docs/netcdf_file.rst

Wed, 20 Feb 2013 15:23:54 +0100

author
ulalume3 <binietoglou@imaa.cnr.it>
date
Wed, 20 Feb 2013 15:23:54 +0100
changeset 27
e20498e04e1a
parent 11
79fea4145278
child 31
b747e9fcd2b1
permissions
-rw-r--r--

Added usecase image files.

binietoglou@0 1 The SCC netCDF file format
binietoglou@0 2 ==========================
binietoglou@0 3
binietoglou@0 4 Rationale
binietoglou@0 5 ---------
binietoglou@0 6
binietoglou@0 7 The Single Calculus Chain (SCC) is composed by two different modules:
binietoglou@0 8
binietoglou@0 9 - pre-processing module ( scc\_preprocessing)
binietoglou@0 10
binietoglou@0 11 - optical processing module ( ELDA)
binietoglou@0 12
binietoglou@0 13 To perfom aerosol optical retrievals the SCC needs not only the raw
binietoglou@0 14 lidar data but also a certain number of parameters to use in both
binietoglou@0 15 pre-processing and optical processing stages. The SCC gets these
binietoglou@0 16 parameters looking at two different locations:
binietoglou@0 17
binietoglou@0 18 - Single Calculus Chain relational database (SCC\_DB)
binietoglou@0 19
binietoglou@0 20 - Input files
binietoglou@0 21
binietoglou@0 22 There are some paramenters that can be found only in the input files
binietoglou@0 23 (those ones changing from measurement to measurement), others that can
binietoglou@0 24 be found only in the SCC\_DB and other ones that can be found in both
binietoglou@0 25 these locations. In the last case, if a particular parameter is needed,
binietoglou@0 26 the SCC will search first in the input files and then in SCC\_DB. If the
binietoglou@0 27 parameter is found in the input files the SCC will keep it without
binietoglou@0 28 looking into SCC\_DB.
binietoglou@0 29
binietoglou@0 30 The input files have to be submitted to the SCC in NetCDF format. At the
binietoglou@0 31 present the SCC can handle four different types of input files:
binietoglou@0 32
binietoglou@0 33 1. Raw Lidar Data
binietoglou@0 34 2. Sounding Data
binietoglou@0 35 3. Overlap
binietoglou@0 36 4. Lidar Ratio
binietoglou@0 37
binietoglou@0 38
binietoglou@0 39 As already mentioned, the Raw Lidar Data file contains not only the
binietoglou@0 40 raw lidar data but also other parameters to use to perform the
binietoglou@0 41 pre-processing and optical processing. The Sounding Data file
binietoglou@0 42 contains the data coming from a correlative radiosounding and it is used
binietoglou@0 43 by the SCC for molecular density calculation. The Overlap file
binietoglou@0 44 contains the measured overlap function. The Lidar Ratio file contains
binietoglou@0 45 a lidar ratio profile to use in elastic backscatter retrievals. The
binietoglou@0 46 Raw Lidar Data file is of course mandatory and the Sounding Data,
binietoglou@0 47 Overlap and Lidar Ratio files are optional. If Sounding Data file
binietoglou@0 48 is not submitted by the user, the molecular density will be calculated
binietoglou@0 49 by the SCC using the “US Standard Atmosphere 1976”. If the Overlap
binietoglou@0 50 file is not submitted by the user, the SCC will get the full overlap
binietoglou@0 51 height from SCC\_DB and it will produce optical results starting from
binietoglou@0 52 this height. If Lidar Ratio file is not submitted by the user, the
binietoglou@0 53 SCC will consider a fixed value for lidar ratio got from SCC\_DB.
binietoglou@0 54
binietoglou@0 55 The user can decide to submit all these files or any number of them (of
binietoglou@0 56 course the file Raw Lidar Data is mandatory). For example the user
binietoglou@0 57 can submit together with the Raw Lidar Data file only the Sounding
binietoglou@0 58 Data file or only the Overlap file.
binietoglou@0 59
binietoglou@0 60 This document provides a detailed explanation about the structure of the
binietoglou@0 61 NetCDF input files to use for SCC data submission. All Earlinet groups
binietoglou@0 62 should read it carefully because they have to produce such kind of input
binietoglou@0 63 files if they want to use the SCC for their standard lidar retrievals.
binietoglou@0 64 Every comments or suggestions regarding this document can be sent to
binietoglou@0 65 Giuseppe D’Amico by e-mail at ``damico@imaa.cnr.it``
binietoglou@0 66
binietoglou@0 67 This document is available for downloading at ``www.earlinetasos.org``
binietoglou@0 68
binietoglou@0 69 In table tab:rawdata is reported a list of dimensions, variables and
binietoglou@0 70 global attributes that can be used in the NetCDF Raw Lidar Data input
binietoglou@0 71 file. For each of them it is indicated:
binietoglou@0 72
binietoglou@0 73 - The name. For the multidimensional variables also the corresponding
binietoglou@0 74 dimensions are reported
binietoglou@0 75
binietoglou@0 76 - A description explaining the meaning
binietoglou@0 77
binietoglou@0 78 - The type
binietoglou@0 79
binietoglou@0 80 - If it is mandatory or optional
binietoglou@0 81
binietoglou@0 82 As already mentioned, the SCC can get some parameters looking first in
binietoglou@0 83 the Raw Lidar Data input file and then into SCC\_DB. This means that
binietoglou@0 84 to use the parameters stored in SCC\_DB the optional variables or
binietoglou@0 85 optional global attributes must not appear within Raw Lidar Data
binietoglou@0 86 file. This is the suggested and recommended way to use the SCC. Please
binietoglou@0 87 include optional parameters in the Raw Lidar Data only as an
binietoglou@0 88 exception.
binietoglou@0 89
binietoglou@0 90 In table tab:sounding, tab:overlap and tab:lr are reported all the
binietoglou@0 91 information about the structure of Sounding Data, Overlap and
binietoglou@0 92 Lidar Ratio input files respectively.
binietoglou@0 93
binietoglou@0 94 Example
binietoglou@0 95 -------
binietoglou@0 96
binietoglou@0 97 Let’s now consider an example of Raw Lidar Data input file. Suppose
binietoglou@0 98 we want to generate NetCDF input file corresponding to a measurement
binietoglou@0 99 with the following properties:
binietoglou@0 100
binietoglou@0 101 +----------------------+-------------------------------------------+
binietoglou@0 102 | Start Date | :math:`30^{th}` January 2009 |
binietoglou@0 103 +----------------------+-------------------------------------------+
binietoglou@0 104 | Start Time UT | 00:00:01 |
binietoglou@0 105 +----------------------+-------------------------------------------+
binietoglou@0 106 | Stop Time UT | 00:05:01 |
binietoglou@0 107 +----------------------+-------------------------------------------+
binietoglou@0 108 | Station Name | Dummy station |
binietoglou@0 109 +----------------------+-------------------------------------------+
binietoglou@0 110 | Earlinet call-sign | cc |
binietoglou@0 111 +----------------------+-------------------------------------------+
binietoglou@0 112 | Pointing angle | 5 degrees with respect to the zenith |
binietoglou@0 113 +----------------------+-------------------------------------------+
binietoglou@0 114
binietoglou@0 115 Moreover suppose that this measurement is composed by the following
binietoglou@0 116 lidar channels:
binietoglou@0 117
binietoglou@0 118 1. 1064 lidar channel
binietoglou@0 119
binietoglou@0 120 +------------------------------+-------------------------------+
binietoglou@0 121 | Emission wavelength=1064nm | Detection wavelength=1064nm |
binietoglou@0 122 +------------------------------+-------------------------------+
binietoglou@0 123 | Time resolution=30s | Number of laser shots=1500 |
binietoglou@0 124 +------------------------------+-------------------------------+
binietoglou@0 125 | Number of bins=3000 | Detection mode=analog |
binietoglou@0 126 +------------------------------+-------------------------------+
binietoglou@0 127 | Range resolution=7.5m | Polarization state=total |
binietoglou@0 128 +------------------------------+-------------------------------+
binietoglou@0 129
binietoglou@0 130 2. 532 cross lidar channel
binietoglou@0 131
binietoglou@0 132 +-----------------------------+---------------------------------+
binietoglou@0 133 | Emission wavelength=532nm | Detection wavelength=532nm |
binietoglou@0 134 +-----------------------------+---------------------------------+
binietoglou@0 135 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 136 +-----------------------------+---------------------------------+
binietoglou@0 137 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 138 +-----------------------------+---------------------------------+
binietoglou@0 139 | Range resolution=15m | Polarization state=cross |
binietoglou@0 140 +-----------------------------+---------------------------------+
binietoglou@0 141
binietoglou@0 142 3. 532 parallel lidar channel
binietoglou@0 143
binietoglou@0 144 +-----------------------------+---------------------------------+
binietoglou@0 145 | Emission wavelength=532nm | Detection wavelength=532nm |
binietoglou@0 146 +-----------------------------+---------------------------------+
binietoglou@0 147 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 148 +-----------------------------+---------------------------------+
binietoglou@0 149 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 150 +-----------------------------+---------------------------------+
binietoglou@0 151 | Range resolution=15m | Polarization state=parallel |
binietoglou@0 152 +-----------------------------+---------------------------------+
binietoglou@0 153
binietoglou@0 154 4. 607 :math:`N_2` vibrational Raman channel
binietoglou@0 155
binietoglou@0 156 +-----------------------------+---------------------------------+
binietoglou@0 157 | Emission wavelength=532nm | Detection wavelength=607nm |
binietoglou@0 158 +-----------------------------+---------------------------------+
binietoglou@0 159 | Time resolution=60s | Number of laser shots=3000 |
binietoglou@0 160 +-----------------------------+---------------------------------+
binietoglou@0 161 | Number of bins=5000 | Detection mode=photoncounting |
binietoglou@0 162 +-----------------------------+---------------------------------+
binietoglou@0 163 | Range resolution=15m |
binietoglou@0 164 +-----------------------------+---------------------------------+
binietoglou@0 165
binietoglou@0 166 Finally let’s assume we have also performed dark measurements before the
binietoglou@0 167 lidar measurements from the 23:50:01 UT up to 23:53:01 UT of
binietoglou@0 168 29:math:`^\mathrmth` January 2009.
binietoglou@0 169
binietoglou@0 170 Dimensions
binietoglou@0 171 ~~~~~~~~~~
binietoglou@0 172
binietoglou@0 173 Looking at table tab:rawdata we have to fix the following dimensions:
binietoglou@0 174
binietoglou@0 175 ::
binietoglou@0 176
binietoglou@0 177 points
binietoglou@0 178 channels
binietoglou@0 179 time
binietoglou@0 180 nb_of_time_scales
binietoglou@0 181 scan_angles
binietoglou@0 182 time_bck
binietoglou@0 183
binietoglou@0 184 The dimension ``time`` is unlimited so we don’t have to fix it.
binietoglou@0 185
binietoglou@0 186 We have 4 lidar channels so:
binietoglou@0 187
binietoglou@0 188 ::
binietoglou@0 189
binietoglou@0 190 channels=4
binietoglou@0 191
binietoglou@0 192 Regarding the dimension ``points`` we have only one channel with a
binietoglou@0 193 number of vertical bins equal to 3000 (the 1064nm) and all other
binietoglou@0 194 channels with 5000 vertical bins. In cases like this the dimension
binietoglou@0 195 ``points`` has to be fixed to the maximum number of vertical bins so:
binietoglou@0 196
binietoglou@0 197 ::
binietoglou@0 198
binietoglou@0 199 points=5000
binietoglou@0 200
binietoglou@0 201 Moreover only one channel (1064nm) is acquired with a time resolution of
binietoglou@0 202 30 seconds, all the other channels have a time resolution of 60 seconds.
binietoglou@0 203 This means that we have to define two different time scales. We have to
binietoglou@0 204 set:
binietoglou@0 205
binietoglou@0 206 ::
binietoglou@0 207
binietoglou@0 208 nb_of_time_scales=2
binietoglou@0 209
binietoglou@0 210 The measurement is performed only at one scan angle (5 degrees with
binietoglou@0 211 respect to the zenith) so:
binietoglou@0 212
binietoglou@0 213 ::
binietoglou@0 214
binietoglou@0 215 scan_angles=1
binietoglou@0 216
binietoglou@0 217 We have 3 minutes of dark measurements and two different time scales one
binietoglou@0 218 with 60 seconds time resolution and the other one with 30 seconds time
binietoglou@0 219 resolution. So we will have 3 different dark profiles for the channels
binietoglou@0 220 acquired with the first time scale and 6 for the lidar channels acquired
binietoglou@0 221 with the second time scale. We have to fix the dimension ``time_bck`` as
binietoglou@0 222 the maximum between these values:
binietoglou@0 223
binietoglou@0 224 ::
binietoglou@0 225
binietoglou@0 226 time_bck=6
binietoglou@0 227
binietoglou@0 228 Variables
binietoglou@0 229 ~~~~~~~~~
binietoglou@0 230
binietoglou@0 231 In this section it will be explained how to fill all the possible
binietoglou@0 232 variables either mandatory or optional of Raw Lidar Data input file.
binietoglou@0 233
binietoglou@0 234 Raw_Data_Start_Time(time, nb_of_time_scales)
binietoglou@0 235 This 2 dimensional mandatory array has to contain the acquisition
binietoglou@0 236 start time (in seconds from the time given by the global attribute
binietoglou@0 237 ``RawData_Start_Time_UT``) of each lidar profile. In this example we
binietoglou@0 238 have two different time scales: one is characterized by steps of 30
binietoglou@0 239 seconds (the 1064nm is acquired with this time scale) the other by
binietoglou@0 240 steps of 60 seconds (532cross, 532parallel and 607nm). Moreover the
binietoglou@0 241 measurement start time is 00:00:01 UT and the measurement stop time
binietoglou@0 242 is 00:05:01 UT. In this case we have to define:
binietoglou@0 243
binietoglou@0 244 ::
binietoglou@0 245
binietoglou@0 246 Raw_Data_Start_Time =
binietoglou@0 247 0, 0,
binietoglou@0 248 60, 30,
binietoglou@0 249 120, 60,
binietoglou@0 250 180, 90,
binietoglou@0 251 240, 120,
binietoglou@0 252 _, 150,
binietoglou@0 253 _, 180,
binietoglou@0 254 _, 210,
binietoglou@0 255 _, 240,
binietoglou@0 256 _, 270 ;
binietoglou@0 257
binietoglou@0 258 The order used to fill this array defines the correspondence between
binietoglou@0 259 the different time scales and the time scale index. In this example
binietoglou@0 260 we have a time scale index of 0 for the time scale with steps of 60
binietoglou@0 261 seconds and a time scale index of 1 for the other one.
binietoglou@0 262
binietoglou@0 263 Raw_Data_Stop_Time(time, nb_of_time_scales)
binietoglou@0 264 The same as previous item but for the data acquisition stop time.
binietoglou@0 265 Following a similar procedure we have to define:
binietoglou@0 266
binietoglou@0 267 ::
binietoglou@0 268
binietoglou@0 269 Raw_Data_Stop_Time =
binietoglou@0 270 60, 30,
binietoglou@0 271 120, 60,
binietoglou@0 272 180, 90,
binietoglou@0 273 240, 120,
binietoglou@0 274 300, 150,
binietoglou@0 275 _, 180,
binietoglou@0 276 _, 210,
binietoglou@0 277 _, 240,
binietoglou@0 278 _, 270,
binietoglou@0 279 _, 300 ;
binietoglou@0 280
binietoglou@0 281 Raw_Lidar_Data(time, channels, points)
binietoglou@0 282 This 3 dimensional mandatory array has to be filled with the
binietoglou@0 283 time-series of raw lidar data. The photoncounting profiles have to
binietoglou@0 284 submitted in counts (so as integers) while the analog ones in mV. The
binietoglou@0 285 order the user chooses to fill this array defines the correspondence
binietoglou@0 286 between channel index and lidar data.
binietoglou@0 287
binietoglou@0 288 For example if we fill this array in such way that:
binietoglou@0 289
binietoglou@0 290 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 291 | Raw_Lidar_Data(time,0,points | :math:`\rightarrow` is the time-series of 1064 nm |
binietoglou@0 292 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 293 | Raw_Lidar_Data(time,1,points | :math:`\rightarrow` is the time-series of 532 cross |
binietoglou@0 294 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 295 | Raw_Lidar_Data(time,2,points | :math:`\rightarrow` is the time-series of 532 parallel |
binietoglou@0 296 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 297 | Raw_Lidar_Data(time,3,points | :math:`\rightarrow` is the time-series of 607 nm |
binietoglou@0 298 +-------------------------------------+------------------------------------------------------------+
binietoglou@0 299
binietoglou@0 300 from now on the channel index 0 is associated to the 1064 channel,
binietoglou@0 301 1 to the 532 cross, 2 to the 532 parallel and 3 to the 607nm.
binietoglou@0 302
binietoglou@0 303 Raw_Bck_Start_Time(time_bck, nb_of_time_scales)
binietoglou@0 304 This 2 dimensional optional array has to contain the acquisition
binietoglou@0 305 start time (in seconds from the time given by the global attribute
binietoglou@0 306 ``RawBck_Start_Time_UT``) of each dark measurements profile.
binietoglou@0 307 Following the same procedure used for the variable
binietoglou@0 308 ``Raw_Data_Start_Time`` we have to define:
binietoglou@0 309
binietoglou@0 310 ::
binietoglou@0 311
binietoglou@0 312 Raw_Bck_Start_Time =
binietoglou@0 313 0, 0,
binietoglou@0 314 60, 30,
binietoglou@0 315 120, 60,
binietoglou@0 316 _, 90,
binietoglou@0 317 _, 120,
binietoglou@0 318 _, 150;
binietoglou@0 319
binietoglou@0 320 Raw_Bck_Stop_Time(time_bck, nb_of_time_scales)
binietoglou@0 321 The same as previous item but for the dark acquisition stop time.
binietoglou@0 322 Following a similar procedure we have to define:
binietoglou@0 323
binietoglou@0 324 ::
binietoglou@0 325
binietoglou@0 326 Raw_Bck_Stop_Time =
binietoglou@0 327 60, 30,
binietoglou@0 328 120, 60,
binietoglou@0 329 180, 90,
binietoglou@0 330 _, 120,
binietoglou@0 331 _, 150,
binietoglou@0 332 _, 180 ;
binietoglou@0 333
binietoglou@0 334
binietoglou@0 335 Background_Profile(time_bck, channels, points)
binietoglou@0 336 This 3 dimensional optional array has to be filled with the
binietoglou@0 337 time-series of the dark measurements data. The photoncounting
binietoglou@0 338 profiles have to submitted in counts (so as integers) while the
binietoglou@0 339 analog ones in mV. The user has to fill this array following the same
binietoglou@0 340 order used in filling the array ``Raw_Lidar_Data``:
binietoglou@0 341
binietoglou@0 342 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 343 | Background_Profile(time_bck,0,points | :math:`\rightarrow` dark time-series at 1064 nm |
binietoglou@0 344 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 345 | Background_Profile(time_bck,1,points | :math:`\rightarrow` dark time-series at 532 cross |
binietoglou@0 346 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 347 | Background_Profile(time_bck,2,points | :math:`\rightarrow` dark time-series at 532 parallel |
binietoglou@0 348 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 349 | Background_Profile(time_bck,3,points | :math:`\rightarrow` dark time-series at 607 nm |
binietoglou@0 350 +---------------------------------------------+----------------------------------------------------------+
binietoglou@0 351
binietoglou@0 352
binietoglou@0 353 channel_ID(channels)
binietoglou@0 354 This mandatory array provides the link between the channel index
binietoglou@0 355 within the Raw Lidar Data input file and the channel ID in
binietoglou@0 356 SCC\_DB. To fill this variable the user has to know which channel IDs
binietoglou@0 357 in SCC\_DB correspond to his lidar channels. For this purpose the
binietoglou@0 358 SCC, in its final version will provide to the user a special tool to
binietoglou@0 359 get these channel IDs through a Web interface. At the moment this
binietoglou@0 360 interface is not yet available and these channel IDs will be
binietoglou@0 361 communicated directly to the user by the NA5 people.
binietoglou@0 362
binietoglou@0 363 Anyway to continue the example let’s suppose that the four lidar
binietoglou@0 364 channels taken into account are mapped into SCC\_DB with the
binietoglou@0 365 following channel IDs:
binietoglou@0 366
binietoglou@0 367 +----------------+--------------------------------------+
binietoglou@0 368 | 1064 nm | :math:`\rightarrow` channel ID=7 |
binietoglou@0 369 +----------------+--------------------------------------+
binietoglou@0 370 | 532 cross | :math:`\rightarrow` channel ID=5 |
binietoglou@0 371 +----------------+--------------------------------------+
binietoglou@0 372 | 532 parallel | :math:`\rightarrow` channel ID=6 |
binietoglou@0 373 +----------------+--------------------------------------+
binietoglou@0 374 | 607 nm | :math:`\rightarrow` channel ID=8 |
binietoglou@0 375 +----------------+--------------------------------------+
binietoglou@0 376
binietoglou@0 377 In this case we have to define:
binietoglou@0 378
binietoglou@0 379 ::
binietoglou@0 380
binietoglou@0 381 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 382
binietoglou@0 383 id_timescale(channels)
binietoglou@0 384 This mandatory array is introduced to determine which time scale is
binietoglou@0 385 used for the acquisition of each lidar channel. In particular this
binietoglou@0 386 array defines the link between the channel index and the time scale
binietoglou@0 387 index. In our example we have two different time scales. Filling the
binietoglou@0 388 arrays ``Raw_Data_Start_Time`` and ``Raw_Data_Stop_Time`` we have
binietoglou@0 389 defined a time scale index of 0 for the time scale with steps of 60
binietoglou@0 390 seconds and a time scale index of 1 for the other one with steps of
binietoglou@0 391 30 seconds. In this way this array has to be set as:
binietoglou@0 392
binietoglou@0 393 ::
binietoglou@0 394
binietoglou@0 395 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 396
binietoglou@0 397 Laser_Pointing_Angle(scan_angles
binietoglou@0 398 This mandatory array contains all the scan angles used in the
binietoglou@0 399 measurement. In our example we have only one scan angle of 5 degrees
binietoglou@0 400 with respect to the zenith, so we have to define:
binietoglou@0 401
binietoglou@0 402 ::
binietoglou@0 403
binietoglou@0 404 Laser_Pointing_Angle = 5 ;
binietoglou@0 405
binietoglou@0 406 Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales)
binietoglou@0 407 This mandatory array is introduced to determine which scan angle is
binietoglou@0 408 used for the acquisition of each lidar profile. In particular this
binietoglou@0 409 array defines the link between the time and time scales indexes and
binietoglou@0 410 the scan angle index. In our example we have a single scan angle that
binietoglou@0 411 has to correspond to the scan angle index 0. So this array has to be
binietoglou@0 412 defined as:
binietoglou@0 413
binietoglou@0 414 ::
binietoglou@0 415
binietoglou@0 416 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 417 0, 0,
binietoglou@0 418 0, 0,
binietoglou@0 419 0, 0,
binietoglou@0 420 0, 0,
binietoglou@0 421 0, 0,
binietoglou@0 422 _, 0,
binietoglou@0 423 _, 0,
binietoglou@0 424 _, 0,
binietoglou@0 425 _, 0,
binietoglou@0 426 _, 0 ;
binietoglou@0 427
binietoglou@0 428 Laser_Shots(time, channels)
binietoglou@0 429 This mandatory array stores the laser shots accumulated at each time
binietoglou@0 430 for each channel. In our example the number of laser shots
binietoglou@0 431 accumulated is 1500 for the 1064nm channels and 3000 for all the
binietoglou@0 432 other channels. Moreover the laser shots do not change with the time.
binietoglou@0 433 So we have to define this array as:
binietoglou@0 434
binietoglou@0 435 ::
binietoglou@0 436
binietoglou@0 437 Laser_Shots =
binietoglou@0 438 1500, 3000, 3000, 3000,
binietoglou@0 439 1500, 3000, 3000, 3000,
binietoglou@0 440 1500, 3000, 3000, 3000,
binietoglou@0 441 1500, 3000, 3000, 3000,
binietoglou@0 442 1500, 3000, 3000, 3000,
binietoglou@0 443 1500, _, _, _,
binietoglou@0 444 1500, _, _, _,
binietoglou@0 445 1500, _, _, _,
binietoglou@0 446 1500, _, _, _,
binietoglou@0 447 1500, _, _, _ ;
binietoglou@0 448
binietoglou@0 449 Emitted_Wavelength(channels)
binietoglou@0 450 This optional array defines the link between the channel index and
binietoglou@0 451 the emission wavelength for each lidar channel. The wavelength has to
binietoglou@0 452 be expressed in nm. This information can be also taken from SCC\_DB.
binietoglou@0 453 In our example we have:
binietoglou@0 454
binietoglou@0 455 ::
binietoglou@0 456
binietoglou@0 457 Emitted_Wavelength = 1064, 532, 532, 532 ;
binietoglou@0 458
binietoglou@0 459 Detected_Wavelength(channels)
binietoglou@0 460 This optional array defines the link between the channel index and
binietoglou@0 461 the detected wavelength for each lidar channel. Here detected
binietoglou@0 462 wavelength means the value of center of interferential filter
binietoglou@0 463 expressed in nm. This information can be also taken from SCC\_DB. In
binietoglou@0 464 our example we have:
binietoglou@0 465
binietoglou@0 466 ::
binietoglou@0 467
binietoglou@0 468 Detected_Wavelength = 1064, 532, 532, 607 ;
binietoglou@0 469
binietoglou@0 470 Raw_Data_Range_Resolution(channels)
binietoglou@0 471 This optional array defines the link between the channel index and
binietoglou@0 472 the raw range resolution for each channel. If the scan angle is
binietoglou@0 473 different from zero this quantity is different from the vertical
binietoglou@0 474 resolution. More precisely if :math:`\alpha` is the scan angle used
binietoglou@0 475 and :math:`\Delta z` is the range resolution the vertical
binietoglou@0 476 resolution is calculated as :math:`\Delta
binietoglou@0 477 z'=\Delta z \cos\alpha`. This array has to be filled with
binietoglou@0 478 :math:`\Delta z` and not with :math:`\Delta z'`. The unit is
binietoglou@0 479 meters. This information can be also taken from SCC\_DB. In our
binietoglou@0 480 example we have:
binietoglou@0 481
binietoglou@0 482 ::
binietoglou@0 483
binietoglou@0 484 Raw_Data_Range_Resolution = 7.5, 15.0, 15.0, 15.0 ;
binietoglou@0 485
binietoglou@0 486 ID_Range(channels)
binietoglou@0 487 This optional array defines if a particular channel is configured as
binietoglou@0 488 high, low or ultranear range channel. In particular a value 0
binietoglou@0 489 indicates a low range channel, a value 1 a high range channel and a
binietoglou@0 490 value of 2 an ultranear range channel. If for a particular channel
binietoglou@0 491 you don’t separate between high and low range channel, please set the
binietoglou@0 492 corresponding value to 1. This information can be also taken from
binietoglou@0 493 SCC\_DB. In our case we have to set:
binietoglou@0 494
binietoglou@0 495 ::
binietoglou@0 496
binietoglou@0 497 ID_Range = 1, 1, 1, 1 ;
binietoglou@0 498
binietoglou@0 499 Scattering_Mechanism(channels)
binietoglou@0 500 This optional array defines the scattering mechanism involved in
binietoglou@0 501 each lidar channel. In particular the following values are adopted:
binietoglou@0 502
binietoglou@0 503 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 504 | 0 | :math:`\rightarrow` Total elastic backscatter |
binietoglou@0 505 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 506 | 1 | :math:`\rightarrow` :math:`N_2` vibrational Raman backscatter |
binietoglou@0 507 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 508 | 2 | :math:`\rightarrow` Cross polarization elastic backscatter |
binietoglou@0 509 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 510 | 3 | :math:`\rightarrow` Parallel polarization elastic backscatter |
binietoglou@0 511 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 512 | 4 | :math:`\rightarrow` :math:`H_2O` vibrational Raman backscatter |
binietoglou@0 513 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 514 | 5 | :math:`\rightarrow` Rotational Raman Stokes line close to elastic line |
binietoglou@0 515 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 516 | 6 | :math:`\rightarrow` Rotational Raman Stokes line far from elastic line |
binietoglou@0 517 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 518 | 7 | :math:`\rightarrow` Rotational Raman anti-Stokes line close to elastic line |
binietoglou@0 519 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 520 | 8 | :math:`\rightarrow` Rotational Raman anti-Stokes line far from elastic line |
binietoglou@0 521 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 522 | 9 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines close to elastic line |
binietoglou@0 523 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 524 | 10 | :math:`\rightarrow` Rotational Raman Stokes and anti-Stokes lines far from elastic line |
binietoglou@0 525 +------+---------------------------------------------------------------------------------------------+
binietoglou@0 526
binietoglou@0 527 This information can be also taken from SCC\_DB. In our example we have:
binietoglou@0 528
binietoglou@0 529 ::
binietoglou@0 530
binietoglou@0 531 Scattering_Mechanism = 0, 2, 3, 1 ;
binietoglou@0 532
binietoglou@0 533 Acquisition_Mode(channels)
binietoglou@0 534 This optional array defines the acquisition mode (analog or
binietoglou@0 535 photoncounting) involved in each lidar channel. In particular a value
binietoglou@0 536 of 0 means analog mode and 1 photoncounting mode. This information
binietoglou@0 537 can be also taken from SCC\_DB. In our example we have:
binietoglou@0 538
binietoglou@0 539 ::
binietoglou@0 540
binietoglou@0 541 Acquisition_Mode = 0, 1, 1, 1 ;
binietoglou@0 542
binietoglou@0 543 Laser_Repetition_Rate(channels)
binietoglou@0 544 This optional array defines the repetition rate in Hz used to
binietoglou@0 545 acquire each lidar channel. This information can be also taken from
binietoglou@0 546 SCC\_DB. In our example we are supposing we have only one laser with
binietoglou@0 547 a repetition rate of 50 Hz so we have to set:
binietoglou@0 548
binietoglou@0 549 ::
binietoglou@0 550
binietoglou@0 551 Laser_Repetition_Rate = 50, 50, 50, 50 ;
binietoglou@0 552
binietoglou@0 553 Dead_Time(channels)
binietoglou@0 554 This optional array defines the dead time in ns associated to each
binietoglou@0 555 lidar channel. The SCC will use the values given by this array to
binietoglou@0 556 correct the photoncounting signals for dead time. Of course for
binietoglou@0 557 analog signals no dead time correction will be applied (for analog
binietoglou@0 558 channels the corresponding dead time values have to be set to
binietoglou@0 559 undefined value). This information can be also taken from SCC\_DB. In
binietoglou@0 560 our example the 1064 nm channel is acquired in analog mode so the
binietoglou@0 561 corresponding dead time value has to be undefined. If we suppose a
binietoglou@0 562 dead time of 10 ns for all other channels we have to set:
binietoglou@0 563
binietoglou@0 564 ::
binietoglou@0 565
binietoglou@0 566 Dead_Time = _, 10, 10, 10 ;
binietoglou@0 567
binietoglou@0 568 Dead_Time_Corr_Type(channels
binietoglou@0 569 This optional array defines which kind of dead time correction has
binietoglou@0 570 to be applied on each photoncounting channel. The SCC will correct
binietoglou@0 571 the data supposing a not-paralyzable channel if a value of 0 is found
binietoglou@0 572 while a paralyzable channel is supposed if a value of 1 is found. Of
binietoglou@0 573 course for analog signals no dead time correction will be applied and
binietoglou@0 574 so the corresponding values have to be set to undefined value. This
binietoglou@0 575 information can be also taken from SCC\_DB. In our example the 1064
binietoglou@0 576 nm channel is acquired in analog mode so the corresponding has to be
binietoglou@0 577 undefined. If we want to consider all the photoncounting signals as
binietoglou@0 578 not-paralyzable ones: we have to set:
binietoglou@0 579
binietoglou@0 580 ::
binietoglou@0 581
binietoglou@0 582 Dead_Time_Corr_Type = _, 0, 0, 0 ;
binietoglou@0 583
binietoglou@0 584 Trigger_Delay(channels)
binietoglou@0 585 This optional array defines the delay (in ns) of the middle of the
binietoglou@0 586 first rangebin with respect to the output laser pulse for each lidar
binietoglou@0 587 channel. The SCC will use the values given by this array to correct
binietoglou@0 588 for trigger delay. This information can be also taken from SCC\_DB.
binietoglou@0 589 Let’s suppose that in our example all the photoncounting channels are
binietoglou@0 590 not affected by this delay and only the analog channel at 1064nm is
binietoglou@0 591 acquired with a delay of 50ns. In this case we have to set:
binietoglou@0 592
binietoglou@0 593 ::
binietoglou@0 594
binietoglou@0 595 Trigger_Delay = 50, 0, 0, 0 ;
binietoglou@0 596
binietoglou@0 597 Background_Mode(channels
binietoglou@0 598 This optional array defines how the atmospheric background has to be
binietoglou@0 599 subtracted from the lidar channel. Two options are available for the
binietoglou@0 600 calculation of atmospheric background:
binietoglou@0 601
binietoglou@0 602 #. Average in the far field of lidar channel. In this case the value
binietoglou@0 603 of this variable has to be 1
binietoglou@0 604
binietoglou@0 605 #. Average within pre-trigger bins. In this case the value of this
binietoglou@0 606 variable has to be 0
binietoglou@0 607
binietoglou@0 608 This information can be also taken from SCC\_DB. Let’s suppose in our
binietoglou@0 609 example we use the pre-trigger for the 1064nm channel and the far
binietoglou@0 610 field for all other channels. In this case we have to set:
binietoglou@0 611
binietoglou@0 612 ::
binietoglou@0 613
binietoglou@0 614 Background_Mode = 0, 1, 1, 1 ;
binietoglou@0 615
binietoglou@0 616 Background_Low(channels)
binietoglou@0 617 This mandatory array defines the minimum altitude (in meters) to
binietoglou@0 618 consider in calculating the atmospheric background for each channel.
binietoglou@0 619 In case pre-trigger mode is used the corresponding value has to be
binietoglou@0 620 set to the rangebin to be used as lower limit (within pre-trigger
binietoglou@0 621 region) for background calculation. In our example, if we want to
binietoglou@0 622 calculate the background between 30000 and 50000 meters for all
binietoglou@0 623 photoncounting channels and we want to use the first 500 pre-trigger
binietoglou@0 624 bins for the background calculation for the 1064nm channel we have to
binietoglou@0 625 set:
binietoglou@0 626
binietoglou@0 627 ::
binietoglou@0 628
binietoglou@0 629 Background_Low= 0, 30000, 30000, 30000 ;
binietoglou@0 630
binietoglou@0 631 Background_High(channels)
binietoglou@0 632 This mandatory array defines the maximum altitude (in meters) to
binietoglou@0 633 consider in calculating the atmospheric background for each channel.
binietoglou@0 634 In case pre-trigger mode is used the corresponding value has to be
binietoglou@0 635 set to the rangebin to be used as upper limit (within pre-trigger
binietoglou@0 636 region) for background calculation. In our example, if we want to
binietoglou@0 637 calculate the background between 30000 and 50000 meters for all
binietoglou@0 638 photoncounting channels and we want to use the first 500 pre-trigger
binietoglou@0 639 bins for the background calculation for the 1064nm channel we have to
binietoglou@0 640 set:
binietoglou@0 641
binietoglou@0 642 ::
binietoglou@0 643
binietoglou@0 644 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 645
binietoglou@0 646 Molecular_Calc
binietoglou@0 647 This mandatory variable defines the way used by SCC to calculate the
binietoglou@0 648 molecular density profile. At the moment two options are available:
binietoglou@0 649
binietoglou@0 650 #. US Standard Atmosphere 1976. In this case the value of this
binietoglou@0 651 variable has to be 0
binietoglou@0 652
binietoglou@0 653 #. Radiosounding. In this case the value of this variable has to be 1
binietoglou@0 654
binietoglou@0 655 If we decide to use the option 1. we have to provide also the
binietoglou@0 656 measured pressure and temperature at lidar station level. Indeed if
binietoglou@0 657 we decide to use the option 2. a radiosounding file has to be
binietoglou@0 658 submitted separately in NetCDF format (the structure of this file is
binietoglou@0 659 summarized in table tab:sounding). Let’s suppose we want to use the
binietoglou@0 660 option 1. so:
binietoglou@0 661
binietoglou@0 662 ::
binietoglou@0 663
binietoglou@0 664 Molecular_Calc = 0 ;
binietoglou@0 665
binietoglou@0 666 Pressure_at_Lidar_Station
binietoglou@0 667 Because we have chosen the US Standard Atmosphere for calculation of
binietoglou@0 668 the molecular density profile we have to give the pressure in hPa at
binietoglou@0 669 lidar station level:
binietoglou@0 670
binietoglou@0 671 ::
binietoglou@0 672
binietoglou@0 673 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 674
binietoglou@0 675 Temperature_at_Lidar_Station
binietoglou@0 676 Because we have chosen the US Standard Atmosphere for calculation of
binietoglou@0 677 the molecular density profile we have to give the temperature in C at
binietoglou@0 678 lidar station level:
binietoglou@0 679
binietoglou@0 680 ::
binietoglou@0 681
binietoglou@0 682 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 683
binietoglou@0 684 Depolarization_Factor(channels)
binietoglou@0 685 This array is required only for lidar systems that use the two
binietoglou@0 686 depolarization channels for the backscatter retrieval. It represents
binietoglou@0 687 the factor :math:`f` to calculate the total backscatter signal
binietoglou@0 688 :math:`S_t` combining its cross :math:`S_c` and parallel
binietoglou@0 689 :math:`S_p` components: :math:`S_t=S_p+fS_c`. This factor is
binietoglou@0 690 mandatory only for systems acquiring :math:`S_c` and :math:`S_p`
binietoglou@0 691 and not :math:`S_t`. For systems acquiring :math:`S_c`,
binietoglou@0 692 :math:`S_p` and :math:`S_t` this factor is optional and it will
binietoglou@0 693 be used only for depolarizaton ratio calculation. Moreover only the
binietoglou@0 694 values of the array corresponding to cross polarization channels will
binietoglou@0 695 be considered; all other values will be not taken into account and
binietoglou@0 696 should be set to undefined value. In our example for the wavelength
binietoglou@0 697 532nm we have only the cross and the parallel components and not the
binietoglou@0 698 total one. So we have to give the value of this factor only in
binietoglou@0 699 correspondence of the 532nm cross polarization channel that
binietoglou@0 700 corresponds to the channel index 1. Suppose that this factor is 0.88.
binietoglou@0 701 Moreover, because we don’t have any other depolarization channels we
binietoglou@0 702 have also to set all other values of the array to undefined value.
binietoglou@0 703
binietoglou@0 704 ::
binietoglou@0 705
binietoglou@0 706 Depolarization_Factor = _,0.88,_,_ ;
binietoglou@0 707
binietoglou@0 708 LR_Input(channels)
binietoglou@0 709 This array is required only for lidar channels for which elastic
binietoglou@0 710 backscatter retrieval has to be performed. It defines the lidar ratio
binietoglou@0 711 to be used within this retrieval. Two options are available:
binietoglou@0 712
binietoglou@0 713 #. The user can submit a lidar ratio profile. In this case the value
binietoglou@0 714 of this variable has to be 0.
binietoglou@0 715
binietoglou@0 716 #. A fixed value of lidar ratio can be used. In this case the value
binietoglou@0 717 of this variable has to be 1.
binietoglou@0 718
binietoglou@0 719 If we decide to use the option 1. a lidar ratio file has to be
binietoglou@0 720 submitted separately in NetCDF format (the structure of this file is
binietoglou@0 721 summarized in table tab:lr). If we decide to use the option 2. the
binietoglou@0 722 fixed value of lidar ratio will be taken from SCC\_DB. In our example
binietoglou@0 723 we have to give a value of this array only for the 1064nm lidar
binietoglou@0 724 channel because for the 532nm we will be able to retrieve a Raman
binietoglou@0 725 backscatter coefficient. In case we want to use the fixed value
binietoglou@0 726 stored in SCC\_DB we have to set:
binietoglou@0 727
binietoglou@0 728 ::
binietoglou@0 729
binietoglou@0 730 LR_Input = 1,_,_,_ ;
binietoglou@0 731
binietoglou@0 732 DAQ_Range(channels)
binietoglou@0 733 This array is required only if one or more lidar signals are
binietoglou@0 734 acquired in analog mode. It gives the analog scale in mV used to
binietoglou@0 735 acquire the analog signals. In our example we have only the 1064nm
binietoglou@0 736 channel acquired in analog mode. If we have used a 100mV analog scale
binietoglou@0 737 to acquire this channel we have to set:
binietoglou@0 738
binietoglou@0 739 ::
binietoglou@0 740
binietoglou@0 741 DAQ_Range = 100,_,_,_ ;
binietoglou@0 742
binietoglou@0 743 Global attributes
binietoglou@0 744 ~~~~~~~~~~~~~~~~~
binietoglou@0 745
binietoglou@0 746 Measurement_ID
binietoglou@0 747 This mandatory global attribute defines the measurement ID
binietoglou@0 748 corresponding to the actual lidar measurement. It is a string
binietoglou@0 749 composed by 12 characters. The first 8 characters give the start date
binietoglou@0 750 of measurement in the format YYYYMMDD. The next 2 characters give the
binietoglou@0 751 Earlinet call-sign of the station. The last 2 characters are used to
binietoglou@0 752 distinguish between different time-series within the same date. In
binietoglou@0 753 our example we have to set:
binietoglou@0 754
binietoglou@0 755 ::
binietoglou@0 756
binietoglou@0 757 Measurement_ID= "20090130cc00" ;
binietoglou@0 758
binietoglou@0 759 RawData_Start_Date
binietoglou@0 760 This mandatory global attribute defines the start date of lidar
binietoglou@0 761 measurements in the format YYYYMMDD. In our case we have:
binietoglou@0 762
binietoglou@0 763 ::
binietoglou@0 764
binietoglou@0 765 RawData_Start_Date = "20090130" ;
binietoglou@0 766
binietoglou@0 767 RawData_Start_Time_UT
binietoglou@0 768 This mandatory global attribute defines the UT start time of lidar
binietoglou@0 769 measurements in the format HHMMSS. In our case we have:
binietoglou@0 770
binietoglou@0 771 ::
binietoglou@0 772
binietoglou@0 773 RawData_Start_Time_UT = "000001" ;
binietoglou@0 774
binietoglou@0 775 RawData_Stop_Time_UT``
binietoglou@0 776 This mandatory global attribute defines the UT stop time of lidar
binietoglou@0 777 measurements in the format HHMMSS. In our case we have:
binietoglou@0 778
binietoglou@0 779 ::
binietoglou@0 780
binietoglou@0 781 RawData_Stop_Time_UT = "000501" ;
binietoglou@0 782
binietoglou@0 783 RawBck_Start_Date
binietoglou@0 784 This optional global attribute defines the start date of dark
binietoglou@0 785 measurements in the format YYYYMMDD. In our case we have:
binietoglou@0 786
binietoglou@0 787 ::
binietoglou@0 788
binietoglou@0 789 RawBck_Start_Date = "20090129" ;
binietoglou@0 790
binietoglou@0 791 RawBck_Start_Time_UT
binietoglou@0 792 This optional global attribute defines the UT start time of dark
binietoglou@0 793 measurements in the format HHMMSS. In our case we have:
binietoglou@0 794
binietoglou@0 795 ::
binietoglou@0 796
binietoglou@0 797 RawBck_Start_Time_UT = "235001" ;
binietoglou@0 798
binietoglou@0 799 RawBck_Stop_Time_UT
binietoglou@0 800 This optional global attribute defines the UT stop time of dark
binietoglou@0 801 measurements in the format HHMMSS. In our case we have:
binietoglou@0 802
binietoglou@0 803 ::
binietoglou@0 804
binietoglou@0 805 RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 806
binietoglou@0 807 Example of file (CDL format)
binietoglou@0 808 ----------------------------
binietoglou@0 809
binietoglou@0 810 To summarize we have the following NetCDF Raw Lidar Data file (in CDL
binietoglou@0 811 format):
binietoglou@0 812
binietoglou@0 813 ::
binietoglou@0 814
binietoglou@0 815 dimensions:
binietoglou@0 816 points = 5000 ;
binietoglou@0 817 channels = 4 ;
binietoglou@0 818 time = UNLIMITED ; // (10 currently)
binietoglou@0 819 nb_of_time_scales = 2 ;
binietoglou@0 820 scan_angles = 1 ;
binietoglou@0 821 time_bck = 6 ;
binietoglou@0 822 variables:
binietoglou@0 823 int channel_ID(channels) ;
binietoglou@0 824 int Laser_Repetition_Rate(channels) ;
binietoglou@0 825 double Laser_Pointing_Angle(scan_angles) ;
binietoglou@0 826 int ID_Range(channels) ;
binietoglou@0 827 int Scattering_Mechanism(channels) ;
binietoglou@0 828 double Emitted_Wavelength(channels) ;
binietoglou@0 829 double Detected_Wavelength(channels) ;
binietoglou@0 830 double Raw_Data_Range_Resolution(channels) ;
binietoglou@0 831 int Background_Mode(channels) ;
binietoglou@0 832 double Background_Low(channels) ;
binietoglou@0 833 double Background_High(channels) ;
binietoglou@0 834 int Molecular_Calc ;
binietoglou@0 835 double Pressure_at_Lidar_Station ;
binietoglou@0 836 double Temperature_at_Lidar_Station ;
binietoglou@0 837 int id_timescale(channels) ;
binietoglou@0 838 double Dead_Time(channels) ;
binietoglou@0 839 int Dead_Time_Corr_Type(channels) ;
binietoglou@0 840 int Acquisition_Mode(channels) ;
binietoglou@0 841 double Trigger_Delay(channels) ;
binietoglou@0 842 int LR_Input(channels) ;
binietoglou@0 843 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
binietoglou@0 844 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
binietoglou@0 845 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
binietoglou@0 846 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 847 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 848 int Laser_Shots(time, channels) ;
binietoglou@0 849 double Raw_Lidar_Data(time, channels, points) ;
binietoglou@0 850 double Background_Profile(time_bck, channels, points) ;
binietoglou@0 851 double DAQ_Range(channels) ;
binietoglou@0 852
binietoglou@0 853 // global attributes:
binietoglou@0 854 :Measurement_ID = "20090130cc00" ;
binietoglou@0 855 :RawData_Start_Date = "20090130" ;
binietoglou@0 856 :RawData_Start_Time_UT = "000001" ;
binietoglou@0 857 :RawData_Stop_Time_UT = "000501" ;
binietoglou@0 858 :RawBck_Start_Date = "20090129" ;
binietoglou@0 859 :RawBck_Start_Time_UT = "235001" ;
binietoglou@0 860 :RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 861
binietoglou@0 862 data:
binietoglou@0 863
binietoglou@0 864 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 865
binietoglou@0 866 Laser_Repetition_Rate = 50, 50, 50, 50 ;
binietoglou@0 867
binietoglou@0 868 Laser_Pointing_Angle = 5 ;
binietoglou@0 869
binietoglou@0 870 ID_Range = 1, 1, 1, 1 ;
binietoglou@0 871
binietoglou@0 872 Scattering_Mechanism = 0, 2, 3, 1 ;
binietoglou@0 873
binietoglou@0 874 Emitted_Wavelength = 1064, 532, 532, 532 ;
binietoglou@0 875
binietoglou@0 876 Detected_Wavelength = 1064, 532, 532, 607 ;
binietoglou@0 877
binietoglou@0 878 Raw_Data_Range_Resolution = 7.5, 15, 15, 15 ;
binietoglou@0 879
binietoglou@0 880 Background_Mode = 0, 1, 1, 1 ;
binietoglou@0 881
binietoglou@0 882 Background_Low = 0, 30000, 30000, 30000 ;
binietoglou@0 883
binietoglou@0 884 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 885
binietoglou@0 886 Molecular_Calc = 0 ;
binietoglou@0 887
binietoglou@0 888 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 889
binietoglou@0 890 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 891
binietoglou@0 892 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 893
binietoglou@0 894 Dead_Time = _, 10, 10, 10 ;
binietoglou@0 895
binietoglou@0 896 Dead_Time_Corr_Type = _, 0, 0, 0 ;
binietoglou@0 897
binietoglou@0 898 Acquisition_Mode = 0, 1, 1, 1 ;
binietoglou@0 899
binietoglou@0 900 Trigger_Delay = 50, 0, 0, 0 ;
binietoglou@0 901
binietoglou@0 902 LR_Input = 1,_,_,_ ;
binietoglou@0 903
binietoglou@0 904 DAQ_Range = 100,_,_,_ ;
binietoglou@0 905
binietoglou@0 906 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 907 0, 0,
binietoglou@0 908 0, 0,
binietoglou@0 909 0, 0,
binietoglou@0 910 0, 0,
binietoglou@0 911 0, 0,
binietoglou@0 912 _, 0,
binietoglou@0 913 _, 0,
binietoglou@0 914 _, 0,
binietoglou@0 915 _, 0,
binietoglou@0 916 _, 0 ;
binietoglou@0 917
binietoglou@0 918
binietoglou@0 919 Raw_Data_Start_Time =
binietoglou@0 920 0, 0,
binietoglou@0 921 60, 30,
binietoglou@0 922 120, 60,
binietoglou@0 923 180, 90,
binietoglou@0 924 240, 120,
binietoglou@0 925 _, 150,
binietoglou@0 926 _, 180,
binietoglou@0 927 _, 210,
binietoglou@0 928 _, 240,
binietoglou@0 929 _, 270 ;
binietoglou@0 930
binietoglou@0 931 Raw_Data_Stop_Time =
binietoglou@0 932 60, 30,
binietoglou@0 933 120, 60,
binietoglou@0 934 180, 90,
binietoglou@0 935 240, 120,
binietoglou@0 936 300, 150,
binietoglou@0 937 _, 180,
binietoglou@0 938 _, 210,
binietoglou@0 939 _, 240,
binietoglou@0 940 _, 270,
binietoglou@0 941 _, 300 ;
binietoglou@0 942
binietoglou@0 943
binietoglou@0 944 Raw_Bck_Start_Time =
binietoglou@0 945 0, 0,
binietoglou@0 946 60, 30,
binietoglou@0 947 120, 60,
binietoglou@0 948 _, 90,
binietoglou@0 949 _, 120,
binietoglou@0 950 _, 150;
binietoglou@0 951
binietoglou@0 952
binietoglou@0 953 Raw_Bck_Stop_Time =
binietoglou@0 954 60, 30,
binietoglou@0 955 120, 60,
binietoglou@0 956 180, 90,
binietoglou@0 957 _, 120,
binietoglou@0 958 _, 150,
binietoglou@0 959 _, 180 ;
binietoglou@0 960
binietoglou@0 961
binietoglou@0 962 Laser_Shots =
binietoglou@0 963 1500, 3000, 3000, 3000,
binietoglou@0 964 1500, 3000, 3000, 3000,
binietoglou@0 965 1500, 3000, 3000, 3000,
binietoglou@0 966 1500, 3000, 3000, 3000,
binietoglou@0 967 1500, 3000, 3000, 3000,
binietoglou@0 968 1500, _, _, _,
binietoglou@0 969 1500, _, _, _,
binietoglou@0 970 1500, _, _, _,
binietoglou@0 971 1500, _, _, _,
binietoglou@0 972 1500, _, _, _ ;
binietoglou@0 973
binietoglou@0 974
binietoglou@0 975 Raw_Lidar_Data = ...
binietoglou@0 976
binietoglou@0 977 Background_Profile = ...
binietoglou@0 978
binietoglou@0 979 Please keep in mind that in case you submit a file like the previous one
binietoglou@0 980 all the parameters present in it will be used by the SCC even if you
binietoglou@0 981 have different values for the same parameters within the SCC\_DB. If you
binietoglou@0 982 want to use the values already stored in SCC\_DB (this should be the
binietoglou@0 983 usual way to use SCC) the Raw Lidar Data input file has to be
binietoglou@0 984 modified as follows:
binietoglou@0 985
binietoglou@0 986 ::
binietoglou@0 987
binietoglou@0 988 dimensions:
binietoglou@0 989 points = 5000 ;
binietoglou@0 990 channels = 4 ;
binietoglou@0 991 time = UNLIMITED ; // (10 currently)
binietoglou@0 992 nb_of_time_scales = 2 ;
binietoglou@0 993 scan_angles = 1 ;
binietoglou@0 994 time_bck = 6 ;
binietoglou@0 995 variables:
binietoglou@0 996 int channel_ID(channels) ;
binietoglou@0 997 double Laser_Pointing_Angle(scan_angles) ;
binietoglou@0 998 double Background_Low(channels) ;
binietoglou@0 999 double Background_High(channels) ;
binietoglou@0 1000 int Molecular_Calc ;
binietoglou@0 1001 double Pressure_at_Lidar_Station ;
binietoglou@0 1002 double Temperature_at_Lidar_Station ;
binietoglou@0 1003 int id_timescale(channels) ;
binietoglou@0 1004 int Laser_Pointing_Angle_of_Profiles(time, nb_of_time_scales) ;
binietoglou@0 1005 int Raw_Data_Start_Time(time, nb_of_time_scales) ;
binietoglou@0 1006 int Raw_Data_Stop_Time(time, nb_of_time_scales) ;
binietoglou@0 1007 int Raw_Bck_Start_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 1008 int Raw_Bck_Stop_Time(time_bck, nb_of_time_scales) ;
binietoglou@0 1009 int LR_Input(channels) ;
binietoglou@0 1010 int Laser_Shots(time, channels) ;
binietoglou@0 1011 double Raw_Lidar_Data(time, channels, points) ;
binietoglou@0 1012 double Background_Profile(time_bck, channels, points) ;
binietoglou@0 1013 double DAQ_Range(channels) ;
binietoglou@0 1014
binietoglou@0 1015 // global attributes:
binietoglou@0 1016 :Measurement_ID = "20090130cc00" ;
binietoglou@0 1017 :RawData_Start_Date = "20090130" ;
binietoglou@0 1018 :RawData_Start_Time_UT = "000001" ;
binietoglou@0 1019 :RawData_Stop_Time_UT = "000501" ;
binietoglou@0 1020 :RawBck_Start_Date = "20090129" ;
binietoglou@0 1021 :RawBck_Start_Time_UT = "235001" ;
binietoglou@0 1022 :RawBck_Stop_Time_UT = "235301" ;
binietoglou@0 1023
binietoglou@0 1024 data:
binietoglou@0 1025
binietoglou@0 1026 channel_ID = 7, 5, 6, 8 ;
binietoglou@0 1027
binietoglou@0 1028 Laser_Pointing_Angle = 5 ;
binietoglou@0 1029
binietoglou@0 1030 Background_Low = 0, 30000, 30000, 30000 ;
binietoglou@0 1031
binietoglou@0 1032 Background_High = 500, 50000, 50000, 50000 ;
binietoglou@0 1033
binietoglou@0 1034 Molecular_Calc = 0 ;
binietoglou@0 1035
binietoglou@0 1036 Pressure_at_Lidar_Station = 1010 ;
binietoglou@0 1037
binietoglou@0 1038 Temperature_at_Lidar_Station = 19.8 ;
binietoglou@0 1039
binietoglou@0 1040 id_timescale = 1, 0, 0, 0 ;
binietoglou@0 1041
binietoglou@0 1042 LR_Input = 1,_,_,_ ;
binietoglou@0 1043
binietoglou@0 1044 DAQ_Range = 100,_,_,_ ;
binietoglou@0 1045
binietoglou@0 1046 Laser_Pointing_Angle_of_Profiles =
binietoglou@0 1047 0, 0,
binietoglou@0 1048 0, 0,
binietoglou@0 1049 0, 0,
binietoglou@0 1050 0, 0,
binietoglou@0 1051 0, 0,
binietoglou@0 1052 _, 0,
binietoglou@0 1053 _, 0,
binietoglou@0 1054 _, 0,
binietoglou@0 1055 _, 0,
binietoglou@0 1056 _, 0 ;
binietoglou@0 1057
binietoglou@0 1058
binietoglou@0 1059 Raw_Data_Start_Time =
binietoglou@0 1060 0, 0,
binietoglou@0 1061 60, 30,
binietoglou@0 1062 120, 60,
binietoglou@0 1063 180, 90,
binietoglou@0 1064 240, 120,
binietoglou@0 1065 _, 150,
binietoglou@0 1066 _, 180,
binietoglou@0 1067 _, 210,
binietoglou@0 1068 _, 240,
binietoglou@0 1069 _, 270 ;
binietoglou@0 1070
binietoglou@0 1071 Raw_Data_Stop_Time =
binietoglou@0 1072 60, 30,
binietoglou@0 1073 120, 60,
binietoglou@0 1074 180, 90,
binietoglou@0 1075 240, 120,
binietoglou@0 1076 300, 150,
binietoglou@0 1077 _, 180,
binietoglou@0 1078 _, 210,
binietoglou@0 1079 _, 240,
binietoglou@0 1080 _, 270,
binietoglou@0 1081 _, 300 ;
binietoglou@0 1082
binietoglou@0 1083
binietoglou@0 1084 Raw_Bck_Start_Time =
binietoglou@0 1085 0, 0,
binietoglou@0 1086 60, 30,
binietoglou@0 1087 120, 60,
binietoglou@0 1088 _, 90,
binietoglou@0 1089 _, 120,
binietoglou@0 1090 _, 150;
binietoglou@0 1091
binietoglou@0 1092
binietoglou@0 1093 Raw_Bck_Stop_Time =
binietoglou@0 1094 60, 30,
binietoglou@0 1095 120, 60,
binietoglou@0 1096 180, 90,
binietoglou@0 1097 _, 120,
binietoglou@0 1098 _, 150,
binietoglou@0 1099 _, 180 ;
binietoglou@0 1100
binietoglou@0 1101
binietoglou@0 1102 Laser_Shots =
binietoglou@0 1103 1500, 3000, 3000, 3000,
binietoglou@0 1104 1500, 3000, 3000, 3000,
binietoglou@0 1105 1500, 3000, 3000, 3000,
binietoglou@0 1106 1500, 3000, 3000, 3000,
binietoglou@0 1107 1500, 3000, 3000, 3000,
binietoglou@0 1108 1500, _, _, _,
binietoglou@0 1109 1500, _, _, _,
binietoglou@0 1110 1500, _, _, _,
binietoglou@0 1111 1500, _, _, _,
binietoglou@0 1112 1500, _, _, _ ;
binietoglou@0 1113
binietoglou@0 1114
binietoglou@0 1115 Raw_Lidar_Data = ...
binietoglou@0 1116
binietoglou@0 1117 Background_Profile = ...
binietoglou@0 1118
binietoglou@0 1119 This example file contains the minimum collection of mandatory
binietoglou@0 1120 information that has to be found within the Raw Lidar Data input
binietoglou@0 1121 file. If it is really necessary, the user can decide to add to these
binietoglou@0 1122 mandatory parameters any number of additional parameters considered in
binietoglou@0 1123 the previous example.
binietoglou@0 1124
binietoglou@0 1125 Finally, suppose we want to make the following changes with respect to
binietoglou@0 1126 the previous example:
binietoglou@0 1127
binietoglou@0 1128 #. use a sounding file for molecular density calculation instead of “US
binietoglou@0 1129 Standar Atmosphere 1976”
binietoglou@0 1130
binietoglou@0 1131 #. supply a lidar ratio profile to use in elastic backscatter retrieval
binietoglou@0 1132 instead of a fixed value
binietoglou@0 1133
binietoglou@0 1134 #. provide a overlap function for overlap correction
binietoglou@0 1135
binietoglou@0 1136 In this case we have to generate the following NetCDF additional files:
binietoglou@0 1137
binietoglou@0 1138 rs_20090130cc00.nc
binietoglou@0 1139 The name of Sounding Data file has to be computed as follows:
binietoglou@0 1140 ``"rs_"``+``Measurement_ID``
binietoglou@0 1141 The structure of this file is summarized in table tab:sounding.
binietoglou@0 1142
binietoglou@0 1143 ov_20090130cc00.nc
binietoglou@0 1144 The name of Overlap file has to be computed as follows:
binietoglou@0 1145 ``"ov_"``+``Measurement_ID``
binietoglou@0 1146 The structure of this file is summarized in table tab:overlap.
binietoglou@0 1147
binietoglou@0 1148 lr_20090130cc00.nc
binietoglou@0 1149 The name of Lidar Ratio file has to be computed as follows:
binietoglou@0 1150 ``"lr_"``+``Measurement_ID``
binietoglou@0 1151 The structure of this file is summarized in table tab:lr.
binietoglou@0 1152
binietoglou@0 1153 Moreover we need to apply the following changes to the Raw Lidar Data
binietoglou@0 1154 input file:
binietoglou@0 1155
binietoglou@0 1156 1. Change the value of the variable ``Molecular_Calc`` as follows:
binietoglou@0 1157
binietoglou@0 1158 ::
binietoglou@0 1159
binietoglou@0 1160 Molecular_Calc = 1 ;
binietoglou@0 1161
binietoglou@0 1162 Of course the variables ``Pressure_at_Lidar_Station`` and
binietoglou@0 1163 ``Temperature_at_Lidar_Station`` are not necessary anymore.
binietoglou@0 1164
binietoglou@0 1165 2. Change the values of the array ``LR_Input`` as follows:
binietoglou@0 1166
binietoglou@0 1167 ::
binietoglou@0 1168
binietoglou@0 1169 LR_Input = 0,_,_,_ ;
binietoglou@0 1170
binietoglou@0 1171 3. Add the global attribute ``Sounding_File_Name``
binietoglou@0 1172
binietoglou@0 1173 ::
binietoglou@0 1174
binietoglou@0 1175 Sounding_File_Name = "rs_20090130cc00.nc" ;
binietoglou@0 1176
binietoglou@0 1177 5. Add the global attribute ``LR_File_Name``
binietoglou@0 1178
binietoglou@0 1179 ::
binietoglou@0 1180
binietoglou@0 1181 LR_File_Name = "lr_20090130cc00.nc" ;
binietoglou@0 1182
binietoglou@0 1183 6. Add the global attribute ``Overlap_File_Name``
binietoglou@0 1184
binietoglou@0 1185 ::
binietoglou@0 1186
binietoglou@0 1187 Overlap_File_Name = "ov_20090130cc00.nc" ;

mercurial