglou@0 413 has to correspond to the scan angle index 0. So this array has to be
binietoglou@0 414 defined as:
binietoglou@0 415
binietoglou@0 416 ::
binietoglou@0 417
binietoglou@0 418 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 419 0, 0,
binietoglou@0 420 0, 0,
binietoglou@0 421 0, 0,
binietoglou@0 422 0, 0,
binietoglou@0 423 0, 0,
binietoglou@0 424 _, 0,
binietoglou@0 425 _, 0,
binietoglou@0 426 _, 0,
binietoglou@0 427 _, 0,
binietoglou@0 428 _, 0 ;
binietoglou@0 429
binietoglou@0 430 Laser_Shots(time, channels)
binietoglou@0 431 This mandatory array stores the laser shots accumulated at each time
binietoglou@0 432 for each channel. In our example the number of laser shots
binietoglou@0 433 accumulated is 1500 for the 1064nm channels and 3000 for all the
binietoglou@0 434 other channels. Moreover the laser shots do not change with the time.
binietoglou@0 435 So we have to define this array as:
binietoglou@0 436
binietoglou@0 437 ::
binietoglou@0 438
binietoglou@0 439 Laser_Shots =
binietoglou@0 440 1500, 3000, 3000, 3000,
binietoglou@0 441 1500, 3000, 3000, 3000,
binietoglou@0 442 1500, 3000, 3000, 3000,
binietoglou@0 443 1500, 3000, 3000, 3000,
binietoglou@0 444 1500, 3000, 3000, 3000,
binietoglou@0 445 1500, _, _, _,
binietoglou@0 446 1500, _, _, _,
binietoglou@0 447 1500, _, _, _,
binietoglou@0 448 1500, _, _, _,
binietoglou@0 449 1500, _, _, _ ;
binietoglou@0 450
binietoglou@0 451 Emitted_Wavelength(channels)
binietoglou@0 452 This optional array defines the link between the channel index and
binietoglou@0 453 the emission wavelength for each lidar channel. The wavelength has to
binietoglou@0 454 be expressed in nm. This information can be also taken from SCC\_DB.
binietoglou@0 455 In our example we have:
binietoglou@0 456
binietoglou@0 457 ::
binietoglou@0 458
binietoglou@0 459 Emitted_Wavelength = 1064, 532, 532, 532 ;
binietoglou@0 460
binietoglou@0 461 Detected_Wavelength(channels)
binietoglou@0 462 This optional array defines the link between the channel index and
binietoglou@0 463 the detected wavelength for each lidar channel. Here detected
binietoglou@0 464 wavelength means the value of center of interferential filter
binietoglou@0 465 expressed in nm. This information can be also taken from SCC\_DB. In
binietoglou@0 466 our example we have:
binietoglou@0 467
binietoglou@0 468 ::
binietoglou@0 469
binietoglou@0 470 Detected_Wavelength = 1064, 532, 532, 607 ;
binietoglou@0 471
binietoglou@0 472 Raw_Data_Range_Resolution(channels)
binietoglou@0 473 This optional array defines the link between the channel index and
binietoglou@0 474 the raw range resolution for each channel. If the scan angle is
binietoglou@0 475 different from zero this quantity is different from the vertical
binietoglou@0 476 resolution. More precisely if :math:`\alpha` is the scan angle used
binietoglou@0 477 and :math:`\Delta z` is the range resolution the vertical
binietoglou@0 478 resolution is calculated as :math:`\Delta
binietoglou@0 479 z'=\Delta z \cos\alpha`. This array has to be filled with
binietoglou@0 480 :math:`\Delta z` and not with :math:`\Delta z'`. The unit is
binietoglou@0 481 meters. This information can be also taken from SCC\_DB. In our
binietoglou@0 482 example we have:
binietoglou@0 483
binietoglou@0 484 ::
binietoglou@0 485
binietoglou@0 486 Raw_Data_Range_Resolution = 7.5, 15.0, 15.0, 15.0 ;
binietoglou@0 487
binietoglou@0 488 ID_Range(channels)
binietoglou@0 489 This optional array defines if a particular channel is configured as
binietoglou@0 490 high, low or ultranear range channel. In particular a value 0
binietoglou@0 491 indicates a low range channel, a value 1 a high range channel and a
binietoglou@0 492 value of 2 an ultranear range channel. If for a particular channel
binietoglou@0 493 you don’t separate between high and low range channel, please set the
binietoglou@0 494 corresponding value to 1. This information can be also taken from
binietoglou@0 495 SCC\_DB. In our case we have to set:
binietoglou@0 496
binietoglou@0 497 ::
binietoglou@0 498
binietoglou@0 499 ID_Range = 1, 1, 1, 1 ;
binietoglou@0 500
binietoglou@0 501 Scattering_Mechanism(channels)
binietoglou@0 502 This optional array defines the scattering mechanism involved in
binietoglou@0 503 each lidar channel. In particular the following values are adopted:
binietoglou@0 504
binietoglou@0 505 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 506 | 0 | :math:`\rightarrow` Total elastic backscatter |
binietoglou@0 507 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 508 | 1 | :math:`\rightarrow` :math:`N_2` vibrational Raman backscatter |
binietoglou@0 509 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 510 | 2 | :math:`\rightarrow` Cross polarization elastic backscatter |
binietoglou@0 511 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 512 | 3 | :math:`\rightarrow` Parallel polarization elastic backscatter |
binietoglou@0 513 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 514 | 4 | :math:`\rightarrow` :math:`H_2O` vibrational Raman backscatter |
binietoglou@0 515 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 516 | 5 | :math:`\rightarrow` Rotational Raman Stokes line close to elastic line |
binietoglou@0 517 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 518 | 6 | :math:`\rightarrow` Rotational Raman Stokes line far from elastic line |
binietoglou@0 519 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 520 | 7 | :math:`\rightarrow` Rotational Raman anti-Stokes line close to elastic line |
binietoglou@0 521 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 522 | 8 | :math:`\rightarrow` Rotational Raman anti-Stokes line far from elastic line |
binietoglou@0 523 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 524 | 9 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines close to elastic line |
binietoglou@0 525 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 526 | 10 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines far from elastic line |
binietoglou@0 527 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 528
binietoglou@0 529 This information can be also taken from SCC\_DB. In our example we have:
binietoglou@0 530
binietoglou@0 531 ::
binietoglou@0 532
binietoglou@0 533 Scattering_Mechanism = 0, 2, 3, 1 ;
binietoglou@0 534
binietoglou@0 535 Acquisition_Mode(channels)
binietoglou@0 536 This optional array defines the acquisition mode (analog or
binietoglou@0 537 photoncounting) involved in each lidar channel. In particular a value
binietoglou@0 538 of 0 means analog mode and 1 photoncounting mode. This information
binietoglou@0 539 can be also taken from SCC\_DB. In our example we have:
binietoglou@0 540
binietoglou@0 541 ::
binietoglou@0 542
binietoglou@0 543 Acquisition_Mode = 0, 1, 1, 1 ;
binietoglou@0 544
binietoglou@0 545 Laser_Repetition_Rate(channels)
binietoglou@0 546 This optional array defines the repetition rate in Hz used to
binietoglou@0 547 acquire each lidar channel. This information can be also taken from
binietoglou@0 548 SCC\_DB. In our example we are supposing we have only one laser with
binietoglou@0 549 a repetition rate of 50 Hz so we have to set:
binietoglou@0 550
binietoglou@0 551 ::
binietoglou@0 552
binietoglou@0 553 Laser_Repetition_Rate = 50, 50, 50, 50 ;
binietoglou@0 554
binietoglou@0 555 Dead_Time(channels)
binietoglou@0 556 This optional array defines the dead time in ns associated to each
binietoglou@0 557 lidar channel. The SCC will use the values given by this array to
binietoglou@0 558 correct the photoncounting signals for dead time. Of course for
binietoglou@0 559 analog signals no dead time correction will be applied (for analog
binietoglou@0 560 channels the corresponding dead time values have to be set to
binietoglou@0 561 undefined value). This information can be also taken from SCC\_DB. In
binietoglou@0 562 our example the 1064 nm channel is acquired in analog mode so the
binietoglou@0 563 corresponding dead time value has to be undefined. If we suppose a
binietoglou@0 564 dead time of 10 ns for all other channels we have to set:
binietoglou@0 565
binietoglou@0 566 ::
binietoglou@0 567
binietoglou@0 568 Dead_Time = _, 10, 10, 10 ;
binietoglou@0 569
binietoglou@0 570 Dead_Time_Corr_Type(channels
binietoglou@0 571 This optional array defines which kind of dead time correction has
binietoglou@0 572 to be applied on each photoncounting channel. The SCC will correct
binietoglou@0 573 the data supposing a not-paralyzable channel if a value of 0 is found
binietoglou@0 574 while a paralyzable channel is supposed if a value of 1 is found. Of
binietoglou@0 575 course for analog signals no dead time correction will be applied and
binietoglou@0 576 so the corresponding values have to be set to undefined value. This
binietoglou@0 577 information can be also taken from SCC\_DB. In our example the 1064
binietoglou@0 578 nm channel is acquired in analog mode so the corresponding has to be
binietoglou@0 579 undefined. If we want to consider all the photoncounting signals as
binietoglou@0 580 not-paralyzable ones: we have to set:
binietoglou@0 581
binietoglou@0 582 ::
binietoglou@0 583
binietoglou@0 584 Dead_Time_Corr_Type = _, 0, 0, 0 ;
binietoglou@0 585
binietoglou@0 586 Trigger_Delay(channels)
binietoglou@0 587 This optional array defines the delay (in ns) of the middle of the
binietoglou@0 588 first rangebin with respect to the output laser pulse for each lidar
binietoglou@0 589 channel. The SCC will use the values given by this array to correct
binietoglou@0 590 for trigger delay. This information can be also taken from SCC\_DB.
binietoglou@0 591 Let’s suppose that in our example all the photoncounting channels are
binietoglou@0 592 not affected by this delay and only the analog channel at 1064nm is
binietoglou@0 593 acquired with a delay of 50ns. In this case we have to set:
binietoglou@0 594
binietoglou@0 595 ::
binietoglou@0 596
binietoglou@0 597 Trigger_Delay = 50, 0, 0, 0 ;
binietoglou@0 598
binietoglou@0 599 Background_Mode(channels
binietoglou@0 600 This optional array defines how the atmospheric background has to be
binietoglou@0 601 subtracted from the lidar channel. Two options are available for the
binietoglou@0 602 calculation of atmospheric background:
binietoglou@0 603
binietoglou@0 604 #. Average in the far field of lidar channel. In this case the value
binietoglou@0 605 of this variable has to be 1
binietoglou@0 606
binietoglou@0 607 #. Average within pre-trigger bins. In this case the value of this
binietoglou@0 608 variable has to be 0
binietoglou@0 609
binietoglou@0 610 This information can be also taken from SCC\_DB. Let’s suppose in our
binietoglou@0 611 example we use the pre-trigger for the 1064nm channel and the far
binietoglou@0 612 field for all other channels. In this case we have to set:
binietoglou@0 613
binietoglou@0 614 ::
binietoglou@0 615
binietoglou@0 616 Background_Mode = 0, 1, 1, 1 ;
binietoglou@0 617
binietoglou@0 618 Background_Low(channels)
binietoglou@0 619 This mandatory array defines the minimum altitude (in meters) to
binietoglou@0 620 consider in calculating the atmospheric background for each channel.
binietoglou@0 621 In case pre-trigger mode is used the corresponding value has to be
binietoglou@0 622 set to the rangebin to be used as lower limit (within pre-trigger
binietoglou@0 623 region) for background calculation. In our example, if we want to
binietoglou@0 624 calculate the background between 30000 and 50000 meters for all
binietoglou@0 625 photoncounting channels and we want to use the first 500 pre-trigger
binietoglou@0 626 bins for the background calculation for the 1064nm channel we have to
binietoglou@0 627 set:
binietoglou@0 628
binietoglou@0 629 ::
binietoglou@0 630
binietoglou@0 631 Background_Low= 0, 30000, 30000, 30000 ;
binietoglou@0 632
binietoglou@0 633 Background_High(channels)
binietoglou@0 634 This mandatory array defines the maximum altitude (in meters) to
binietoglou@0 635 consider in calculating the atmospheric background for each channel.
binietoglou@0 636 In case pre-trigger mode is used the corresponding value has to be
binietoglou@0 637 set to the rangebin to be used as upper limit (within pre-trigger
binietoglou@0 638 region) for background calculation. In our example, if we want to
binietoglou@0 639 calculate the background between 30000 and 50000 meters for all
binietoglou@0 640 photoncounting channels and we want to use the first 500 pre-trigger
binietoglou@0 641 bins for the background calculation for the 1064nm channel we have to
binietoglou@0 642 set:
binietoglou@0 643
binietoglou@0 644 ::
binietoglou@0 645
binietoglou@0 646 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 647
binietoglou@0 648 Molecular_Calc
binietoglou@0 649 This mandatory variable defines the way used by SCC to calculate the
binietoglou@0 650 molecular density profile. At the moment two options are available:
binietoglou@0 651
binietoglou@0 652 #. US Standard Atmosphere 1976. In this case the value of this
binietoglou@0 653 variable has to be 0
binietoglou@0 654
binietoglou@0 655 #. Radiosounding. In this case the value of this variable has to be 1
binietoglou@0 656
binietoglou@0 657 If we decide to use the option 1. we have to provide also the
binietoglou@0 658 measured pressure and temperature at lidar station level. Indeed if
binietoglou@0 659 we decide to use the option 2. a radiosounding file has to be
binietoglou@0 660 submitted separately in NetCDF format (the structure of this file is
binietoglou@0 661 summarized in table tab:sounding). Let’s suppose we want to use the
binietoglou@0 662 option 1. so:
binietoglou@0 663
binietoglou@0 664 ::
binietoglou@0 665
binietoglou@0 666 Molecular_Calc = 0 ;
binietoglou@0 667
binietoglou@0 668 Pressure_at_Lidar_Station
binietoglou@0 669 Because we have chosen the US Standard Atmosphere for calculation of
binietoglou@0 670 the molecular density profile we have to give the pressure in hPa at
binietoglou@0 671 lidar station level:
binietoglou@0 672
binietoglou@0 673 ::
binietoglou@0 674
binietoglou@0 675 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 676
binietoglou@0 677 Temperature_at_Lidar_Station
binietoglou@0 678 Because we have chosen the US Standard Atmosphere for calculation of
binietoglou@0 679 the molecular density profile we have to give the temperature in C at
binietoglou@0 680 lidar station level:
binietoglou@0 681
binietoglou@0 682 ::
binietoglou@0 683
binietoglou@0 684 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 685
binietoglou@0 686 Depolarization_Factor(channels)
binietoglou@0 687 This array is required only for lidar systems that use the two
binietoglou@0 688 depolarization channels for the backscatter retrieval. It represents
binietoglou@0 689 the factor :math:`f` to calculate the total backscatter signal
binietoglou@0 690 :math:`S_t` combining its cross :math:`S_c` and parallel
binietoglou@0 691 :math:`S_p` components: :math:`S_t=S_p+fS_c`. This factor is
binietoglou@0 692 mandatory only for systems acquiring :math:`S_c` and :math:`S_p`
binietoglou@0 693 and not :math:`S_t`. For systems acquiring :math:`S_c`,
binietoglou@0 694 :math:`S_p` and :math:`S_t` this factor is optional and it will
binietoglou@0 695 be used only for depolarizaton ratio calculation. Moreover only the
binietoglou@0 696 values of the array corresponding to cross polarization channels will
binietoglou@0 697 be considered; all other values will be not taken into account and
binietoglou@0 698 should be set to undefined value. In our example for the wavelength
binietoglou@0 699 532nm we have only the cross and the parallel components and not the
binietoglou@0 700 total one. So we have to give the value of this factor only in
binietoglou@0 701 correspondence of the 532nm cross polarization channel that
binietoglou@0 702 corresponds to the channel index 1. Suppose that this factor is 0.88.
binietoglou@0 703 Moreover, because we don’t have any other depolarization channels we
binietoglou@0 704 have also to set all other values of the array to undefined value.
binietoglou@0 705
binietoglou@0 706 ::
binietoglou@0 707
binietoglou@0 708 Depolarization_Factor = _,0.88,_,_ ;
binietoglou@0 709
binietoglou@0 710 LR_Input(channels)
binietoglou@0 711 This array is required only for lidar channels for which elastic
binietoglou@0 712 backscatter retrieval has to be performed. It defines the lidar ratio
binietoglou@0 713 to be used within this retrieval. Two options are available:
binietoglou@0 714
binietoglou@0 715 #. The user can submit a lidar ratio profile. In this case the value
binietoglou@0 716 of this variable has to be 0.
binietoglou@0 717
binietoglou@0 718 #. A fixed value of lidar ratio can be used. In this case the value
binietoglou@0 719 of this variable has to be 1.
binietoglou@0 720
binietoglou@0 721 If we decide to use the option 1. a lidar ratio file has to be
binietoglou@0 722 submitted separately in NetCDF format (the structure of this file is
binietoglou@0 723 summarized in table tab:lr). If we decide to use the option 2. the
binietoglou@0 724 fixed value of lidar ratio will be taken from SCC\_DB. In our example
binietoglou@0 725 we have to give a value of this array only for the 1064nm lidar
binietoglou@0 726 channel because for the 532nm we will be able to retrieve a Raman
binietoglou@0 727 backscatter coefficient. In case we want to use the fixed value
binietoglou@0 728 stored in SCC\_DB we have to set:
binietoglou@0 729
binietoglou@0 730 ::
binietoglou@0 731
binietoglou@0 732 LR_Input = 1,_,_,_ ;
binietoglou@0 733
binietoglou@0 734 DAQ_Range(channels)
binietoglou@0 735 This array is required only if one or more lidar signals are
binietoglou@0 736 acquired in analog mode. It gives the analog scale in mV used to
binietoglou@0 737 acquire the analog signals. In our example we have only the 1064nm
binietoglou@0 738 channel acquired in analog mode. If we have used a 100mV analog scale
binietoglou@0 739 to acquire this channel we have to set:
binietoglou@0 740
binietoglou@0 741 ::
binietoglou@0 742
binietoglou@0 743 DAQ_Range = 100,_,_,_ ;
binietoglou@0 744
binietoglou@0 745 Global attributes
binietoglou@0 746 ~~~~~~~~~~~~~~~~~
binietoglou@0 747
binietoglou@0 748 Measurement_ID
binietoglou@0 749 This mandatory global attribute defines the measurement ID
binietoglou@0 750 corresponding to the actual lidar measurement. It is a string
binietoglou@0 751 composed by 12 characters. The first 8 characters give the start date
binietoglou@0 752 of measurement in the format YYYYMMDD. The next 2 characters give the
binietoglou@0 753 Earlinet call-sign of the station. The last 2 characters are used to
binietoglou@0 754 distinguish between different time-series within the same date. In
binietoglou@0 755 our example we have to set:
binietoglou@0 756
binietoglou@0 757 ::
binietoglou@0 758
binietoglou@0 759 Measurement_ID= "20090130cc00" ;
binietoglou@0 760
binietoglou@0 761 RawData_Start_Date
binietoglou@0 762 This mandatory global attribute defines the start date of lidar
binietoglou@0 763 measurements in the format YYYYMMDD. In our case we have:
binietoglou@0 764
binietoglou@0 765 ::
binietoglou@0 766
binietoglou@0 767 RawData_Start_Date = "20090130" ;
binietoglou@0 768
binietoglou@0 769 RawData_Start_Time_UT
binietoglou@0 770 This mandatory global attribute defines the UT start time of lidar
binietoglou@0 771 measurements in the format HHMMSS. In our case we have:
binietoglou@0 772
binietoglou@0 773 ::
binietoglou@0 774
binietoglou@0 775 RawData_Start_Time_UT = "000001" ;
binietoglou@0 776
binietoglou@0 777 RawData_Stop_Time_UT``
binietoglou@0 778 This mandatory global attribute defines the UT stop time of lidar
binietoglou@0 779 measurements in the format HHMMSS. In our case we have:
binietoglou@0 780
binietoglou@0 781 ::
binietoglou@0 782
binietoglou@0 783 RawData_Stop_Time_UT = "000501" ;
binietoglou@0 784
binietoglou@0 785 RawBck_Start_Date
binietoglou@0 786 This optional global attribute defines the start date of dark
binietoglou@0 787 measurements in the format YYYYMMDD. In our case we have:
binietoglou@0 788
binietoglou@0 789 ::
binietoglou@0 790
binietoglou@0 791 RawBck_Start_Date = "20090129" ;
binietoglou@0 792
binietoglou@0 793 RawBck_Start_Time_UT
binietoglou@0 794 This optional global attribute defines the UT start time of dark
binietoglou@0 795 measurements in the format HHMMSS. In our case we have:
binietoglou@0 796
binietoglou@0 797 ::
binietoglou@0 798
binietoglou@0 799 RawBck_Start_Time_UT = "235001" ;
binietoglou@0 800
binietoglou@0 801 RawBck_Stop_Time_UT
binietoglou@0 802 This optional global attribute defines the UT stop time of dark
binietoglou@0 803 measurements in the format HHMMSS. In our case we have:
binietoglou@0 804
binietoglou@0 805 ::
binietoglou@0 806
binietoglou@0 807 RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 808
binietoglou@0 809 Example of file (CDL format)
binietoglou@0 810 ----------------------------
binietoglou@0 811
binietoglou@0 812 To summarize we have the following NetCDF Raw Lidar Data file (in CDL
binietoglou@0 813 format):
binietoglou@0 814
binietoglou@0 815 ::
binietoglou@0 816
binietoglou@0 817 dimensions:
binietoglou@0 818 points = 5000 ;
binietoglou@0 819 channels = 4 ;
binietoglou@0 820 time = UNLIMITED ; // (10 currently)
binietoglou@0 821 nb_of_time_scales = 2 ;
binietoglou@0 822 scan_angles = 1 ;
binietoglou@0 823 time_bck = 6 ;
binietoglou@0 824 variables:
binietoglou@0 825 int channel_ID(channels) ;
binietoglou@0 826 int Laser_Repetition_Rate(channels) ;
binietoglou@0 827 double Laser_Pointing_Angle(scan_angles) ;
binietoglou@0 828 int ID_Range(channels) ;
binietoglou@0 829 int Scattering_Mechanism(channels) ;
binietoglou@0 830 double Emitted_Wavelength(channels) ;
binietoglou@0 831 double Detected_Wavelength(channels) ;
binietoglou@0 832 double Raw_Data_Range_Resolution(channels) ;
binietoglou@0 833 int Background_Mode(channels) ;
binietoglou@0 834 double Background_Low(channels) ;
binietoglou@0 835 double Background_High(channels) ;
binietoglou@0 836 int Molecular_Calc ;
binietoglou@0 837 double Pressure_at_Lidar_Station ;
binietoglou@0 838 double Temperature_at_Lidar_Station ;
binietoglou@0 839 int id_timescale(channels) ;
binietoglou@0 840 double Dead_Time(channels) ;
binietoglou@0 841 int Dead_Time_Corr_Type(channels) ;
binietoglou@0 842 int Acquisition_Mode(channels) ;
binietoglou@0 843 double Trigger_Delay(channels) ;
binietoglou@0 844 int LR_Input(channels) ;
binietoglou@0 845 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
binietoglou@0 846 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
binietoglou@0 847 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
binietoglou@0 848 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 849 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 850 int Laser_Shots(time, channels) ;
binietoglou@0 851 double Raw_Lidar_Data(time, channels, points) ;
binietoglou@0 852 double Background_Profile(time_bck, channels, points) ;
binietoglou@0 853 double DAQ_Range(channels) ;
binietoglou@0 854
binietoglou@0 855 // global attributes:
binietoglou@0 856 :Measurement_ID = "20090130cc00" ;
binietoglou@0 857 :RawData_Start_Date = "20090130" ;
binietoglou@0 858 :RawData_Start_Time_UT = "000001" ;
binietoglou@0 859 :RawData_Stop_Time_UT = "000501" ;
binietoglou@0 860 :RawBck_Start_Date = "20090129" ;
binietoglou@0 861 :RawBck_Start_Time_UT = "235001" ;
binietoglou@0 862 :RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 863
binietoglou@0 864 data:
binietoglou@0 865
binietoglou@0 866 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 867
binietoglou@0 868 Laser_Repetition_Rate = 50, 50, 50, 50 ;
binietoglou@0 869
binietoglou@0 870 Laser_Pointing_Angle = 5 ;
binietoglou@0 871
binietoglou@0 872 ID_Range = 1, 1, 1, 1 ;
binietoglou@0 873
binietoglou@0 874 Scattering_Mechanism = 0, 2, 3, 1 ;
binietoglou@0 875
binietoglou@0 876 Emitted_Wavelength = 1064, 532, 532, 532 ;
binietoglou@0 877
binietoglou@0 878 Detected_Wavelength = 1064, 532, 532, 607 ;
binietoglou@0 879
binietoglou@0 880 Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ;
binietoglou@0 881
binietoglou@0 882 Background_Mode = 0, 1, 1, 1 ;
binietoglou@0 883
binietoglou@0 884 Background_Low = 0, 30000, 30000, 30000 ;
binietoglou@0 885
binietoglou@0 886 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 887
binietoglou@0 888 Molecular_Calc = 0 ;
binietoglou@0 889
binietoglou@0 890 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 891
binietoglou@0 892 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 893
binietoglou@0 894 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 895
binietoglou@0 896 Dead_Time = _, 10, 10, 10 ;
binietoglou@0 897
binietoglou@0 898 Dead_Time_Corr_Type = _, 0, 0, 0 ;
binietoglou@0 899
binietoglou@0 900 Acquisition_Mode = 0, 1, 1, 1 ;
binietoglou@0 901
binietoglou@0 902 Trigger_Delay = 50, 0, 0, 0 ;
binietoglou@0 903
binietoglou@0 904 LR_Input = 1,_,_,_ ;
binietoglou@0 905
binietoglou@0 906 DAQ_Range = 100,_,_,_ ;
binietoglou@0 907
binietoglou@0 908 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 909 0, 0,
binietoglou@0 910 0, 0,
binietoglou@0 911 0, 0,
binietoglou@0 912 0, 0,
binietoglou@0 913 0, 0,
binietoglou@0 914 _, 0,
binietoglou@0 915 _, 0,
binietoglou@0 916 _, 0,
binietoglou@0 917 _, 0,
binietoglou@0 918 _, 0 ;
binietoglou@0 919
binietoglou@0 920
binietoglou@0 921 Raw_Data_Start_Time =
binietoglou@0 922 0, 0,
binietoglou@0 923 60, 30,
binietoglou@0 924 120, 60,
binietoglou@0 925 180, 90,
binietoglou@0 926 240, 120,
binietoglou@0 927 _, 150,
binietoglou@0 928 _, 180,
binietoglou@0 929 _, 210,
binietoglou@0 930 _, 240,
binietoglou@0 931 _, 270 ;
binietoglou@0 932
binietoglou@0 933 Raw_Data_Stop_Time =
binietoglou@0 934 60, 30,
binietoglou@0 935 120, 60,
binietoglou@0 936 180, 90,
binietoglou@0 937 240, 120,
binietoglou@0 938 300, 150,
binietoglou@0 939 _, 180,
binietoglou@0 940 _, 210,
binietoglou@0 941 _, 240,
binietoglou@0 942 _, 270,
binietoglou@0 943 _, 300 ;
binietoglou@0 944
binietoglou@0 945
binietoglou@0 946 Raw_Bck_Start_Time =
binietoglou@0 947 0, 0,
binietoglou@0 948 60, 30,
binietoglou@0 949 120, 60,
binietoglou@0 950 _, 90,
binietoglou@0 951 _, 120,
binietoglou@0 952 _, 150;
binietoglou@0 953
binietoglou@0 954
binietoglou@0 955 Raw_Bck_Stop_Time =
binietoglou@0 956 60, 30,
binietoglou@0 957 120, 60,
binietoglou@0 958 180, 90,
binietoglou@0 959 _, 120,
binietoglou@0 960 _, 150,
binietoglou@0 961 _, 180 ;
binietoglou@0 962
binietoglou@0 963
binietoglou@0 964 Laser_Shots =
binietoglou@0 965 1500, 3000, 3000, 3000,
binietoglou@0 966 1500, 3000, 3000, 3000,
binietoglou@0 967 1500, 3000, 3000, 3000,
binietoglou@0 968 1500, 3000, 3000, 3000,
binietoglou@0 969 1500, 3000, 3000, 3000,
binietoglou@0 970 1500, _, _, _,
binietoglou@0 971 1500, _, _, _,
binietoglou@0 972 1500, _, _, _,
binietoglou@0 973 1500, _, _, _,
binietoglou@0 974 1500, _, _, _ ;
binietoglou@0 975
binietoglou@0 976
binietoglou@0 977 Raw_Lidar_Data = ...
binietoglou@0 978
binietoglou@0 979 Background_Profile = ...
binietoglou@0 980
binietoglou@0 981 Please keep in mind that in case you submit a file like the previous one
binietoglou@0 982 all the parameters present in it will be used by the SCC even if you
binietoglou@0 983 have different values for the same parameters within the SCC\_DB. If you
binietoglou@0 984 want to use the values already stored in SCC\_DB (this should be the
binietoglou@0 985 usual way to use SCC) the Raw Lidar Data input file has to be
binietoglou@0 986 modified as follows:
binietoglou@0 987
binietoglou@0 988 ::
binietoglou@0 989
binietoglou@0 990 dimensions:
binietoglou@0 991 points = 5000 ;
binietoglou@0 992 channels = 4 ;
binietoglou@0 993 time = UNLIMITED ; // (10 currently)
binietoglou@0 994 nb_of_time_scales = 2 ;
binietoglou@0 995 scan_angles = 1 ;
binietoglou@0 996 time_bck = 6 ;
binietoglou@0 997 variables:
binietoglou@0 998 int channel_ID(channels) ;
binietoglou@0 999 double Laser_Pointing_Angle(scan_angles) ;
binietoglou@0 1000 double Background_Low(channels) ;
binietoglou@0 1001 double Background_High(channels) ;
binietoglou@0 1002 int Molecular_Calc ;
binietoglou@0 1003 double Pressure_at_Lidar_Station ;
binietoglou@0 1004 double Temperature_at_Lidar_Station ;
binietoglou@0 1005 int id_timescale(channels) ;
binietoglou@0 1006 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
binietoglou@0 1007 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
binietoglou@0 1008 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
binietoglou@0 1009 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 1010 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 1011 int LR_Input(channels) ;
binietoglou@0 1012 int Laser_Shots(time, channels) ;
binietoglou@0 1013 double Raw_Lidar_Data(time, channels, points) ;
binietoglou@0 1014 double Background_Profile(time_bck, channels, points) ;
binietoglou@0 1015 double DAQ_Range(channels) ;
binietoglou@0 1016
binietoglou@0 1017 // global attributes:
binietoglou@0 1018 :Measurement_ID = "20090130cc00" ;
binietoglou@0 1019 :RawData_Start_Date = "20090130" ;
binietoglou@0 1020 :RawData_Start_Time_UT = "000001" ;
binietoglou@0 1021 :RawData_Stop_Time_UT = "000501" ;
binietoglou@0 1022 :RawBck_Start_Date = "20090129" ;
binietoglou@0 1023 :RawBck_Start_Time_UT = "235001" ;
binietoglou@0 1024 :RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 1025
binietoglou@0 1026 data:
binietoglou@0 1027
binietoglou@0 1028 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 1029
binietoglou@0 1030 Laser_Pointing_Angle = 5 ;
binietoglou@0 1031
binietoglou@0 1032 Background_Low = 0, 30000, 30000, 30000 ;
binietoglou@0 1033
binietoglou@0 1034 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 1035
binietoglou@0 1036 Molecular_Calc = 0 ;
binietoglou@0 1037
binietoglou@0 1038 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 1039
binietoglou@0 1040 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 1041
binietoglou@0 1042 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 1043
binietoglou@0 1044 LR_Input = 1,_,_,_ ;
binietoglou@0 1045
binietoglou@0 1046 DAQ_Range = 100,_,_,_ ;
binietoglou@0 1047
binietoglou@0 1048 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 1049 0, 0,
binietoglou@0 1050 0, 0,
binietoglou@0 1051 0, 0,
binietoglou@0 1052 0, 0,
binietoglou@0 1053 0, 0,
binietoglou@0 1054 _, 0,
binietoglou@0 1055 _, 0,
binietoglou@0 1056 _, 0,
binietoglou@0 1057 _, 0,
binietoglou@0 1058 _, 0 ;
binietoglou@0 1059
binietoglou@0 1060
binietoglou@0 1061 Raw_Data_Start_Time =
binietoglou@0 1062 0, 0,
binietoglou@0 1063 60, 30,
binietoglou@0 1064 120, 60,
binietoglou@0 1065 180, 90,
binietoglou@0 1066 240, 120,
binietoglou@0 1067 _, 150,
binietoglou@0 1068 _, 180,
binietoglou@0 1069 _, 210,
binietoglou@0 1070 _, 240,
binietoglou@0 1071 _, 270 ;
binietoglou@0 1072
binietoglou@0 1073 Raw_Data_Stop_Time =
binietoglou@0 1074 60, 30,
binietoglou@0 1075 120, 60,
binietoglou@0 1076 180, 90,
binietoglou@0 1077 240, 120,
binietoglou@0 1078 300, 150,
binietoglou@0 1079 _, 180,
binietoglou@0 1080 _, 210,
binietoglou@0 1081 _, 240,
binietoglou@0 1082 _, 270,
binietoglou@0 1083 _, 300 ;
binietoglou@0 1084
binietoglou@0 1085
binietoglou@0 1086 Raw_Bck_Start_Time =
binietoglou@0 1087 0, 0,
binietoglou@0 1088 60, 30,
binietoglou@0 1089 120, 60,
binietoglou@0 1090 _, 90,
binietoglou@0 1091 _, 120,
binietoglou@0 1092 _, 150;
binietoglou@0 1093
binietoglou@0 1094
binietoglou@0 1095 Raw_Bck_Stop_Time =
binietoglou@0 1096 60, 30,
binietoglou@0 1097 120, 60,
binietoglou@0 1098 180, 90,
binietoglou@0 1099 _, 120,
binietoglou@0 1100 _, 150,
binietoglou@0 1101 _, 180 ;
binietoglou@0 1102
binietoglou@0 1103
binietoglou@0 1104 Laser_Shots =
binietoglou@0 1105 1500, 3000, 3000, 3000,
binietoglou@0 1106 1500, 3000, 3000, 3000,
binietoglou@0 1107 1500, 3000, 3000, 3000,
binietoglou@0 1108 1500, 3000, 3000, 3000,
binietoglou@0 1109 1500, 3000, 3000, 3000,
binietoglou@0 1110 1500, _, _, _,
binietoglou@0 1111 1500, _, _, _,
binietoglou@0 1112 1500, _, _, _,
binietoglou@0 1113 1500, _, _, _,
binietoglou@0 1114 1500, _, _, _ ;
binietoglou@0 1115
binietoglou@0 1116
binietoglou@0 1117 Raw_Lidar_Data = ...
binietoglou@0 1118
binietoglou@0 1119 Background_Profile = ...
binietoglou@0 1120
binietoglou@0 1121 This example file contains the minimum collection of mandatory
binietoglou@0 1122 information that has to be found within the Raw Lidar Data input
binietoglou@0 1123 file. If it is really necessary, the user can decide to add to these
binietoglou@0 1124 mandatory parameters any number of additional parameters considered in
binietoglou@0 1125 the previous example.
binietoglou@0 1126
binietoglou@0 1127 Finally, suppose we want to make the following changes with respect to
binietoglou@0 1128 the previous example:
binietoglou@0 1129
binietoglou@0 1130 #. use a sounding file for molecular density calculation instead of “US
binietoglou@0 1131 Standar Atmosphere 1976”
binietoglou@0 1132
binietoglou@0 1133 #. supply a lidar ratio profile to use in elastic backscatter retrieval
binietoglou@0 1134 instead of a fixed value
binietoglou@0 1135
binietoglou@0 1136 #. provide a overlap function for overlap correction
binietoglou@0 1137
binietoglou@0 1138 In this case we have to generate the following NetCDF additional files:
binietoglou@0 1139
binietoglou@0 1140 rs_20090130cc00.nc
binietoglou@0 1141 The name of Sounding Data file has to be computed as follows:
binietoglou@0 1142 ``"rs_"``+``Measurement_ID``
binietoglou@0 1143 The structure of this file is summarized in table tab:sounding.
binietoglou@0 1144
binietoglou@0 1145 ov_20090130cc00.nc
binietoglou@0 1146 The name of Overlap file has to be computed as follows:
binietoglou@0 1147 ``"ov_"``+``Measurement_ID``
binietoglou@0 1148 The structure of this file is summarized in table tab:overlap.
binietoglou@0 1149
binietoglou@0 1150 lr_20090130cc00.nc
binietoglou@0 1151 The name of Lidar Ratio file has to be computed as follows:
binietoglou@0 1152 ``"lr_"``+``Measurement_ID``
binietoglou@0 1153 The structure of this file is summarized in table tab:lr.
binietoglou@0 1154
binietoglou@0 1155 Moreover we need to apply the following changes to the Raw Lidar Data
binietoglou@0 1156 input file:
binietoglou@0 1157
binietoglou@0 1158 1. Change the value of the variable ``Molecular_Calc`` as follows:
binietoglou@0 1159
binietoglou@0 1160 ::
binietoglou@0 1161
binietoglou@0 1162 Molecular_Calc = 1 ;
binietoglou@0 1163
binietoglou@0 1164 Of course the variables ``Pressure_at_Lidar_Station`` and
binietoglou@0 1165 ``Temperature_at_Lidar_Station`` are not necessary anymore.
binietoglou@0 1166
binietoglou@0 1167 2. Change the values of the array ``LR_Input`` as follows:
binietoglou@0 1168
binietoglou@0 1169 ::
binietoglou@0 1170
binietoglou@0 1171 LR_Input = 0,_,_,_ ;
binietoglou@0 1172
binietoglou@0 1173 3. Add the global attribute ``Sounding_File_Name``
binietoglou@0 1174
binietoglou@0 1175 ::
binietoglou@0 1176
binietoglou@0 1177 Sounding_File_Name = "rs_20090130cc00.nc" ;
binietoglou@0 1178
binietoglou@0 1179 5. Add the global attribute ``LR_File_Name``
binietoglou@0 1180
binietoglou@0 1181 ::
binietoglou@0 1182
binietoglou@0 1183 LR_File_Name = "lr_20090130cc00.nc" ;
binietoglou@0 1184
binietoglou@0 1185 6. Add the global attribute ``Overlap_File_Name``
binietoglou@0 1186
binietoglou@0 1187 ::
binietoglou@0 1188
binietoglou@0 1189 Overlap_File_Name = "ov_20090130cc00.nc" ;

mercurial