365 **Figure 3.2:** Polarization crosstalk parameters tab in channel properties (SCC v4.0). |
365 **Figure 3.2:** Polarization crosstalk parameters tab in channel properties (SCC v4.0). |
366 |
366 |
367 3.2 Definition of new calibration configuration and product |
367 3.2 Definition of new calibration configuration and product |
368 ----------------------------------------------------------- |
368 ----------------------------------------------------------- |
369 |
369 |
370 In this section we will see how to set the polarization calibration parameters: the calibration constant (called :math:`\eta^*`*` in section 1.3) and the correction to calibration constant (called K in section 1.3). In order to provide such parameters you need to define a new system configuration to be used **ONLY** for calibration purposes. Such new configuration should include the polarization channels in the measurement configuration used for the calibration. Let's suppose we want to use the :math:`\Delta90` calibration method. |
370 In this section we will see how to set the polarization calibration parameters: the calibration constant (called :math:`\eta^*` in section 1.3) and the correction to calibration constant (called K in section 1.3). In order to provide such parameters you need to define a new system configuration to be used **ONLY** for calibration purposes. Such new configuration should include the polarization channels in the measurement configuration used for the calibration. Let's suppose we want to use the :math:`\Delta90` calibration method. |
371 |
371 |
372 In this case we need to define a new configuration (called for example “depol_calibration”) as reported in the table 3.3. As you can see the configuration “depol\_calibration” includes 4 “new” channels. Actually the channels “532 cross +45 degrees” (channel ID=10) and “532 cross -45 degrees” (channel ID=12) refer to the same physical channel “532 cross” reported with channel ID=3 in table 3.2. Anyway we need to define two new channel IDs to identify the “532 cross” channel in the two polarization rotated configurations (+45 and -45 degrees) needed to apply the D90 calibration method. The same is true for the “532 parallel” channel. The polarization rotated channels should be labeled with the corresponding signal type as reported in table 3.3 (see figure |
372 In this case we need to define a new configuration (called for example “depol_calibration”) as reported in the table 3.3. As you can see the configuration “depol\_calibration” includes 4 “new” channels. Actually the channels “532 cross +45 degrees” (channel ID=10) and “532 cross -45 degrees” (channel ID=12) refer to the same physical channel “532 cross” reported with channel ID=3 in table 3.2. Anyway we need to define two new channel IDs to identify the “532 cross” channel in the two polarization rotated configurations (+45 and -45 degrees) needed to apply the D90 calibration method. The same is true for the “532 parallel” channel. The polarization rotated channels should be labeled with the corresponding signal type as reported in table 3.3 (see figure |
373 3.1). |
373 3.1). |
374 |
374 |
375 **Table 3.3:** Polarization calibration configurations assuming D90 |
375 **Table 3.3:** Polarization calibration configurations assuming D90 |